Fechar
Metadados

%0 Journal Article
%4 sid.inpe.br/mtc-m21c/2020/01.02.13.46
%2 sid.inpe.br/mtc-m21c/2020/01.02.13.46.56
%@issn 0378-4371
%A Borges, Fernando da Silva,
%A Protachevicz, P. R.,
%A Pena, R . F. O.,
%A Lameu, Ewandson Luiz,
%A Higa, G. S. V.,
%A Kihara, A. H.,
%A Matias, F. S.,
%A Antonopoulos, C. G.,
%A Pasquale, R. de,
%A Roque, A. C.,
%A Iarosz, K. C.,
%A Ji, P.,
%A Batista, A. M.,
%@affiliation Universidade Federal do ABC (UFABC)
%@affiliation Universidade Federal de Ponta Grossa (UFPG)
%@affiliation Universidade de São Paulo (USP)
%@affiliation Instituto Nacional de Pesquisas Espaciais (INPE)
%@affiliation Universidade Federal do ABC (UFABC)
%@affiliation Universidade Federal do ABC (UFABC)
%@affiliation Universidade Federal de Alagoas (UFAL)
%@affiliation University of Essex
%@affiliation Universidade de São Paulo (USP)
%@affiliation Universidade de São Paulo (USP)
%@affiliation Universidade de São Paulo (USP)
%@affiliation Fudan University
%@affiliation Universidade Federal de Ponta Grossa (UFPG)
%@electronicmailaddress fernandodasilvaborges@gmail.com
%@electronicmailaddress protachevicz@gmail.com
%T Self-sustained activity of low firing rate in balanced networks
%B Physica A
%D 2020
%V 537
%8 Jan.
%K Spontaneous activity, Neural networks, Whole-cell recordings, Asynchronous irregular activity.
%X Self-sustained activity in the brain is observed in the absence of external stimuli and contributes to signal propagation, neural coding, and dynamic stability. It also plays an important role in cognitive processes. In this work, by means of studying intracellular recordings from CA1 neurons in rats and results from numerical simulations, we demonstrate that self-sustained activity presents high variability of patterns, such as low neural firing rates and activity in the form of small-bursts in distinct neurons. In our numerical simulations, we consider random networks composed of coupled, adaptive exponential integrate-and-fire neurons. The neural dynamics in the random networks simulates regular spiking (excitatory) and fast spiking (inhibitory) neurons. We show that both the connection probability and network size are fundamental properties that give rise to self-sustained activity in qualitative agreement with our experimental results. Finally, we provide a more detailed description of self-sustained activity in terms of lifetime distributions, synaptic conductances, and synaptic currents.
%P e122671
%@language en
%9 journal article
%3 borges_self.pdf


Fechar