@AudiovisualMaterial{CuadrosAlCoCaGuDaVi:2025:EsAtTu,
abstract = "Accurate estimation of the refractive index structure parameter
(C\ₙ˛) is vital for optimizing astronomical observations
and adaptive optics. This study explores machine learning models
to predict C\ₙ˛ from Differential Image Motion Monitor
(DIMM) data using ERA5 reanalysis from ECMWF. Three models were
tested: Multilayer Perceptron (MLP), Long Short-Term Memory
(LSTM), and Extreme Gradient Boosting (XGBoost). Data
preprocessing aligned time series and addressed missing values.
Training and validation were performed with data from Paranal
Observatory, Chile. The models will later be applied at the
Laborat{\'o}rio Nacional de Astrof{\'{\i}}sica (LNA), Brazil.
ERA5-derived features included temperature, pressure, humidity,
and wind profiles; the target was DIMM-measured C\ₙ˛.
Results demonstrate the potential of combining reanalysis data and
machine learning for atmospheric turbulence estimation, offering a
cost-effective alternative to continuous in-situ monitoring.",
affiliation = "{Instituto Nacional de Pesquisas Espaciais (INPE)} and {} and {}
and {Instituto Nacional de Pesquisas Espaciais (INPE)} and
{Instituto Nacional de Pesquisas Espaciais (INPE)} and {Instituto
Nacional de Pesquisas Espaciais (INPE)} and {Instituto Nacional de
Pesquisas Espaciais (INPE)}",
author = "Cuadros, Edith Tueros and Almeida, A. and Cornejo, D. and
Carlesso, Franciele and Guarnieri, Fernando Luis and Dal Lago,
Alisson and Vieira, Luis Eduardo Antunes",
city = "S{\~a}o Jos{\'e} dos Campos",
conferencename = "Semana Acad{\^e}mica da Geof{\'{\i}}sica Espacial (SAGE)",
date = "22 a 26 set. 2025",
language = "en",
publisher = "Instituto Nacional de Pesquisas Espaciais (INPE)",
publisheraddress = "S{\~a}o Jos{\'e} dos Campos",
ibi = "8JMKD2USPTW34P/4EDB9UH",
url = "http://urlib.net/ibi/8JMKD2USPTW34P/4EDB9UH",
targetfile = "SAGE-Poster2025.pdf",
title = "Estimating Atmospheric Turbulence (Cn˛) at Astronomical Sites
Using Meteorological Data and Machine Learning",
type = "Poster",
year = "2025",
urlaccessdate = "2025, Nov. 15"
}