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Brazil 
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Abstract. The effective static dielectric constant of an electron plasma in the simultaneous 
presence of an electromagnetic wave and a uniform DC magnetic field is discussed. It is 
found that as the radiation field frequency approaches the plasma frequency a breakdown 
in screening occurs. As the radiation frequency approaches the electron cyclotron frequency, 
however, the potential of a static charge felt by the electrons becomes vanishingly small. 

1. Introduction 

The advent of high-intensity radiation sources in the microwave, infrared and optical 
spectra has stimulated considerable interest in the study of the interaction of electro- 
magnetic radiation with semiconductors (Ephstein 1970, Bass and Granovskii 1971, 
Puchkov and Ephstein 1974, Luzzi and Miranda 1978) and plasmas (Cohn et al 1972, 
Seely and Harris 1973, Seely 1974, Amato and Miranda 1976). In a recent paper (Lima 
and Miranda 1978) the effect of an electromagnetic wave on the screening of a static 
charge in an electron plasma has been investigated. It was demonstrated that as the 
radiation field frequency approaches the plasma frequency cop, breakdown in screening 
occurs which becomes apparent as an enhancement of the electron-nuclei Coulomb 
interaction. In a later paper (Lima et a1 1978), it has been predicted that such an effect will 
strongly enhance the contribution of the inverse Bremsstrahlung which is the chief 
mechanism for heating the plasma. This result is supported by recently reported experi- 
mental work (Offenberger et a1 1978, Meyer et al 1978). 

In this paper we shall extend OUT previous work on the modification of the Coulomb 
screening in the presence of an electromagnetic wave (Lima and Miranda 1978) by in- 
cluding the additional effects of a strong DC magnetic field, encouraged by the possibility 
of exploring the effects of laser-cyclotron resonance (Seely 1974). In fact, the resonance 
condition, where the laser frequency equals the electron cyclotron frequency, may be 
approached either by increasing the magnetic field strength or by using intense longer- 
wavelength lasers. Intense submillimetre lasers are becoming available (Lax and Cohn 
1973) and it is therefore important to consider the effects of the cyclotron resonance on 
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the various properties of the electron plasma. Our system, then, consists of an electron 
gas in a uniform DC magnetic field and a radiation beam, perturbed by the presence of a 
static charge. Our aim is to calculate the effective potential of this static charge, taking 
into account the plasma effects. This is performed within the usual RPA by treating the 
Coulomb interaction between the electrons as a self-consistent field. The radiation beam 
is treated as a classical plane electromagnetic wave in the dipole approximation, whereas 
the electron states are described by the solution to the Schrodinger equation for an elec- 
tron in the radiation field and a uniform static magnetic field. 

2. Static charge potential 

The solution to the time-dependent Schrodinger equation for an electron in the presence 
of a right-handed circularly polarised plane wave propagating parallel to a uniform DC 
magnetic field (z  axis) can be written as (Seely 1974; Miranda 1976, 1977) 

YsI(X> t )  = U4,(X, t )  (1) 

where 

with 

G(t) s( t )  = ~ 

m "C 

dt ' [G(t ' )  - (e/c)Ax(t')] 

2e 
y ( t )  = 15' dt(* C2 (t') + Q2(t') - - C Q(t')Ay(t') - G2(t') m 

Here, +,(x, t )  is the solution to the Schrodinger equation for an electron in a uniform 
magnetic field (no radiation field present) (Landau and Lifshitz 1958), a = (n, p, ,  p , )  are 
the Landau quantum numbers, wc = eH/mc is the electron cyclotron frequency, and 
A,(t) and Ay(t) are the components of the vector potential A( t )  = ( c E , / o , ) ( e x  cos o,t + 
e,sin o,,t),describing the radiation field. The real functions of time G(t) and Q(t) are 
determined by the equation (Seely 1974) 

G(t) + iQ(t) = 2 dt'[Ay(t') - iA,(t')] exp[iwc(t - t')]. (3) eo C î ' 
Physically, equation (1) means that by performing spatial and momentum translations 
we move from an EM field-dependent (I)) representation into an EM field-independent 
(4)  representation. Hence, if we now consider the one-electron problem in the simul- 
taneous presence of the radiation and magnetic fields interacting with a static charge 
described by V(x) ,  i.e., 

x = (1/2m)[j + (eH/c)ye, - (e/c)A(t)l2 + V ( x )  (4) 
and go from the I) representation to the 4 representation by means of a canonical trans- 
formation based upon U ,  we transfer the EM field dependence from the first term of (4) 
to the term describing the static charge distribution, namely, 

2 + A? = U'[ -ih(d/c?t) + X ] U  = 2, + ~ ( x  + a(t)) ( 5 )  
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where 

2 0  = (1/2m)[B + (eH/c)ye,I2 
is the Landau Hamiltonian (Landau and Lifschitz 1958). Then, in the 4 representation, 
our Hamiltonian is that of an electron in a uniform magnetic field moving in the d(t)- 
displaced potential, V ( x  + d(t)). Hence, using equation (5)  and allowing for the intrinsic 
self-consistent field, the Hamiltonian in the second quantisation formalism (in the 
representation) for the electron gas interacting with a static charge is then written as 

H = ~E,c:c, - e x @(k,t)(plexp(ik.x)la)ca+c,. 
a Oak 

Here E, = (n  + $)hwc + Pi/2m is the electron energy in the Landau state a = (n, p ,  p,) ,  
p = (n’, p ,  + hkx, p ,  + hk,), (plexp(ik .xjla) is the overlap between Landau wavefunc- 
tions (Gomes and Miranda 1975) and @(k, t) describes the Fourier components of the 
displaced static charge and self-consistent fields, which are given by Poisson’s equation, 
neglecting transverse currents (Mermin and Canel 1964) 

k2$(k,  t) = 4np”(k, t) - 4ne (blexp( -ik.x)la) ( C ~ C , ) ~ .  (7) 
0, a 

Here, p(k, t )  is the Fourier component of the displaced static charge distribution and 
( . . . ) t  denotes averaging with the complete Hamiltonian. We note that if @(k, t )  and 
p ( k )  denote the Fourier components of the scalar potential and the static charge distribu- 
tion, respectively, in the I) representation; they are related to @(k, t )  and p”(k, t )  by 

@(k, t )  = q ( k ,  t )  exp(ik.d(t)) p”(k, t )  = p(k)  exp(ik. d(t)). (8) 
We make a few remarks on the approximations underlying equation (7). Firstly, the 
well-known long-wavelength limit (dipole approximation) was used for the external 
EM field, a long-standing practice (Seely 1974) when dealing with problems involving the 
interaction of a quantum plasma and a radiation pump field. Replacing the EM field 
vector potential A ( x ,  t )  by its spatially uniform counterpart A ( t )  is, of course, a valid 
approximation in those applications where the dimensions of the interaction region are 
much smaller than the EM wavelength. Secondly, we used the so-called electrostatic 
approximation (EA) in a magnetised plasma. It is true that in the presence of a magnetic 
field, the general normal modes in the plasma involve contributions from both longi- 
tudinal and transverse currents and, except under certain conditions, the latter need not 
be negligible. The EA has been carefully considered (Mermin and Canel 1964, Celli and 
Mermin 1964) and the conditions for its validity established. It describes a normal mode 
well if the frequency (0) and the wavelength ( IC-’)  of the mode satisfy w 4 kc, and the 
longitudinal currents in the mode are not negligible compared with the transverse currents. 
It is under these assumptions that equation (7) is reached. This means that in handling 
the self-consistent spatially non-uniform fields in the RPA the assumption has been made 
that only Coulomb interactions are important (the electrostatic approximation). In 
short, the condition wmode 4 ckmode underlies the validity of equation (7). 

Denoting a = (n ,p , , p , )  and a’ = (n’,p, - hk,,p,  - hk,), constructing the equation 
of motion for ( c ~ + c ~ ) ~  within the usual RPA (Pines 1961, Zyryanov 1961, Mermin and 
Canel 1964), and solving it with the initial condition ( c ; c J t = , ,  = 0, we obtain 

( c ;cJ t  = exp[-i(E, - ~,,)t/h] dt‘ie$(k, t’)(alexp(ik.x)/a’)(f,, - fa) SI m 

x exp[i(c, - ~ , , ) t / h ]  (9) 
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where f a  is the electron occupation number for the Landau state a. Substituting equation 
(9) into (7) we have 

x exp[ -i(ca - ~ , , ) ( t  - t’)/h]. (10) 

It follows from (10) that the temporal Fourier components of @ and fi  are related by 

where 

4ne2 (L, - f,) 
k 2  a,a’  

E(k,o) = 1 - - I(a’Iexp(-ik.x)Ia)12 
( E a ,  - E ,  - ho) 

is the usual linear response function (i.e., the longitudinal part of the dielectric tensor) of 
an electron gas in a DC magnetic field (Mermin and Cane1 1964, Celli and Mermin 
1964). Using equations (8) and (12) we have 

(13) 
p(k, t )  = exp( - ik. d(t)) dt’ exp(ik. d(t’)) exp( - iot‘). 

271 k2E(k, o) 

Expanding the periodic factors exp[ik. d(t)] in Fourier series 

+ m  

exp(ik. d(t)) = 1 Fv(k) exp( - ivoot) 
v = - 3 0  

and substituting them in (13) finally gives 

As before (Lima and Miranda 1978), in the presence of a radiation field, the potential of 
a static carge has components at the radiation field frequency and its harmonics. 

In the remaining discussion we shall consider only the static component p0(r) of the 
potential (p = v). We have from equation (15) 

where 

- _  1 + w  J,2[ek,E,/mo,(o0 - o,)] 
Eeff v = - c c  E@, vu,) - 1  

In arriving at (17) we have used the fact that IF(k)l = J,2(ek,E,/mw0 10, - ocl) (Miranda 
1976), where J ,  is the Bessel function of order v. Equation (16) implies that the effect of a 
radiation field on the static potential of a charge distribution can be taken into account 
by introducing an effective dielectric constant, eCff, dependent on both the frequency and 
the strength of the electromagnetic field. Only in the limit of zero EM field does the eeff 
reduce to the usual static dielectric constant. 
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3. Effective dielectric constant 

Equation (17) is the expression for the effective dielectric constant to be investigated. 
However, this requires an expression for the dielectric constant, ~ ( k ,  w), in the presence 
only of a uniform magnetic field. The general expression for ~ ( k ,  w) is quite complicated 
but it becomes substantially simplified in the long-wavelength limit for collective oscilla- 
tion. The original work of Mermin and Cane1 (1964) gives a more detailed discussion of 
this point; here we shall only use their main results. 

In the above long-wavelength limit, E(k, w) is given by 

E(k, w)  = 1 - [w,” sin2 e / ( 0 2  - wz)] - (w i  cos2 0/w2) 

w 2  * -L - {(w, 2 + of) k [(w,” + w,2)2 - 4030,” cos2 0]1’2} 

(1 8) 
where 0 is the angle that k makes with the magnetic field (z  axis). Two resonances dominate 
expression (18) in this limit. They are the roots w ,  and w -  of E(k, w)  = 0, namely, 

(19) 
and two limiting regimes of high- and low-density plasmas are of interest. In the high- 
density regime (m i  9 0:) the roots (19) become 

= wp” + 0% sin2 e 0: = 0,” cos2 e. (20) 
The mode 0, is, in this case, the ordinary longitudinal plasmon; the mode w -  is associ- 
ated with a motion which is very close to a circular motion about the direction of 
propagation with frequency wc. 

In the opposite regime of a low-density plasma (wf b 0,”) the roots (1 9) reduce to 

w: = w,” + 0,” sin2 e w’ = 0; cos2 e. (21) 
The mode w -  corresponds to an oscillation that is very close to being linear and parallel 
to H; it corresponds to a plasmon in which, because of the strong magnetic field, the 
particles move parallel to H instead of k. The mode w+ is the usual cyclotron mode. 

With these results in mind we now turn back to the discussion of the effective di- 
electric constant. Rewriting equation (18) in terms of the roots w, and m-,  equation 
(17) becomes 

with 

Z = ek,E,/(mw,Iw, - wcl). 

In the case of a high-density plasma, using equation (20) gives 

Hence, for wo N wp the v = k 1 term is dominant, with the result that eeff becomes very 
large; i.e., a breakdown in screening similarly to that previously reported (Lima and 
Miranda 1978) occurs. On the other hand, for wo N w, equation (24) vanishes since the 
argument of the Bessel functions for oo = w, becomes infinite. In this case there is a 
breakdown of the electron interactions (cp(v) + 0). The same conclusions can easily be 
verified for the case of a low-density plasma. 
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In summary, we note that the behaviour of eeffl for oo near the plasma frequency is 
completely opposite to the case where the radiation frequency is near the cyclotron 
frequency. In the former case, a breakdown in screening occurs, whereas at the laser- 
cyclotron resonance condition there is a breakdown of the electron interaction. Physically, 
the fact that vanishes for coo N o may be understood as follows: consider the classical 
problem of one electron in the presence of both an electromagnetic field (described in 
the dipole approximation by A(t ) )  and a uniform magnetic field and acted upon by a 
potential V (i.e., the potential of the other electrons, the ions or impurities). We have 

H =+mu; + +mu; + v 
where and u: = [ eE , /m(o ,  - coC)l2 are the time-averaged squares of the longitudinal 
and the transverse electron velocities, respectively. Then, when oo = oc (U, + a) the 
transverse kinetic energy becomes much larger than I/ so that H is dominated by the 
kinetic energy term. This is equivalent to saying that at the cyclotron frequency, energy 
from the radiation field is resonantly pumped into the transverse (cyclotron) motion of 
the electron. This increases the radius of the cyclotron orbit to very large values, so that 
the electron no longer sees the potential I/; it becomes a free particle. This implies that 
qo(x) in the left-hand side of equation (16) vanishes at oo = oc which, in turn, implies 
that is vanishingly small; this is consistent with our previous deduction of electron 
interaction breakdown. In other words, in contrast to the case where coo is near up, at 
the cyclotron resonance condition, instead of a breakdown in screening, the electron 
interactions freeze out. 

These two contrasting behaviours of eef; can also be appreciated from yet another 
point of view. In the case of screening breakdown, the screening cloud (the plasma 
polarisation medium) undergoes increasingly larger amplitude oscillations as its fre- 
quency (cop) approaches the radiation frequency. The net result is therefore an enhance- 
ment of the electron-nucleus interaction. Conversely, if the cyclotron resonance condi- 
tion (coo N oc) is reached, it is the indivual rather than the collective character of the 
electron motion (the circular motion of the screening cloud) that becomes important. 
Here the single electron cyclotron motion exhibits a very large amplitude typical of 
resonant behaviour, thereby entailing vanishingly small electron interactions. 

4. Conclusions 

In this paper we have investigated the effects of an additional uniform magnetic field on 
the modification of the Coulomb screening in the presence of an electromagnetic wave. 
We have shown that as the frequency of the electromagnetic wave approaches the plasma 
frequency the effective interaction potential due to static charged scattering centres in 
the plasma is enhanced as a consequency of the breakdown in screening. This behaviour 
has also been found (Lima and Miranda 1978) in the absence of a DC magnetic field. 

On the other hand, as the radiation frequency approaches the cyclotron frequency 
the opposite effect appears, namely, the interaction potential becomes vanishingly small, 
i.e. at the cyclotron resonance condition the electron interactions are essentially frozen 
out. A similar conclusion has been reported by Seely (1974) although he did not consider 
the effect of Coulomb screening in the presence of the radiation field. On that account 
his results differ from ours in that his approach produced an effective electron-nuclei 
collision frequency which vanishes as 1 0  - oCl3 at the cyclotron resonance. In our case, 
the inclusion of that effect brought out a rather diffeent dependence on 10 - wc(  for the 
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collision rate. This point, as well as its consequences towards the plasma kinetics will be 
fully discussed in a forthcoming paper (Lima et a2 1979). 

In conclusion, we have obtained in this paper a seemingly more complete description 
of the laser assisted electron Coulomb interactions in a strongly magnetised plasma. In 
particular, we have accounted for changes in the effective interaction potential induced 
by the laser and DC magnetic fields for such processes. Our main results are quite in- 
sensitive to a few simplifying assumptions introduced to facilitate calculation. 

Finally, we would like to point out briefly some situations where these results could 
be tested. For instance, our predicted enhancement (wo N wp) or weakening (w,, z wc)  
of the potential of a static charge could be observed experimentally as an increase or 
reduction, respectively, in the electrical resistance of a semiconductor caused by the 
scattering of condution electrons by impurity ions. They may also prove to be of rele- 
vance to the laser fusion problem. In fact, an increase (decrease) in the electrical resist- 
ance of the plasma should be accompanied by a noticeable increase in the plasma heat- 
ing (cooling), under the conditions described in this paper. 
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