Fechar
Metadados

@PhDThesis{Const‚ncioJr:2017:CoDeMu,
               author = "Const{\^a}ncio Junior, Marcio",
                title = "Contribui{\c{c}}{\~o}es ao desenvolvimento do Multi-Nested 
                         Pendula para isolamento vibracional criog{\^e}nico do LIGO 
                         Voyager",
               school = "Instituto Nacional de Pesquisas Espaciais (INPE)",
                 year = "2017",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2017-05-29",
             keywords = "ondas gravitacionais, LIGO, LIGO Voyager, criogenia, Multi-Nested 
                         Pendula, gravitational waves, LIGO, LIGO Voyager, cryogenics, 
                         Multi-Nested Pendula.",
             abstract = "Ondas gravitacionais (OG) s{\~a}o perturba{\c{c}}{\~o}es no 
                         espa{\c{c}}o-tempo propagando-se atrav{\'e}s do pr{\'o}prio 
                         espa{\c{c}}o-tempo {\`a} velocidade da luz. Sua 
                         predi{\c{c}}{\~a}o te{\'o}rica deriva da teoria da Relatividade 
                         Geral de Einstein (RG), publicada no in{\'{\i}}cio do 
                         s{\'e}culo XX. Sua exist{\^e}ncia permaneceu apenas na teoria, 
                         embora Hulse e Taylor tivessem apresentado evid{\^e}ncias 
                         indiretas de sua exist{\^e}ncia em 1975, at{\'e} 11 de Fevereiro 
                         de 2016, quando a colabora{\c{c}}{\~a}o cient{\'{\i}}fica LIGO 
                         anunciou a primeira detec{\c{c}}{\~a}o direta de ondas 
                         gravitacionais passando pela Terra. O sinal, detectado em 14 de 
                         Setembro de 2015, era proveniente de um sistema bin{\'a}rio 
                         formado por dois buracos negros em processo de coalesc{\^e}ncia e 
                         deu in{\'{\i}}cio {\`a} era da Astronomia de Ondas 
                         Gravitacionais. O detector interferom{\'e}trico LIGO, 
                         respons{\'a}vel pela detec{\c{c}}{\~a}o, baseia-se no principal 
                         efeito da passagem de uma onda gravitacional, no qual 
                         distor{\c{c}}{\~o}es do espa{\c{c}}o-tempo e em tudo nele 
                         contido podem ser mensurados utilizando-se massas de teste e 
                         monitorando suas dist{\^a}ncias relativas. A varia{\c{c}}{\~a}o 
                         nas dist{\^a}ncias relaciona-se com a amplitude da onda 
                         gravitacional incidente por meio da express{\~a}o h\$\approx\$ 
                         \$\frac{\Delta L}{L}\$ . Esse {\'e}, basicamente, o 
                         princ{\'{\i}}pio de funcionamento do interfer{\^o}metro LIGO 
                         que usa espelhos de S{\'{\i}}lica em suspens{\~o}es pendulares 
                         como massa de teste e monitora a dist{\^a}ncia entre eles usando 
                         um feixe laser de alta pot{\^e}ncia. Na {\'e}poca da 
                         detec{\c{c}}{\~a}o, o LIGO estava come{\c{c}}ando sua primeira 
                         corrida cient{\'{\i}}fica da sua segunda gera{\c{c}}{\~a}o, 
                         denominada aLIGO. Contudo, embora a segunda gera{\c{c}}{\~a}o 
                         tenha iniciado as eras de corridas cient{\'{\i}}ficas 
                         recentemente, atualiza{\c{c}}{\~o}es para as 
                         gera{\c{c}}{\~o}es futuras j{\'a} est{\~a}o come{\c{c}}ando a 
                         ser desenvolvidas para serem implantadas em meados da pr{\'o}xima 
                         d{\'e}cada. Uma destas atualiza{\c{c}}{\~o}es, chamada de LIGO 
                         Voyager, prev{\^e} o uso de criogenia para a redu{\c{c}}{\~a}o 
                         de ru{\'{\i}}do t{\'e}rmico das suspens{\~o}es e das massas de 
                         teste. E {\'e} nessa dire{\c{c}}{\~a}o que insere-se a pesquisa 
                         realizada pelo grupo GWINPE (Gravitational Wave Group of Instituto 
                         Nacional de Pesquisas Espaciais), primeiro grupo brasileiro 
                         vinculado {\`a} colabora{\c{c}}{\~a}o LIGO e coautor do artigo 
                         da primeira detec{\c{c}}{\~a}o das ondas gravitacionais. Em 
                         trabalho anterior (mestrado) foi estudado o desenvolvimento de um 
                         sistema multipendular aninhado, chamado de \${''}\$Multi-Nested 
                         Pendula\${''}\$ (MNP), para ser implementado como um 
                         est{\'a}gio adicional ao sistema de isolamento vibracional das 
                         massas de teste de vers{\~o}es futuras do LIGO. Neste trabalho, o 
                         uso deste sistema {\'e} estudado, n{\~a}o s{\'o} visando 
                         constituir um est{\'a}gio de isolamento vibracional adicional 
                         para as massas de teste, mas para incumbir-se da tarefa de manter 
                         as massas de teste do LIGO Voyager resfriadas a 124K enquanto 
                         mant{\'e}m um isolamento vibracional m{\'{\i}}nimo determinado 
                         pela intensidade do retro-espalhamento e recombina{\c{c}}{\~a}o 
                         de f{\'o}tons no feixe principal. Por fim, ser{\'a} apresentada 
                         qual configura{\c{c}}{\~a}o possibilita a manuten{\c{c}}{\~a}o 
                         da temperatura dos espelhos a 124 K sem comprometer aquele 
                         isolamento vibracional m{\'{\i}}nimo e damos 
                         dire{\c{c}}{\~o}es nas pesquisas que precisam ser feitas para 
                         transformar o MNP em um sistema de isolamento vibracional 
                         adicional para o LIGO Voyager e/ou para detectores 
                         interferom{\'e}tricos em geral. ABSTRACT: Gravitational Waves 
                         (GW) are perturbations in space-time, traveling at space-time 
                         itself at the speed of light. Its theoretical prediction derives 
                         from Einsteins General Relativity (GR), published early in the 
                         twentieth century. Their existence remained in theory, although 
                         Hulse and Taylor presented indirect evidences of their existence 
                         in 1975, until February 11th 2016, when the LIGO Scientific 
                         Collaboration (LSC) announced the first direct detection ever made 
                         from gravitational waves passing through the Earth. The GW signal, 
                         detected in September 14th, 2015 came from a binary system formed 
                         by two black holes during their coalescence process and gave rise 
                         to the Gravitational Wave Astronomy era. LIGO interferometric 
                         detector, responsible for this detection, has its working 
                         principle based on the effect of a passing GW, in which 
                         distortions in the fabric of space-time and in everything therein 
                         can be measured by using two test masses and monitoring their 
                         relative distances. The variation in distance can be related to 
                         the amplitude of the incoming GW by h\$\approx\$ 
                         \$\frac{\Delta L}{L}\$ . This is, basically, the working 
                         principle from LIGO interferometer, which uses Silica mirrors 
                         hanging from pendular suspensions as test masses and monitors the 
                         distance between them throught a high power laser beam. At the 
                         detection epoch, LIGO was just starting its first scientific run 
                         from its second generation, named aLIGO. However, although the 
                         second generation had just begun its scientific runs era, updates 
                         for the next generations are now starting to be developed in order 
                         to be implemented by the middle of the next decade. One of these 
                         upgrades, named LIGO Voyager, aims to use criogenics in order to 
                         reduce suspension and substrate thermal noise. That\${'}\$s the 
                         direction where the R\\& D developed by GWINPE Gravitational 
                         Wave Group of Instituto Nacional de Pesquisas Espaciais) is 
                         engaged, the first Brazilian group linked to LSC and co-author of 
                         the paper regarding the first direct gravitational-wave detection 
                         ever made. In a previous work (master degree), the development of 
                         a multipendular nested system, named \${''}\$Multi-Nested 
                         Pendula\${''}\$ (MNP), was studied in order to be implemented as 
                         an additional stage to the vibration isolation system of test 
                         masses for future LIGO versions. In this work, we study this 
                         system, not only aiming to be an additional vibration stage for 
                         test masses, but to undertake the task of keeping LIGO Voyager 
                         test masses cooled to 124K while keeps a miminum requirement of 
                         vibration isolation determined by the intensity of photon 
                         backscattering and recombination in the main beam. Finally, well 
                         present which configuration makes possible to maintain the mirror 
                         temperature at 124 K without compromising the minimum vibration 
                         isolation required and we give direction to the researches that 
                         need to be performed in order to convert the MNP into an 
                         additional vibration isolation system for LIGO Voyager and/or 
                         interferometric gravitational wave detectors in general.",
            committee = "Jablonski, Francisco Jos{\'e} (Presidente) and Aguiar, Odylio 
                         Denys (Orientador) and Costa, C{\'e}sar Augusto and Ara{\'u}jo, 
                         Jos{\'e} Carlos Neves de and Gratens, Xavier Pierre Marie and 
                         Oliveira Junior, Nei Fernandes de",
         englishtitle = "Contributions to the development of the Multi-Nested Pendula for 
                         cryogenic vibration isolation for LIGO Voyager",
             language = "pt",
                pages = "157",
                  ibi = "8JMKD3MGP3W34P/3NT7CR2",
                  url = "http://urlib.net/rep/8JMKD3MGP3W34P/3NT7CR2",
           targetfile = "publicacao.pdf",
        urlaccessdate = "29 nov. 2020"
}


Fechar