Fechar
Metadados

@MastersThesis{Marujo:2016:InAtEs,
               author = "Marujo, Rennan de Freitas Bezerra",
                title = "Influ{\^e}ncia dos atributos espectrais, texturais e fator de 
                         ilumina{\c{c}}{\~a}o na classifica{\c{c}}{\~a}o baseada em 
                         objetos de {\'a}reas cafeeiras",
               school = "Instituto Nacional de Pesquisas Espaciais (INPE)",
                 year = "2016",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2016-02-19",
             keywords = "caf{\'e}, classifica{\c{c}}{\~a}o baseada em objetos, 
                         minera{\c{c}}{\~a}o de dados, coffee, object based 
                         classification, data mining.",
             abstract = "O caf{\'e}, por ser um importante produto nas 
                         exporta{\c{c}}{\~o}es brasileiras, necessita de constante 
                         monitoramento e pesquisas, para que os sistemas de previs{\~a}o 
                         de safras existentes sejam confi{\'a}veis. Nesta pesquisa foi 
                         avaliado o desempenho da classifica{\c{c}}{\~a}o baseada em 
                         objetos, associada a t{\'e}cnicas de minera{\c{c}}{\~a}o de 
                         dados, aplicada em imagens OLI/\emph{Landsat-8}, com finalidade 
                         de mapeamento de lavouras cafeeiras na microrregi{\~a}o de 
                         Alfenas (MG). Foram feitas tr{\^e}s an{\'a}lises, a primeira 
                         utilizando apenas atributos espectrais, a segunda incluindo 
                         atributos texturais e a terceira, considerando tamb{\'e}m classes 
                         de ilumina{\c{c}}{\~a}o do relevo, extra{\'{\i}}das por meio 
                         do fator de ilumina{\c{c}}{\~a}o. Foram utilizadas seis imagens 
                         multiespectrais OLI/\emph{Landsat-8}, de datas distintas, 
                         referentes a tr{\^e}s diferentes est{\'a}dios fenol{\'o}gicos 
                         da cultura: frutifica{\c{c}}{\~a}o, grana{\c{c}}{\~a}o e 
                         repouso. Al{\'e}m das imagens multiespectrais, foram tamb{\'e}m 
                         utilizados dados da miss{\~a}o SRTM, para determinar as 
                         vari{\'a}veis topogr{\'a}ficas como declividade, 
                         orienta{\c{c}}{\~a}o e o fator de ilumina{\c{c}}{\~a}o do 
                         terreno. Ap{\'o}s corre{\c{c}}{\~a}o atmosf{\'e}rica das 
                         imagens utilizando o m{\'e}todo \emph{Flaash}, aplicou-se o 
                         algoritmo de segmenta{\c{c}}{\~a}o multirresolu{\c{c}}{\~a}o 
                         parametrizado em fator de escala 30, forma 0,6 e compacidade 0,5. 
                         Posteriormente fez-se um processo de minera{\c{c}}{\~a}o de 
                         dados por meio do algoritmo C4.5, o qual gerou {\'a}rvores de 
                         decis{\~a}o para classificar as imagens. A valida{\c{c}}{\~a}o 
                         das classifica{\c{c}}{\~o}es foi feita por meio do M{\'e}todo 
                         de Monte Carlo utilizando como refer{\^e}ncia mapas obtidos por 
                         interpreta{\c{c}}{\~a}o visual. Nas classifica{\c{c}}{\~o}es 
                         feitas utilizando somente atributos espectrais, obteve-se 
                         exatid{\~a}o m{\'e}dia para a classe caf{\'e} de 53\%. Quando 
                         repetiu-se as classifica{\c{c}}{\~o}es, inserindo tamb{\'e}m 
                         atributos texturais e classes de ilumina{\c{c}}{\~a}o do 
                         terreno, a exatid{\~a}o da classe caf{\'e} foi incrementada para 
                         67\%. Em escala municipal a metodologia apresentou melhores 
                         resultados, concedendo exatid{\~a}o para a classe caf{\'e} de 
                         73,83\% no munic{\'{\i}}pio de Machado, que apresenta relevo 
                         acidentado e 82,83\% no munic{\'{\i}}pio de Alfenas, que 
                         trata-se de uma {\'a}rea mais plana. N{\~a}o houve est{\'a}dio 
                         fenol{\'o}gico que proporcionasse maior exatid{\~a}o {\`a} 
                         classe caf{\'e} na classifica{\c{c}}{\~a}o autom{\'a}tica das 
                         imagens OLI/\emph{Landsat-8}. ABSTRACT: Coffee, for being an 
                         important product in Brazilian exportations, needs constant 
                         monitoring and research, so that crop monitoring systems can be 
                         sound and reliable. This research evaluated the performance of an 
                         object based classification associated with data mining techniques 
                         applied in OLI/Landsat-8 images, with the purpose of mapping of 
                         coffee crops in the region of Alfenas, state of Minas Gerais in 
                         Brazil. Three analyzes were made, the first one using only the 
                         spectral attributes; the second including textural attributes and 
                         the third considering also the shaded relief classes. Six 
                         multiespectral images from OLI/Landsat-8 were used, each one of a 
                         different date, relating to three different phenology stages: 
                         frutification, grain formation and rest. In addition to 
                         multispectral images, SRTM data were also used to determine the 
                         topographic variables such as slope, aspect and shaded relief. 
                         After atmospheric correction, the multiresolution segmentation 
                         algorithm were applied, and later its segments became entry to a 
                         data mining process by C4.5 algorithm, which generated decision 
                         trees to classify the images. The accuracy of the classifications 
                         was assessed by the Monte Carlo method using as reference the 
                         images obtained by visual interpretation. In the classification 
                         made using only spectral attributes was obtained an accuracy of 
                         53\% for coffee class. When was inserted textural attributes in 
                         the classification, the accuracy of the coffee class was increased 
                         to 67\%. At the municipal level the methodology presented better 
                         results, providing accuracy of 73.83\% to coffee class in the 
                         municipality of Machado and 82.83\% in Alfenas. There were no 
                         preferential phenology stage that provided greater accuracy to the 
                         coffee class in the automatic classification of OLI/Landsat-8 
                         images.",
            committee = "Moreira, Maur{\'{\i}}cio Alves (presidente) and Volpato, 
                         Margarete Marin Lordelo (orientadora) and Formaggio, Antonio 
                         Roberto and Alves, Helena Maria Ramos",
           copyholder = "SID/SCD",
         englishtitle = "Influence of shaded relief, spectral and textural attributes in 
                         automatic object based classification of coffee areas",
             language = "pt",
                pages = "96",
                  ibi = "8JMKD3MGP3W34P/3L3KGLP",
                  url = "http://urlib.net/rep/8JMKD3MGP3W34P/3L3KGLP",
           targetfile = "publicacao.pdf",
        urlaccessdate = "05 dez. 2020"
}


Fechar