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Abstract

An integrated investigation emphasizing sedimentological and ichnological studies of Cretaceous deposits of the Alter do Ch~ao Formation,
exposed in the western Amazonas Basin, was undertaken with the aim of determining depositional environments. Four facies associations at-
tributed to upper shoreface, foreshore, delta mouth bar, and lower/middle shoreface-prodelta depositional environments are recognized. The up-
per shoreface deposits were deposited by storm flows. They are interbedded with highly bioturbated sandstones displaying Thalassinoides,
Planolites and Diplocraterion traces. The foreshore deposits, which are coarser-grained than the shoreface strata, are characterized by tabular
sandstones displaying planar or trough cross-lamination/stratification, wavy/flaser lamination, and parallel lamination. These strata also contain
an abundance of trace fossils. The delta mouth bar deposits comprise upward-coarsening beds displaying a lobed geometry. The lower/middle
shoreface-prodelta settings consist of well-stratified, very fine-grained sandstones and mudstones deposited mostly by storm action. A wave-
dominated delta system that prograded into a marine-influenced basin is supported for the study area. Therefore, in contrast to previous inter-
pretations, it seems that a widespread Cretaceous transgression resulted in the submergence of large continental areas in the north of Brazil,
affecting sediment deposition even in the innermost portions of the intracratonic Amazonas Basin.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The distinction between open marine and continental strata
in the geological record is, in general, straightforward, but the
recognition of transitional depositional settings can be problem-
atic because they produce sediments formed by a mixture of ma-
rine and non-marine processes. Interpretations are particularly
problematic in successions that lack fossils, analysis of the de-
positional setting having to rely solely on an understanding of
the physical sedimentary structures. Many papers published in
recent years have contributed to our knowledge of the sedimen-
tary imprint of marine processes, particularly involving tidal

currents and storm waves (e.g., Boersma and Terwindt, 1981;
Dott and Bourgeois, 1982; Walker, 1984; Yang and Nio, 1985;
McCrory and Walker, 1986; Arnott and Southard, 1990; Leckie
and Singh, 1991; Nio and Yang, 1991; Shanley et al., 1992; Ar-
nott, 1992, 1993; Cheel and Middleton, 1993; Hadley and Elliot,
1993; Amos et al., 1996). As a result, many deposits recorded in
the literature previously as continental may be partly of marine
origin.

The sedimentological criteria that aid recognition of tidal and
storm deposits have helped to provide new interpretations of
many Cretaceous deposits exposed in the north Brazilian mar-
ginal basins, which are dominated by transitional marine de-
posits. Hence, a number of studies undertaken during the past
ten years on exposures of AlbianeCenomanian rocks of the
S~ao Luı́s-Grajaú and Cametá (Marajó Graben System) basins,
have demonstrated the significance of tidal currents and storm
waves as dominant depositional agents, even in southernmost
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areas at the basin margins, located several hundreds of kilo-
metres from the modern coastline (e.g., Rossetti, 1998; Rossetti
et al., 2000; Rossetti and Santos Jr., 2003; Rossetti and Góes,
2004). They have shown that shallow-marine to transitional en-
vironments were extensive as a result of widespread marine in-
cursions throughout these basins, in contrast to previous
suggestions of an entirely continental origin (e.g., Petri and Fúl-
faro, 1983). Transgressions of such magnitude should have had
an influence on adjacent regions to the west in the intracratonic
Amazonas Basin, which has been of low overall relief since at
least the Cretaceous Period. However, no marine or marginal
marine sediments have been recorded previously from the Cre-
taceous of this basin. The 500-m-thick Alter do Ch~ao Formation
is composed of siliciclastic red beds (sandstones and mud-
stones) that have been interpreted as continental in origin
(e.g., Daemon, 1975; Dino et al., 1999), but a lack of widespread
fossil collecting and sedimentological studies has precluded full
recognition of the sedimentary processes that led to its
development.

This paper provides a detailed description of the sedimen-
tary features preserved in the Alter do Ch~ao Formation where
it crops out along the left side of the Amazonas River near
Careiro Island, about 50 km to the east of Manaus, in the mid-
dle of the Amazonas Basin (Fig. 1). Our investigation has

revealed a set of exposures with well-preserved physical and
biogenic structures, allowing detailed interpretations of their
mode of origin. Hitherto, studies of this nature had not been
carried out on the formation, our knowledge of it having had
to rely mostly on regional geological studies. In this paper,
we integrate sedimentological and ichnological interpretations
and conclude from these that the formation is not entirely con-
tinental in origin, features suggesting marine influence being
abundant throughout the exposures. Our data lead us to sug-
gest that Cretaceous transgressions might have been much
more widespread in Brazilian territory than previously
thought, resulting in the submergence of large continental
areas, even within intracratonic basins.

2. Geological framework

The Amazonas Basin covers an area of up to 500,000 km2,
and is bounded by the Purus and Gurupá arcs to the west and
east, which separate this basin from the Solim~oes and Marajó
basins, respectively. It is limited to the north by the Guiana
Shield and to the south by the Brazilian Shield. The basement
comprises igneous, metamorphic and volcano-sedimentary
rocks of the Maroni-Itacaiunas and Amazônia Central prov-
inces, which correspond to the oldest rocks of the Amazon
Craton (Teixeira et al., 1989; Tassinari and Macambira,
1999; Tassinari et al., 2000). Near the Purus Arch, this basin
is underlain by Proterozoic sedimentary rocks belonging to
the Purus Group (Eiras et al., 1993).

The structure of the Amazonas Basin is defined by an easte
west and a southwestenortheast orientated central trough,
bounded by two platforms located to the north and south. Its
origin is related to a rifting event controlled by Early Paleo-
zoic intraplate extension. As the rift evolved, four main phases
of deposition took place, which alternated with periods of ther-
mal subsidence. The main trough, where the depocenter is lo-
cated, contains four sedimentary successions, collectively up
to 6500 m thick, which developed during the Ordoviciane
Early Devonian, DevonianeEarly Carboniferous, Middle
CarboniferousePermian and MesozoiceCenozoic. The last
succession is up to 500 m thick, and consists of the Javari
Group (Cunha et al., 1994; Eiras et al., 1994), formed due to
eastewest extension associated with both the evolution of
the South Atlantic Ocean and the Andean Cordillera. The Al-
ter do Ch~ao Formation, the subject of this paper, records the
Cretaceous sedimentation of this group. Defined for the first
time by Kistler (1954), it comprises red-coloured sandstones,
mudstones, conglomerates and intraformational breccias, tra-
ditionally attributed to high-energy, westward-flowing fluvial
and lacustrine/deltaic systems (Daemon, 1975). Its Cretaceous
age was first suggested on the basis of therapod teeth (Price,
1960), with later papers considering it as CenomanianeMaas-
trichtian (Daemon and Contreras, 1971), and middle Albiane
Turonian (Daemon, 1975). Subsurface information (e-logs and
a few cores) from areas located a few kilometres from the lo-
calities reported here led to the recognition of two sedimentary
successions within the formation: an upper Aptian/lower Al-
bian meandering to anastomosed fluvial and eolian unit; and
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Fig. 1. AeC, location maps of the study area in Amazonas State, northern Bra-

zil; the band of exposures of Cretaceous rocks along the riverbank to the north

of the Careiro Island is shown in C.
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an upper Cenomanian fluvio-deltaic unit (Dino et al., 1999),
the latter including the deposits described here.

3. Sedimentological and ichnological descriptions

The Alter do Ch~ao Formation is exposed in the study area
along a series of riverbanks that are up to 20 m high and, in
general, several tens of metres long. Despite their discontinu-
ous nature, which makes stratigraphic correlation difficult,
these deposits display several internal features that provide
good insights into the depositional processes. Furthermore,
the strata are sufficiently well exposed and well preserved in
the lower and middle reaches of the sections to provide infor-
mation on facies relationships and, in some cases, geometry,
thus allowing discussions of the depositional environment.
Unfortunately, micropaleontological and palynological data
that could help with the interpretation of the depositional set-
ting are unavailable, but an abundance of ichnofauna aids dis-
cussion of the depositional processes and environments.

The deposits studied are typically red beds that are bounded
at the top by a discontinuity surface with a mottled soil horizon
that locally displays lateritic concretions. This surface is over-
lain by yellowish, fine- to coarse-grained friable sands,
tentatively attributed to the Plio-Pleistocene Post-Barreiras
sediments by comparison with similar deposits exposed in
northeastern Amazonia (e.g., Rossetti et al., 1989; Rossetti

and Góes, 2001). The exposures of the Alter do Ch~ao Forma-
tion consist of moderately to well-sorted, fine- to coarse-
grained, and locally conglomeratic, sandstones that are
interbedded with thin layers of mudstones. A variety of sedi-
mentary structures characterize the sandstones that, for
descriptive purposes, can be regarded as 12 facies (Table 1).
The mudstones are less variable, consisting of two sedimentary
facies. The sandstones and mudstones can be organized into
four facies associations, described below and summarized in
Table 2. Facies associations A, B and D are widespread
throughout the study area, while facies association C occurs
only in the northwestern part, conformably overlying the other
deposits.

3.1. Facies association A

These deposits (Fig. 2AeH) consist entirely of white to
yellowish and light purple/red, very fine- to fine-grained sand-
stones that occur as a series of laterally continuous, tabular
beds up to 3 m thick, with the whole association reaching up
to 9 m thick. A variety of either well-stratified or massive
sandy facies is present. Well-stratified sandstones form strata
with lower boundaries that are typically undulating and ero-
sional, and locally separated by thin mudstones or lags of
mud chips and pebbles. Internally, these beds display large-
scale, low-angle dipping strata (facies Su, see no. 1 in
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Table 1

Summary of the sedimentary facies recognized in the study area, with the interpreted depositional processes

Sedimentary facies Description Depositional processes

Sqp Well-sorted, fine-grained sandstone with quasi-planar

lamination with frequent reactivation surfaces

Deposition of flat beds under variable upper flow regime with unidirectional

and oscillatory motion

Su Well-sorted, fine- to medium-grained sandstone with

large scale, low-angle dipping stratification with

frequent reactivation surfaces and/or mud drapes

Migration of large scale, but low amplitude bedforms under variable lower

flow regime with unidirectional and oscillatory motion (the latter being

subordinate)

Sw Moderate to well-sorted, fine- to medium-grained

sandstone with swaley cross-stratification and locally

hummocky cross-stratification with frequent reactivation

surfaces and/or mud drapes

Migration of sinuous-crested bedforms under variable, lower flow regime

with unidirectional and oscillatory motion (with a greater contribution of the

latter relative to facies Su)

Sx Poorly to well-sorted, fine- to coarse-grained sandstone

with planar and trough cross-stratification with frequent

reactivation surfaces and/or mud drapes

Migration of straight- and sinuous-crested bedforms under unidirectional

or variable lower flow regime with unidirectional and oscillatory motion

(with a much greater contribution of the first relative to facies Sw)

Sl Well-sorted, cross laminated-sandstone, locally with

highly undulating set boundaries and internal

reactivation surfaces/mud drapes

Migration of straight- and sinuous-crested bedforms (ripple scale) under

unidirectional or variable lowest flow regime with unidirectional and

oscillatory motion

Sb Bioturbated sandstone Loss of structure due to intense sediment deformation by biogenic reworking

Sp Moderate to well-sorted, fine to coarse-grained sandstone

with parallel lamination

Sand deposition under upper plane bed conditions

Sw/f Well-sorted, fine- to medium-grained massive or

cross-laminated sandstone interbedded with mudstone

forming wavy and flaser lamination

Alternating mud deposition from suspension and bedload deposition under

fluctuating flow energy

Sm Moderate to well-sorted, very fine- to medium-grained

massive sandstone

Rapid deposition, with no time for stratification of the sediments or post

depositional destruction of the framework due to instabilities in the

depositional setting

Sd Moderate to well sorted, very fine- to medium-grained

sandstone with soft sediment deformation including

convolute folds and over-steep cross-strata.

Soft sediment deformation caused by water escape attributed to deposition

at high sedimentation rates

Am Massive, very fine-grained mudstone Rapid accumulation in areas with high mud supply, soft sediment

deformation

Al Laminated mudstone Mud settling from suspension in low energy depositional environments
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Fig. 2C, D) or, less commonly, swaley cross-stratification (fa-
cies Sw; Fig. 2G), both of which become laterally undulating,
forming quasi-planar laminations (facies Sqp; Fig. 2CeF).
Small-scale, hummocky cross-stratification, inserted in facis
Sw, is only locally observed (Fig. 2E, F). Laterally, these
facies grade into sandstones with small scale cross-stratifica-
tion (facies Sx) and cross-lamination (facies Sl) displaying
undulating lower set boundaries and also abundant internal
reactivation surfaces, locally with mud drapes (Fig. 2H). The
undulating sandstones are locally cut by broad, shallow scours
that are up to 5 m deep and several tens of metres wide that are
filled by sandstones also showing undulating stratification as
described above.

Interbedded with the stratified sandstones are highly biotur-
bated sandstones (facies Sb) that are fine-grained and well-
sorted. The bioturbation is so intense that primary physical

structures are not recognizable. Despite the intensity, there is
a dominance of Thalassinoides, Diplocraterion (Fig. 3A, B)
and Planolites traces. Two different classes of Thalassinoides
burrow system may be distinguished by the average diameter
of the galleries: smaller (7 mm), and larger (16 mm).

Measurements of azimuth dips of the cross-stratified sand-
stones reveal bi-directional flows orientated to either the north-
west or the southeast (Fig. 3C).

3.2. Facies association B

This facies association is frequent at the base of the sec-
tions, forming laterally continuous, tabular sandstone beds
that are up to 1.5 m thick and may show slightly undulating,
locally erosional tops. It grades both laterally and vertically
into facies association A, from which it is distinguished by
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Table 2

Summary of the main characteristics of facies associations in the study area, with the interpreted depositional settings

Facies

association

Description Depositional

environment

A Well-sorted, fine- to medium-grained sandstone bodies occurring as tabular, slightly undulating

packages internally displaying a variety of undulating structures formed by combined storm

flows (i.e., facies Sw, Sqp, and Su). Tabular and trough cross-stratified sandstones (facies Sx),

cross-laminated sandstones (facies Sl) and hummocky cross-stratified sandstones (facies Sh)

are locally present. Wave erosion is common. Degree of bioturbation may be very high, with

main trace fossils including Thalassinoides, Planolites and Diplocraterion.

Upper shoreface

B Tabular, well-sorted, medium to coarse-grained sandstone with planar and trough cross

lamination/stratification (facies Sx), as well as wavy/flaser (facies Sw/f) and parallel lamination

(facies Sp). Cross sets display internal reactivation surfaces with mud drapes separating foreset

packages, and boundaries that are highly undulating. Opposed-dipping cross sets are locally

present. Bioturbated sandstones (facies Sb), in which Thalassinoides are widespread, either as

isolated burrows or complex networks of interconnecting branches associated with Ophiomorpha,

Planolites, Taenidium barretti, and rare Scoyenia.

Foreshore

C Moderate to well-sorted, very fine- to medium-grained, massive (facies Sm) or soft sediment

deformed sandstones (facies Sd). Locally present are trough/tabular cross-stratified sandstone

(facies Sx), swaley cross-stratification (facies Ss) and quasi-planar lamination (facies Sqp).

The sandstones display lobate geometry, and are internally characterized by coarsening upward

cycles. Lobes show depositional dip to the west/northwest and bi-directional flows pointing to

the northwest and southeast. Reactivation surfaces and mud drapes are abundant within cross sets,

as are combined flow laminations. Taenidium barretti, Planolites, occasional Thalassinoides and

Diplocraterion occur.

Deltaic mouth bar

D Alternation of massive, very fine-grained sandstones (facies Am) and laminated mudstones

(facies Al) forming either fining or coarsening upward cycles. Fining upward cycles form

slightly undulating beds with frequent internal truncation, locally forming swaley and

hummocky cross stratification (facies Sw and Sh) that grade into quasi-planar lamination

(facies Spq). Extremely bioturbated, but hard to identify individual traces, except for possible

Diplocraterion (?)

Lower/middle

shoreface/prodelta?

Fig. 2. Middle/lower shoreface/prodelta and upper shoreface deposits (facies associations D and A, respectively). A, measured vertical profile representative of

these deposits in the study area (USF, upper shoreface-facies association A; FS, foreshore-facies association B; MLS, lower/middle shorefaceeprodelta? facies

association D). B, general view of an outcrop showing lateral gradation from middle/lower shoreface/prodelta sandstones and mudstones (right) to upper shoreface

sandstones (left). Box on left locates C and D. C, D, detail of left side of B, with sandstones displaying a variety of undulating sedimentary structures attributed to

wave action: 1, large-scale, truncating, low-angle dipping stratification; 2, swaley cross-stratification; 3, combined flow cross-stratification with highly undulating

lower set boundaries and internal reactivation surfaces; 4, cross-stratified sandstone with reactivation surfaces and mud drapes; 5, slightly concave-up undulating

stratification that truncates underlying laminae at a very low angle, similar to hummocky cross-stratification; 6, chevron stratification (figure for scale is 1.60 m tall;

box in C and D locates G). E, F, detail of upper shoreface sandstones consisting of undulating, quasi-planar strata (facies Sqp) that become laterally convex upward

(arrows), forming hummocky cross-stratification; patterns in F indicate successive beds defined by sharp undulating surfaces; note truncation of the strata below the

hummocks. G, detail of swaley cross-stratification (see box on right-hand side of C and D for location); white arrows indicate a broad swale at the base of the strata;

black arrows indicate strata that are slightly convex-up, indicating small-scale hummocky cross-stratification. H, medium-scale cross-sets with reactivation surfaces

(open arrows) mantled by several cross-laminated sets with undulating set boundaries (closed arrows).
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the coarser grain size, forming thickening-upward successions.
The sandstones are well sorted and, in general, fine- to
medium-grained, though beds with coarse grain sizes are
also frequent, in which case quartz granules and mud clasts
are dispersed. Five sedimentary facies occur in this associa-
tion, including, in order of abundance, bioturbated sandstone
(Sb), planar and trough cross-laminated and cross-stratified
sandstone (facies Sl and Sx, respectively), wavy/flaser lami-
nated sandstone (facies Sw/f), and parallel-laminated sand-
stone (facies Sp). Facies Sl and Sx display mud drapes
(Fig. 4A), undulating set boundaries and internal reactivation
surfaces (Fig. 4B), as described in the other facies associa-
tions. Opposed-dipping cross sets are locally present. The
sandstones in facies Sw/f are either massive or incipiently
cross-laminated and display frequent symmetrical scours high-
lighted by mud layers (Fig. 4C).

A typical feature of all facies in this association is the vari-
able degree of bioturbation, which can be very intense, as in
facies Sb. Most of the deposits are reworked by the abundant,
but monospecific Thalassinoides suite (Fig. 4D, E), which oc-
cur either as isolated burrows or as complex networks of inter-
connecting branches. Occasional Ophiomorpha may also be
present (Fig. 4F). Taenidium barretti (Fig. 4H), Planolites
(Fig. 4G), and rare Scoyenia (Fig. 4I), define the Taenidium
barretti suite, overprinted by (Fig. 4H) or interbedded with
(Fig. 4G) the Thalassinoides suite.

3.3. Facies association C

These deposits are characterized by well-sorted, very fine-
to medium-grained sandstones, typically displaying a lobate
geometry (Fig. 5AeC). Individual lobes are, in general, less
than 2 m thick and up to 60 m long, and they may show an
overall westward/northwestward depositional dip.

The sandstones are internally organized into coarsening-
upward successions (Fig. 5A), as revealed by an inverse grad-
ing from very fine- to medium-grained sands or by a down-
ward transition into massive mudstones. Where exposures
allowed sufficient observation, the sandstone lobes were
seen to be amalgamated, forming thicker sandy nuclei, which
become laterally subdivided into several smaller lobes de-
fined by thin (a few cm) argillite beds. Within an individual
nucleus, the sandstones are either massive (facies Sm) or
display soft sediment deformation (facies Sd; Fig. 5G), char-
acterized mostly by convolute folds and over-steep
cross-strata. Towards the margins, where the lobes are better
defined, the sandstones are typically well-stratified, showing
medium-scale (sets 0.2e0.3 cm thick, exceptionally 0.5 m
thick) trough/tabular (Fig. 5D, E) and, less commonly, swaley
cross stratification (facies Sx and Sw, respectively). Occurring
with these structures at the lobe bases and edges are abundant
tabular and trough cross-laminations (facies Sl). Palaeocur-
rent directions obtained from these strata record a wide
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Fig. 3. A, general view of upper shoreface deposits characterized by highly bioturbated sandstones (facies Sb; Dp¼Diplocraterion). B, detail of A illustrating

Thalassinoides (see box in A for location). C, palaeocurrent distribution obtained from cross-stratified sandstones in upper shoreface deposits, indicating bi-

directional, northwest/southeast-orientated flows.
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Fig. 4. Foreshore deposits (facies association D). A, low angle cross-lamination mantled by mud drapes. B, small-scale cross-stratification displaying undulating lower

boundaries (white arrows) and internal reactivation surfaces locally with mud drapes (black arrows). C, wavy to flaser (light, undulating laminae) heterolithic sandstones

typical of this facies association (white arrows with single head indicate trace fossils; those with double head indicate symmetrical scours); crenulated appearance of

mud layers is due to presence of diminutive ripple marks (black arrows). D, E, branched traces of Thallasinoides in profile and plan views respectively. F, Ophiomorpha;

white arrows indicate pellets surrounding trace walls. G, a mixture of Planolites and Taenidium barretti. H, Taenidium barretti. I, Scoyenia. Pen is 15 cm long.
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Fig. 5. Delta mouth bar deposits (facies association A). AeC, lobate geometry; note the typical coarsening upward successions in A, and the amalgamation of

several lobes in C that dip slightly to the left of the sketch (i.e., to the west). D, E, photograph, with corresponding drawing, of a section characterized by amal-

gamated sandstone lobes displaying internal cross-stratification that dips in opposite directions, i.e., to the right (west) and left (east); these strata indicate a wide

variation of flow, but with a main southeast-orientated mode (shown in left-hand corner; number of measurements, 8). F, detail of parts of two coarsening-upward

successions (dashed arrows), illustrating finer grain-sizes at the base of the upper cycle displaying combined flow ripple cross laminations characterized by highly

undulating lower set boundaries (black and white arrows); note also in this horizon the symmetrical scour caused by wave erosion (s) and intense bioturbation in

the sandstone from the top of the lower cycle, where Thalassinoides (Th) and Taenidium barretti (Te) dominate. G, deformed sandstone (Facies Sd) from the nuclei

of the lobes.
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distribution of the flow, but with a mainly southeast-orien-
tated mode (Fig. 5E).

A typical feature of the cross-sets is the presence of frequent
reactivation surfaces mantled with mud drapes, as observed in
the cross-sets of the other facies associations. In medium-scale
cross-sets, these surfaces define foreset packages averaging
5e10 cm thick. The lower set boundaries of both medium-
and small-scale strata are undulating, forming broad, shallow
scours. Cross-lamination structures with highly undulating
lower set boundaries and abundant reactivation surfaces may
have evolved from quasi-planar laminations (facies Sqp)
(Fig. 5F); in these cases, wavy-cut erosional scours are frequent.

The top of the beds or even the entire beds may be biotur-
bated, forming facies Sb (bioturbated sandstones). Recogniz-
able trace fossils characterize an assemblage dominated by
Taenidium barretti and Planolites. (Fig. 6A, B) and occa-
sional, but locally abundant, small, flattened Thalassinoides
galleries (Fig. 6A). Beds with a Diplocraterion ichnofabric
are also observed (Fig. 6C, D). The ichnofabric is entirely
dominated by horizontally-sectioned U-burrows with vertical
spreiten, many revealing the curved end of the burrows. Bur-
row boundaries are invariably sharp-walled, suggesting coloni-
zation of firmgrounds (Pemberton and Frey, 1985; Bromley,
1996; Buatois et al., 2001).

3.4. Facies association D

This association forms units up to 3 m thick and includes
fine-grained facies, consisting mostly of argillites, and very

fine- to fine-grained sandstones. The strata form tabular to
slightly undulating beds up to 0.2e0.3 m thick, which are in-
terbedded with facies association A (Fig. 2A) or C (Fig. 5Ae
C). Internally, the lithologies are arranged into either cycles of
sandstones that grade upward into mudstones or mudstones
that grade up into sandstones. The mudstones display red to
light brown colors, are mostly silty, and are either laminated
(Al) or massive (Am). Laminated mudstones are interbedded
with white or yellow, very-fine grained sandstones showing
parallel and low-angle, quasi-planar laminations (Facies Sp).
In these cases, the beds are undulating and display bases and
tops that are slightly concave and convex, respectively, form-
ing swaley and, locally, hummocky cross-stratification (facies
Sw). Massive silty mudstones locally may show wavy, ero-
sional surfaces superposed by successive smaller-scale scours
(up to only few cm wide). The degree of bioturbation might be
very high in the massive muddy lithologies, but individual
traces could not be identified, except for spreiten-like, sub-
vertical traces resembling Diplocraterion (?). Some beds,
though, are only locally bioturbated.

4. Interpretation of sedimentary processes

Deposition by highly oscillatory flows is revealed by the
dominance of different styles of cross-strata characterized by
undulating lower set boundaries and abundant internal reacti-
vation surfaces with mud drapes. Bi-directional flows, as indi-
cated by palaeocurrent data, are also compatible with this
interpretation. Two possibilities are currently considered here

YCRES2220_proof � 26 April 2006 � 9/16

Fig. 6. Trace fossils typical of deltaic mouth bar deposits. A, sandstones from the top of a coarsening-upward cycle, with abundant trace fossils dominated by

Thalassinoides (Th) and Taenidium barretti (Te). B, detail of Taenidium barretti. C, a view of the top of a sand bed with abundant Diplocraterion. D, detail

of Diplicraterion from the surface shown in C. All figures show the trace fossils in plan view.
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as the most likely causes: tidal currents and waves. Reactiva-
tion surfaces and mud drapes separating foreset packages are
commonly recorded in association with tidal currents (Mow-
bray and Visser, 1984; Chakraborty and Bose, 1990; Simpson
and Eriksson, 1991). However, several workers have claimed
that similar features might be also due to wave action (e.g.,
Raaf et al., 1977; Arnott, 1992). In fact, differentiating be-
tween these processes in the geological record can be highly
problematic, particularly in cases where there is a mixture of
tidal and wave processes (e.g. Johnson and Baldwin, 1986;
Harris and Eriksson, 1990; Amos et al., 1995; Colquhoun,
1995).

Interpreting the sedimentary signature of tidal currents is
facilitated only when reactivation surfaces/mud drapes form
a succession of alternating thicker and thinner foreset bundles
that can be related to diurnal and monthly tidal periodicities
(e.g. Allen, 1968; Yang and Nio, 1985; Kreisa and Moiola,
1986; Koster et al., 1987; Leckie and Singh, 1991). These fea-
tures were not observed in the study area, but this absence can-
not be used to preclude a tidal influence, as many ancient
deposits attributed to tidal processes throughout the world do
not show such diagnostic structure, even in subtidal settings
where development of tidal bundles are more likely (Clifton,
1983; Yang and Nio, 1985; Koster et al., 1987).

Thus, although a tidal influence cannot be completely ruled
out in this instance, the association of sedimentary features fa-
vours a wave-dominated influenced environment. This is sug-
gested by the abundance of highly undulating structures,
including swaley cross-stratification, with locally associated
hummocky cross-stratification, and quasi-planar lamination.
These features are considered typical of either oscillatory or
combined flows with varying dominance of the unidirectional
and orbital components. In particular, swaley cross-stratification
indicates the action of larger than fair-weather waves, sug-
gesting a storm-influenced setting (e.g., Allen and Pound,
1985; McCrory and Walker, 1986; Plint and Walker, 1987;
Duke and Prave, 1991; Plint and Norris, 1991; Hadley and
Elliot, 1993). This structure records the migration of low re-
lief bedforms under storm-generated, combined flows (e.g.,
McCrory and Walker, 1986). The gradation from swaley
cross-stratification to quasi-planar lamination and, locally,
hummocky cross-stratification, is predicted in phase diagrams
of combined flows, attesting to constant changes in the inten-
sity of the unidirectional and oscillatory components (e.g.,
Nøttvedt and Kreisa, 1987; Arnott, 1992).

Considering this interpretation, the cross-sets displaying
abundant reactivation surfaces and mud drapes are interpreted
here to be more likely related to wave action than to tidal cur-
rents. These features are attributed to complex, short-term ori-
entations of the flow and have been recorded in association
with combined flows in many other storm settings (e.g., Swift
et al., 1983; Nøttvedt and Kreisa, 1987; Arnott and Southard,
1990). The quasi-planar lamination may have formed during
periods of upper flow regime and when the oscillatory motion
was stronger than the unidirectional one (Arnott, 1992). Coex-
isting asymmetrical and symmetrical scours are also consistent
with combined flows. In particular, cross-sets with reactivation

surfaces and highly undulating lower boundaries are features
of combined flow bedforms (e.g., Raaf et al., 1977). In this in-
stance, the gradation of these structures from quasi-planar
laminations records laterally decreasing flow energy.

The fact that the interbedded sandstone and argillite layers
are not in sharp contact, as expected in tidal deposits (e.g.
Visser, 1980), but rather grade vertically, is taken as further ev-
idence in support of wave action in the study area, with the
grading being attributed to waning energy flows associated
with the passage of storms. The upward transition from
large-scale, low-angle dipping strata to swaley and combined
flow cross-strata is consistent with this process. Similar fea-
tures have been observed in association with upper shoreface
Cretaceous deposits in the S~ao Luı́s-Grajaú Basin (e.g. Ros-
setti, 1997; Rossetti et al., 2000).

5. Discussion of the depositional settings

The sedimentological and ichnological data do not support
the presence of continental palaeoenvironments in the Alter do
Ch~ao Formation as exposed in the study area. As discussed
above, the set of sedimentary facies points to the prevalence
of wave processes which, in association with the ichnological
attributes, suggest deposition in environments not far from
a shoreline and under the influence of significant wave (i.e.,
storm) action.

Although waves do form in some continental settings, such
as in lakes and, locally, at the confluence of fluvial channels,
the wave-influenced deposits exposed in the study area cannot
be related to purely continental settings. This conclusion is
based on the dominance of both wave-influenced sedimentary
structures and of a Thalassinoides trace-fossil suite.

Thalassinoides is perhaps the most common burrow in an-
cient shallow marine and marginal marine environments, in-
habiting dominantly silty-sandy substrates (Pemberton et al.,
1992a, 2001). These burrows are assumed to have been pro-
duced by opportunistic, deposit-feeding thalassinidean crusta-
ceans in post-Paleozoic rocks and by their ancestors, or by
a crustacean with similar behaviour, in Paleozoic rocks
(Sheenan and Schiefelbein, 1984; Watkins and Coorough,
1997; Ekdale and Bromley, 2003). By comparison, modern gal-
leries similar to Thalassinoides are produced by thalassinidean
shrimps that never abandon their burrows, growing-up inside
and enlarging the burrow system, being the most common bur-
rowing organisms of marine intertidal and shallow subtidal en-
vironments (Griffis and Suchanek, 1991). Although rare,
Thalassinoides is also found in deep marine environments
(Sheenan and Schiefelbein, 1984; Uchman, 1995; Buatois
et al., 2001). Its facies-crossing character is a consequence of
the opportunistic behaviour of a tracemaker able to support ep-
isodic or constant environmental changes (Wightman et al.,
1987; Pemberton and Wightman, 1992). Although the geolog-
ical record of Thalassinoides is overwhelmingly restricted to
marine and brackish-water successions, there is one exception:
Shukla et al. (2002) reported the presence of Thalassinoides in
Quaternary deltaic and fluvial silt and sand deposits, apparently
without marine influence. The only organisms that can produce

YCRES2220_proof � 26 April 2006 � 10/16
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similar burrows in continental settings are crabs, but in this
case the galleries differ from those described here because
they are much simpler, shallower and with fewer branches.
Thus, the occurrence of Thalassinoides in the sedimentary re-
cord supports the inference of a depositional setting under
the influence of marine processes. Thalassinoides became par-
ticularly widespread from the Mesozoic onwards, when their
burrow systems were large and became more complex, forming
mazes and boxworks (Frey, 1975; Bromley, 1996).

The complex arrangement of Thalassinoides burrows ob-
served in facies association A, including burrow systems of
different sizes, probably represents colonization by two major
classes of individuals in a single population, revealing juvenile
recruitment. This population strategy is common in brackish-
water settings as a response to daily changes in controlling
ecologic parameters dominated by extreme salinity fluctua-
tions. Benthic communities of substrates affected by frequent
salinity fluctuations, as occur in brackish-water systems, tend
to consist of opportunistic elements with prevalent dwelling
and feeding strategies (Ekdale et al., 1984; Pemberton and
Wightman, 1992; Beynon and Pemberton, 1992; Pemberton
et al., 1992b, 2001; Buatois et al., 1998; Gingras et al.,
1999). The large burrows and reduced-size galleries of Thalas-
sinoides in the same horizon, as recorded in this facies associ-
ation, are thus comparable to brackish-water ichnofaunas
(Wightman et al., 1987; Pemberton and Wightman, 1992;
Pemberton et al., 2001; Buatois et al., 2005).

The highly bioturbated, monospecific Thalassinoides suite,
as recorded particularly in facies association B, is consistent
with this proposed depositional setting. Intense bioturbation
Thalassinoides networks are expected to develop in moderate
to low energy, shallow-marine to marginal-marine environ-
ments affected by occasional salinity fluctuations (stenohaline
to polyhaline: Pemberton et al., 2001; Netto and Rossetti,
2003). In addition to the Thalassinoides suite, the presence of
Diplocraterion in the deposits studied supports the influence
of marine conditions, recording periods with a dominance of
saline waters. On the other hand, the Taenidium barretti trace
fossil in facies associations B and C attests to periods of pre-
dominantly freshwater influence, as this ichnospecies is

characteristic of freshwater conditions (Buatois et al., 1998,
2002; Netto and Rossetti, 2003). When the salinity gradient rea-
ches freshwater levels, a physiological barrier is erected to ma-
rine organisms and even those capable of enduring strong salinity
fluctuations, such as the deep-burrowing Thalassinoides-
producers, cannot survive. The successive alternation of Taeni-
dium barretti with Thalassinoides in facies association B
suggests relatively high salinity during coastal evolution, which
is also compatible with the attribution of these deposits to fore-
shore settings (Fig. 7), as proposed in the following section.

Scarce, small and flattened Thalassinoides burrows, as oc-
cur in facies association C, are also good representatives of
meso- to oligohaline waters in brackish-water settings (Pem-
berton et al., 2001; Netto and Rossetti, 2003; Buatois et al.,
2005). However, the dominance of Taenidium barretti with
only a few Thalassinoides in this facies association indicates
a prevalence of freshwater to subaerial substrates (Scoyenia
Ichnofacies: Pemberton and Frey, 1985; Buatois et al., 1998,
2002; Buatois and Mángano, 2004). The sharp-walled burrow
boundaries of Diplocraterion observed in facies association C
suggest colonization of firmgrounds and testify to substrate ex-
humation and temporary exposure before the next marine in-
gression (MacEachern et al., 1992; Pemberton et al., 2001;
Netto and Rossetti, 2003).

A marine influx, probably resulting from storm events,
would have brought in an opportunistic marine fauna, repre-
sented by the Thalassinoides-dominated ichnofauna, which
rapidly colonized the substrate. Considering the very low trace
fossil diversity and the mixed occurrence of saline and fresh-
water traces, it is suggested that deposition took place in envi-
ronments experiencing a mixture of saline and freshwater
flows, which are typical of brackish-water environments. In
fact, it is common to observe the Thalassinoides suite cross-
cutting substrates previously occupied by the Taenidium-
Planolites suite, and vice-versa (Fig. 7).

The lack or scarcity of bioturbation in the strata with
abundant sedimentary structures formed by wave action in
the study area is to be expected, as the density of bioturbation
varies from high in quiet, protected settings to rare in high-
energy settings. Therefore, information from physical and
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Fig. 7. Schematic diagram showing pre- and post-event colonization controlled by storm events in the Alter do Ch~ao Formation.
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biogenic structures are complementary, and indicate the pres-
ence of depositional environments exposed to strong wave
action during storms laterally coexisting with more protected
settings.

Considering the limited lateral extend of the studied transect
(only up to 15 km in length), reconstructing the depositional
system is difficult. However, our suggested ichnological inter-
pretation of mixed (i.e., freshwater and marine) water inflows
conforms to a setting located in the transitional marine realm.
The four facies associations conform to storm-influenced del-
taic environments. A deltaic setting is particularly suggested
by facies association C, which contains well-developed pro-
gradings and lobes indicative of deposition accompanying
a rapid loss in energy related to the entrance of flows into
a standing body of water, a process typical of distributary mouth
bars. Massive and deformed sandstones in this association are
consistent with a setting with a high sand inflow and gravity in-
stability (e.g., Coleman, 1988; Orton and Reading, 1993;
Glover and O’Beirne, 1994). Mouth bars deposits are character-
ized by high interstitial water pressure, which leads to intense
fluidization and liquefaction, (e.g., Mills, 1983; Elliott, 1986;
van Loon and Brodzikowski, 1987; Coleman, 1988), processes
that produced the massive and deformed sandstones (facies Sm
and Sd). In addition, mouth bars are places characterized by in-
tense gravity instabilities promoted by the overloading of sands
on muds (Shepard, 1955; Coleman and Prior, 1983; Elliott,
1986; Coleman, 1988). Mouth bars of many modern and an-
cient deltaic settings display such features (e.g., Nemec et al.,
1988; Edwards, 1995). The small size of the sand lobes

developed in the study area may be explained in the context
of delta lobes entering shallow waters.

Two depositional models may be invoked to explain the
strata studied: a wave-dominated delta and a wave-dominated
estuary. The prevalence of brackish-water conditions favours
an estuarine interpretation. Tidal channel deposits, however,
which typify estuarine complexes, were not recognized in the
study area. Furthermore, tidal currents are the main agents re-
sponsible for sediment deposition within estuaries, even in
wave-dominated ones (e.g., Dalrymple et al., 1992), but the
study area bears no conclusive evidence for tidal sedimentation.

Although an estuarine interpretation cannot be completely
ruled out, the absence of criteria in support of tidal sedimen-
tation, added to the abundance of sedimentary structures at-
tributed to both fair-weather and storm waves, leads us to
propose that a wave-dominated deltaic setting is more likely
(Fig. 8). Like estuarine settings, wave-dominated deltas are
characterized by a mixture of fluvial and marine inflows,
thus stressed environments with brackish water conditions
may develop.

Facies association D records the muddiest and therefore the
lowest energy depositional setting of the study area. When
these deposits occur interfingering with facies association C,
they are interpreted as prodeltaic sediments. However, a large
proportion of these deposits is genetically connected with fa-
cies associations A and B, when they are attributed to lower/
middle shoreface settings. This interpretation is consistent
with the presence of undulating sedimentary structures domi-
nated by storm wave action. These structures suggest a low
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Fig. 8. A schematic block diagram illustrating the storm wave-dominated deltaic depositional system proposed for the Cretaceous deposits in the study area, with

an indication of the ichnological characteristics of each sub-environment.
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energy setting located below the fair-weather wave base but
periodically affected by storm waves, favourable for preserva-
tion of hummocky cross-stratification (e.g. Walker, 1984;
McCrory and Walker, 1986; Nøttvedt and Kreisa, 1987; Cheel
and Leckie, 1993) and for intense biogenic reworking. De-
posits of this facies association with scarce bioturbation prob-
ably record sedimentation in areas still under the effect of
storm waves.

The spatial transition from facies association D to A and B
further supports the above interpretation. Facies association A
is also dominated by undulating structures, mostly represented
by swaley cross-stratification. This structure is formed in
a high energy environment above the storm wave base and
close to the fair-weather wave transition, which within the pro-
posed environmental context, is probably representative of the
upper shoreface, as recorded in many other similar settings
(Dott and Bourgeois, 1982; Walker, 1984; Allen and Pound,
1985; McCrory and Walker, 1986; Plint and Walker, 1987;
Duke and Prave, 1991; Plint and Norris, 1991; Hadley and El-
liot, 1993). The amalgamated nature of the sandstones bodies
in facies association A is consistent with an upper shoreface
setting, where erosion is frequent (Dott and Bourgeois,
1982; Brenchley et al., 1986).

The dominance of fair-weather wave structures in facies as-
sociation B indicates deposition above fair-weather wave base,
characterizing a shallower environment than indicated by
facies associations A and D, being attributed to foreshore set-
tings (e.g., Clifton et al., 1971; Driese et al., 1991). Thus, any
deposits formed by storm action were subsequently reworked
by fair-weather waves between storms. The abundance of fair-
weather wave structures in these strata, as well as the presence
of parallel lamination that might record beach face deposition,
is consistent with this interpretation. Fair-weather conditions
contributed to the widespread development of Thalassinoides,
which reached their greatest abundance in these deposits. In
this context, Thalassinoides represents the opportunistic
post-storm colonization (Pemberton et al., 1992c, 2001), sub-
sisting in the substrate while the salinity values permitted (oli-
gohaline waters: see Wignall, 1991; Netto and Rossetti, 2003).
The Taenidium-Planolites suite is a relict of the original resi-
dent non-marine endofauna, characterizing pre-storm coloni-
zation, when freshwater conditions apparently prevailed
(Fig. 7). The fact that facies association B overlies upper
shoreface strata, forming coarsening-upward successions, in
addition to its coarser-grained nature relative to those deposits,
further supports a setting located closer to the coastline, adja-
cent to the shoreface.

Unfortunately, our palaeocurrent data are too few to pro-
vide a reliable determination of flow pattern. However, it is
possible to infer a coast orientated roughly in a northeaste
southwest direction and a continental influx from the north-
west, as suggested by the main southeastward mode recorded
from delta lobe deposits. This coastline would have been af-
fected by storm waves oscillating between northwest and
southeast. Marine conditions might, therefore, have prevailed
to the east or southeast of the study area. If this is correct,
then correlatable deposits located in those areas should record

increased evidence of marine influence, a hypothesis that must
be tested in future investigations.

6. Conclusion

The traditional view that the Cretaceous deposits of the in-
tracratonic Amazonas Basin are entirely continental in nature
might be a result of a lack of detailed sedimentological stud-
ies. The sedimentological and ichnological data presented
herein suggest that, after the Permo-Carboniferous marine in-
cursion that gave rise to the Itaituba limestones, the Amazonas
Basin might also have experienced a marine incursion during
the Cretaceous. The magnitude of this transgression and the
route by which marine waters entered the basin are issues
that need to be discussed in the light of a much larger volume
of information. However, the data available from our study al-
low us to suggest a palaeoenvironmental model in which con-
tinental flows from the northwest formed a wave-dominated
delta system that prograded into a basin connected to the ma-
rine realm to the east or southeast. This model must be tested
by further investigations of deposits of the Alter do Ch~ao For-
mation in the central and eastern areas of the Amazonas Basin.
Despite the limited potential for the recovery of fossils, given
the red-bed nature of the formation, it is necessary to search
for localities that might yield microfossils in order to improve
the depositional model.
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