<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Journal Article">
		<site>mtc-m21c.sid.inpe.br 806</site>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<identifier>8JMKD3MGP3W34R/3TAS8RP</identifier>
		<repository>sid.inpe.br/mtc-m21c/2019/05.17.15.35</repository>
		<lastupdate>2019:05.17.15.35.46 urlib.net/www/2017/11.22.19.04 simone</lastupdate>
		<metadatarepository>sid.inpe.br/mtc-m21c/2019/05.17.15.35.46</metadatarepository>
		<metadatalastupdate>2020:01.06.11.42.14 urlib.net/www/2017/11.22.19.04 administrator {D 2019}</metadatalastupdate>
		<doi>10.1029/2018JA026184</doi>
		<issn>2169-9380</issn>
		<citationkey>SilvaSASJCMAMVWJLGDSPABFBKKG:2019:CoULWa</citationkey>
		<title>Contribution of ULF Wave Activity to the Global Recovery of the Outer Radiation Belt During the Passage of a High-Speed Solar Wind Stream Observed in September 2014</title>
		<year>2019</year>
		<month>Mar.</month>
		<typeofwork>journal article</typeofwork>
		<numberoffiles>1</numberoffiles>
		<size>5966 KiB</size>
		<author>Silva, Ligia A. da,</author>
		<author>Sibeck, David,</author>
		<author>Alves, Livia Ribeiro,</author>
		<author>Souza, Vitor Moura Cardoso e Silva,</author>
		<author>Jauer, P. R.,</author>
		<author>Claudepierre, S. G.,</author>
		<author>Marchezi, José Paulo,</author>
		<author>Agapitov, Oleksiy,</author>
		<author>Medeiros, Cláudia,</author>
		<author>Vieira, Luis Eduardo Antunes,</author>
		<author>Wang, Chi,</author>
		<author>Jiankui, Shi,</author>
		<author>Liu, Z.,</author>
		<author>Gonzalez Alarcon, Walter Demétrio,</author>
		<author>Dal Lago, Alisson,</author>
		<author>Silva, Marlos Rockenbach da,</author>
		<author>Pádua, Marcelo Banik de,</author>
		<author>Alves, Maria Virginia,</author>
		<author>Barbosa, Marcos Vinicius Grala,</author>
		<author>Fok, Mei-Ching,</author>
		<author>Baker, Daniel,</author>
		<author>Kletzing, Craig,</author>
		<author>Kanekal, Shrikanth G.,</author>
		<author>Georgiou, Marina,</author>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid>8JMKD3MGP5W/3C9JJC4</resumeid>
		<resumeid>8JMKD3MGP5W/3C9JGH3</resumeid>
		<resumeid></resumeid>
		<resumeid>8JMKD3MGP5W/3C9JHNR</resumeid>
		<resumeid>8JMKD3MGP5W/3C9JHRS</resumeid>
		<orcid>0000-0002-8822-5030</orcid>
		<orcid>0000-0003-3240-7510</orcid>
		<orcid>0000-0002-5680-7271</orcid>
		<orcid>0000-0001-7294-7963</orcid>
		<orcid>0000-0002-8064-5030</orcid>
		<orcid>0000-0001-5513-5947</orcid>
		<orcid>0000-0002-2904-6411</orcid>
		<orcid>0000-0001-6427-1596</orcid>
		<orcid>0000-0002-6914-5799</orcid>
		<orcid>0000-0002-9376-475X</orcid>
		<orcid>0000-0001-6991-9398</orcid>
		<orcid>0000-0002-8008-0527</orcid>
		<orcid></orcid>
		<orcid>0000-0002-4859-9310</orcid>
		<orcid>0000-0002-4361-6492</orcid>
		<orcid>0000-0002-9737-9429</orcid>
		<orcid></orcid>
		<orcid></orcid>
		<orcid></orcid>
		<orcid>0000-0001-9500-866X</orcid>
		<orcid>0000-0001-5909-0926</orcid>
		<orcid>0000-0002-4136-3348</orcid>
		<orcid>0000-0001-8157-4281</orcid>
		<orcid>0000-0001-6480-345X</orcid>
		<group></group>
		<group></group>
		<group>DIDGE-CGCEA-INPE-MCTIC-GOV-BR</group>
		<group>DIDGE-CGCEA-INPE-MCTIC-GOV-BR</group>
		<group></group>
		<group></group>
		<group>GES-CEA-SESPG-INPE-MCTIC-GOV-BR</group>
		<group></group>
		<group>GESAST-CEA-SESPG-INPE-MCTIC-GOV-BR</group>
		<group>DIDGE-CGCEA-INPE-MCTIC-GOV-BR</group>
		<group></group>
		<group></group>
		<group></group>
		<group>DIDGE-CGCEA-INPE-MCTIC-GOV-BR</group>
		<group>DIDGE-CGCEA-INPE-MCTIC-GOV-BR</group>
		<group>DIDGE-CGCEA-INPE-MCTIC-GOV-BR</group>
		<group>DIDGE-CGCEA-INPE-MCTIC-GOV-BR</group>
		<group>DIDGE-CGCEA-INPE-MCTIC-GOV-BR</group>
		<group>GESAST-CEA-SESPG-INPE-MCTIC-GOV-BR</group>
		<affiliation>Chinese Academy of Sciences</affiliation>
		<affiliation>NASA Goddard Space Flight Center</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Chinese Academy of Sciences</affiliation>
		<affiliation>The Aerospace Corporation</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>University of California</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Chinese Academy of Sciences</affiliation>
		<affiliation>Chinese Academy of Sciences</affiliation>
		<affiliation>Chinese Academy of Sciences</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>NASA Goddard Space Flight Center</affiliation>
		<affiliation></affiliation>
		<affiliation>NASA Goddard Space Flight Center</affiliation>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>livia.alves@inpe.br</electronicmailaddress>
		<electronicmailaddress>vitor.souza@inpe.br</electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>jose.marchezi@inpe.br</electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>claudia.medeiros@inpe.br</electronicmailaddress>
		<electronicmailaddress>luis.vieira@inpe.br</electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>walter.gonzalez@inpe.br</electronicmailaddress>
		<electronicmailaddress>alisson.dallago@inpe.br</electronicmailaddress>
		<electronicmailaddress>marlos.silva@inpe.br</electronicmailaddress>
		<electronicmailaddress>marcelo.banik@inpe.br</electronicmailaddress>
		<electronicmailaddress>mv.alves@inpe.br</electronicmailaddress>
		<electronicmailaddress>marcos.barbosa@inpe.br</electronicmailaddress>
		<journal>Journal of Geophysical Research Space Physics</journal>
		<volume>124</volume>
		<number>3</number>
		<pages>1660-1678</pages>
		<secondarytype>PRE PI</secondarytype>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<versiontype>publisher</versiontype>
		<abstract>Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how ultralow frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on 22 September 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground- and space-based observational data and global magnetohydrodynamic simulations and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. Magnetohydrodynamic simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfvén modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by phase space density calculations for this global recovery period.</abstract>
		<area>CEA</area>
		<language>en</language>
		<targetfile>Silva_et_al-2019-Journal_of_Geophysical_Research__Space_Physics.pdf</targetfile>
		<usergroup>simone</usergroup>
		<readergroup>administrator</readergroup>
		<readergroup>simone</readergroup>
		<visibility>shown</visibility>
		<readpermission>deny from all and allow from 150.163</readpermission>
		<documentstage>not transferred</documentstage>
		<nexthigherunit>8JMKD3MGPCW/3EU29DP</nexthigherunit>
		<nexthigherunit>8JMKD3MGPCW/3F2PBEE</nexthigherunit>
		<nexthigherunit>8JMKD3MGPCW/3F2PF8L</nexthigherunit>
		<dissemination>WEBSCI; PORTALCAPES; AGU; SCOPUS.</dissemination>
		<hostcollection>urlib.net/www/2017/11.22.19.04</hostcollection>
		<username>simone</username>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>urlib.net/www/2017/11.22.19.04</lasthostcollection>
		<url>http://mtc-m21c.sid.inpe.br/rep-/sid.inpe.br/mtc-m21c/2019/05.17.15.35</url>
	</metadata>
</metadatalist>