Fechar

1. Identificação
Tipo de ReferênciaArtigo em Revista Científica (Journal Article)
Sitemtc-m21c.sid.inpe.br
Código do Detentorisadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S
Identificador8JMKD3MGP3W34R/42QG58B
Repositóriosid.inpe.br/mtc-m21c/2020/07.06.14.30
Última Atualização2020:07.06.14.30.30 (UTC) simone
Repositório de Metadadossid.inpe.br/mtc-m21c/2020/07.06.14.30.30
Última Atualização dos Metadados2022:01.04.01.35.15 (UTC) administrator
DOI10.14393/rbcv72n2-48726
ISSN0560-4613
1808-0936
Chave de CitaçãoPenhaKöFoSiPlAnMo:2020:BuArDe
TítuloBurned area detection in the brazilian Amazon using spectral indices and GEOBI
Ano2020
Data de Acesso27 nov. 2022
Tipo de Trabalhojournal article
Tipo SecundárioPRE PN
Número de Arquivos1
Tamanho816 KiB
2. Contextualização
Autor1 Penha, Thales Vaz
2 Körting, Thales Sehn
3 Fonseca, Leila Maria Garcia
4 Silva Júnior, Celso Henrique Leite
5 Pletsch, Mikhaela Aloísia Jéssie Santos
6 Anderson, Liana Oighenstein
7 Morelli, Fabiano
Identificador de Curriculo1
2
3 8JMKD3MGP5W/3C9JHLD
ORCID1 0000-0000-0000-0000
2 0000-0002-0876-0501
3 0000-0001-6057-7387
4 0000-0002-1052-5551
5 0000-0002-1690-1175
6 0000-0001-6057-7387
7 0000-0001-9545-5136
Grupo1
2 DIDPI-CGOBT-INPE-MCTIC-GOV-BR
3 DIDPI-CGOBT-INPE-MCTIC-GOV-BR
4 SER-SRE-SESPG-INPE-MCTIC-GOV-BR
5 SER-SRE-SESPG-INPE-MCTIC-GOV-BR
6
7 CGOBT-CGOBT-INPE-MCTIC-GOV-BR
Afiliação1 Universidade de São Paulo (USP)
2 Instituto Nacional de Pesquisas Espaciais (INPE)
3 Instituto Nacional de Pesquisas Espaciais (INPE)
4 Instituto Nacional de Pesquisas Espaciais (INPE)
5 Instituto Nacional de Pesquisas Espaciais (INPE)
6 Centro Nacional de Monitoramento e Alertas de Desastres Naturais (CEMADEN)
7 Instituto Nacional de Pesquisas Espaciais (INPE)
Endereço de e-Mail do Autor1 thalesvazpenha@gmail.com
2 thales.korting@inpe.br
3 leila.fonseca@inpe.br
4
5
6
7 fabiano.morelli@inpe.br
RevistaRevista Brasileira de Cartografia
Volume72
Número2
Páginas253-269
Nota SecundáriaA2_INTERDISCIPLINAR A2_GEOGRAFIA A2_ARQUITETURA_E_URBANISMO B1_PLANEJAMENTO_URBANO_E_REGIONAL_/_DEMOGRAFIA B1_CIÊNCIAS_AMBIENTAIS B2_GEOCIÊNCIAS B3_ENGENHARIAS_I B4_ENGENHARIAS_III B4_CIÊNCIAS_SOCIAIS_APLICADAS_I B5_ENGENHARIAS_IV B5_ENGENHARIAS_II B5_CIÊNCIAS_AGRÁRIAS_I B5_BIODIVERSIDADE C_ZOOTECNIA_/_RECURSOS_PESQUEIROS C_MATEMÁTICA_/_PROBABILIDADE_E_ESTATÍSTICA C_CIÊNCIAS_BIOLÓGICAS_I C_ASTRONOMIA_/_FÍSICA
Histórico (UTC)2020-07-06 14:30:30 :: simone -> administrator ::
2020-07-06 14:30:30 :: administrator -> simone :: 2020
2020-07-06 14:31:10 :: simone -> administrator :: 2020
2022-01-04 01:35:15 :: administrator -> simone :: 2020
3. Conteúdo e estrutura
É a matriz ou uma cópia?é a matriz
Estágio do Conteúdoconcluido
Transferível1
Tipo do ConteúdoExternal Contribution
Tipo de Versãopublisher
Palavras-ChaveFires mapping. Tropical forest. Landsat-8 OLI. Sentinel-2A MSI
Mapeamento de áreas queimadas. Floresta tropical. Landsat-8 OLI. Sentinel-2A MSI
ResumoMapping refined burned areas (BA) in the Brazilian Amazon is still a challenge. The main difficulty of BA detection in large areas is the presence of cloud cover and water bodies. The use of different data sources of medium spatial resolution satellite images can provide a higher availability of cloud-free images. Besides that, it may decrease the uncertainties associated with coarse spatial resolution data (>250m), which can under or overestimate BA and hinder the detection of small BA patches (<0.1km²). In this study, we propose an innovative methodology based on spectral indices and geographic object-based image analysis (GEOBIA), using medium spatial resolution images to improve BA detection in the Brazilian Amazon region. Firstly, we assessed the performance of nine spectral indices in two study areas, derived from Landsat-8 OLI and Sentinel-2A MSI data to identify the most suitable index for BA detection in this region. Then, we refined this data through the GEOBIA-based model. The results showed that the Burned Area Index (BAI) was the most suitable index for BA mapping (M index >1.5) for both sensors. Our model allowed detecting more than 80% of small BA and also presented high Dice coefficient values (~0.70) with low omission and commission errors (0.22 and 0.32, respectively). Such combined approach corresponds to a novel contribution to the BA detection in the Brazilian Amazon region and for enhancing the operational product generation. RESUMO: O mapeamento refinado de áreas queimadas (AQ) na Amazônia brasileira ainda é um desafio. A principal dificuldade na detecção de AQ para grandes áreas é a presença de nuvens e corpos hídricos. A utilização de diferentes fontes de dados de imagens de sensoriamento remoto de média resolução espacial pode fornecer uma maior disponibilidade de imagens livres de nuvens, além de reduzir as incertezas associadas aos dados de resolução espacial grosseira (>250m), os quais podem subestimar ou superestimar AQ e dificultar a detecção de AQ pequenas (<0,1km²). Neste estudo, propomos uma metodologia inovadora baseada no uso de índices espectrais e análise de imagem baseada em objetos geográficos (GEOBIA), usando imagens de média resolução espacial para melhorar a detecção de AQ em áreas teste na Amazônia. Primeiramente, avaliamos o desempenho de nove índices espectrais em duas áreas de estudo obtidos a partir de cenas do Landsat-8 OLI e Sentinel-2A MSI para identificar o índice mais adequado para a detecção de AQ. Em seguida, refinamos esses dados através do modelo baseado em GEOBIA. Os resultados mostraram que o Índice de Área queimada (BAI) foi o mais adequado para o mapeamento de AQ (índice M>1,5) para ambos os sensores. Nosso modelo permitiu detectar mais de 80% das AQs pequenas (<1 km²) e também apresentou altos valores de coeficiente Dice (~0,70) com baixos erros de omissão e comissão (0,22 e 0,32, respectivamente). Essa abordagem integrada correspondeu a uma contribuição inédita para a detecção de AQs na região amazônica e para o aprimoramento da geração de produtos operacionais.
ÁreaSRE
Arranjo 1urlib.net > BDMCI > Fonds > Produção anterior à 2021 > DIDPI > Burned area detection...
Arranjo 2urlib.net > BDMCI > Fonds > Produção anterior à 2021 > CGOBT > Burned area detection...
Arranjo 3urlib.net > BDMCI > Fonds > Produção pgr ATUAIS > SER > Burned area detection...
Conteúdo da Pasta docacessar
Conteúdo da Pasta sourcenão têm arquivos
Conteúdo da Pasta agreement
agreement.html 06/07/2020 11:30 1.0 KiB 
4. Condições de acesso e uso
URL dos dadoshttp://mtc-m21c.sid.inpe.br/ibi/8JMKD3MGP3W34R/42QG58B
URL dos dados zipadoshttp://mtc-m21c.sid.inpe.br/zip/8JMKD3MGP3W34R/42QG58B
Idiomaen
Arquivo Alvopenha_burned.pdf
Grupo de Usuáriossimone
Grupo de Leitoresadministrator
simone
Visibilidadeshown
Política de Arquivamentoallowpublisher allowfinaldraft
Permissão de Atualizaçãonão transferida
5. Fontes relacionadas
Unidades Imediatamente Superiores8JMKD3MGPCW/3EQCCU5
8JMKD3MGPCW/3EU2H28
8JMKD3MGPCW/3F3NU5S
DivulgaçãoPORTALCAPES
Acervo Hospedeirourlib.net/www/2017/11.22.19.04
6. Notas
Campos Vaziosalternatejournal archivist callnumber copyholder copyright creatorhistory descriptionlevel e-mailaddress format isbn label lineage mark mirrorrepository month nextedition notes parameterlist parentrepositories previousedition previouslowerunit progress project readpermission rightsholder secondarydate secondarykey session shorttitle sponsor subject tertiarymark tertiarytype url
7. Controle da descrição
e-Mail (login)simone
atualizar 


Fechar