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Abstract

The effects of high order schemes of biorthogonal spline spatial discretization are studied in ¢
shallow water f plane model. A semi-implicit model is used in this temporal discretization. The
accuracy of this discrete model is analyzed in phase frequency and group velocity. Thus, a significal
discretization error reduction is found in the slow mode oscillations for high order schemes. On the
other hand, the error of the fastest modes ("gravity modes") is not improved when order scheme
higher than four are applied.
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1. INTRODUCTION

Elvius and Sundstrom (1972) analyzed the error introduced in time and space discretization il
finite differences of a linear shallow water model. These authors used a method of semi-implicit time
discretization in this model. This method separates the spatial derivative from the temporal one. In thi
last case, this method divides the temporal derivative in two categories: the responsible terms ft
severe restrictions in the time step are dealt with an implicit dicretization, while the other terms are
dealt with an explicit discretization.

In 1976, Grotjam and O'Brien evaluated this type of error in phase frequency and in group velocit
of a semi-implicit model, in approaches of second order. The group velocity components are calculate
by the phase frequency wave number derivative, respectativelly. This physical amount is ver
important in the understanding of the dispersion of energy of these waves (Dias, 1996). Moreover, thi
amount is important for the agreement of numerical models, because even if a differential equation |
non dispersive, its numerical equivalents are dispersive (Trefethen, 1982).

In this work the error introduced in the phase frequency and group velocity of a non dissipate
shallow water f plane model is evaluated for the biorthogonal spline higher order space discretizatio
in the semi-implicit time model described above.

2. PRELIMINARY

The families of biorthogonal spline functions were built by Cohen et al. (1992), and are
generated by a couple of functiop&f),@ (x)}, where @ (x) is aB-splinesof order N and@Xx)
depends on a parameter N with the same parity offiém these functions the operators of restriction
and prolongation define themselve$ffr = h' [ f(x) @ "(x) dx, (@ f)X) = S« f? @(x), where
@ "(x) = @ (Wx-k) and @"(x) = @(h™?x-k). Biorthogonality means that the approximation scheme
{r%p? is conservative in the sense thdfp?f]= f%.

A discretization of a differential operator D in the forrfy = r[Dp® ] can be thought as a
Petrov-Galerkin type scheme, whepe" are the test function andp are the trial functions
For the linear case and in case that operators have constant coefficidfitsc@n also be interpreted
as a scheme of finite differences. It considers, for instance, Df(x)=f '(x).The discrete op&fatoasD
the following expression: (D), = h* 3 f% I (p-k), wherel (s)=f @(z) @ (z+s) dz. It can be proved
that these coefficients depend only on M=N+«Bunha and Gomes, 1995). Therefore the analysis



done in this work is restricted to the case 9, for whichg (x) = §(x), Dirac function, and(x) is an
interpolator function, of degree M-1, that corresponds to a collocation scheme.

3. ANALYSIS OF THE SHALLOW WATER DISCRETE MODEL

The following shallow water discrete f plane model can be obtained by coupling the biorthogonal
spline space discretization, presented in Domingues (1997), with a semi-implicit temporal scheme c
finite differences.

Ld Ud — fO Vd _ DXd ¢d,

Ld Vd — 'fO ud _ Dyd ¢d,

9% = -( D u+ D V),
where(L® ¢°) pan= 1/(24%) [ g'(p,a,n+1) - d(p,q,n-1) ] + U o(k,a,n)(p-K) + V/h 3y g'(pln) F(gH),
(Dx'gYpa = 125 [ g'(k,a.n+1) + dkan-DIF(pK) e (@Y)pq = 125 [g°(PLn+1) +d(p).n-1) IT (gH).

As these discrete operators are expressed as convolutions, they can commute. Thus, after sol
manipulation andy expression is derived asg [ [Lo+fo?] - @ [ Dx® + Dy® 1] ¢g = O.
Assumingd“(ph,gh,mt) = g "P*ha "4 'ihree solutions are obtained, as in the continuous case. The
first one is given byw® and the others bg.*. To follow values ofw’ and its respective zonal group
velocity are presented:

o = 1 ye =Y dr (he)
At arcserA’ ¥ f1-a2 dE

where A= i/h [U I"'(hE )+VI'(hu)] andl@Q)=5«€"° I'(s). This phase frequency is associated to the
explicit discretization solution of the linear advection equation. Figure 1 presents the graphs of the
error |lew/wy| for M=2,...,8 A significant error reduction occurs fod values higher thad, as
observed in this figure. The same kind of error analysis is made for the zonal group velocity (for
hu[D - Figure 2). The two other solutions are given below:

si _ 1

*  AtarcserG,
where G =-iA+R /(1/B), R= (At*fo>AB) (1-AB) - A BA? , B="4(h&)+I*(hv), A=d(At/h)* and
A=UAt/h. These two phase frequencies are associate to the discrete opergtefe] L ® [ D@ +
Dyd®] ] ¢ =0. In Figure 3 is presented the erroufl#w,| for M=2,.., 8 The zonal component of the
group velocity associated to the frequengy is given by

NE 0G

1 +
¥ At1-G? 08

wheredG./ 08 = (-i A/OE +ORIE) / (1 -AB) + AdBIOE  (-i A+ R)/(1-AB)?,

0A/0¢ = AdT'(h&) /dE,

0B/ =2I"'(h&) dIr'(h&/dg,

0 RIOE = - 1/2AR [0B/OE (-2AB + At? fo> + A>+ 1) + 2 A BAA/A £ ]. In these two cases (Figures 3

and 4), a significant error reduction do not occur, in phase frequency or in group velocity, by
introducing the discretization in order higher than four.

4.CONCLUSIONS

Swartz and Wendroff (1974) demonstrated that the phase frequency error, in an undimension:
advection equation for usual finite differences, decreasds<tu4) when the order of the numerical
schemes is incresed. This result was also numerically verified in the present work for the
biorthogonal discretization. However, for valug4<hf, hu>172, the best results are obtained for the



family M=4. Mesinger and Arakawa(1976) and Grotjam and O'Brien(1976) emphasized the
importance of the inversion of the sign of the group velocity propagation sign ( with the occurrence o
the group velocity zero) in the discrete finite difference model of second order. This occurs in regions
hé~172. In these regions, the relative discretization errors are significantly high, what discards the
physical usage of such regions. As the scheme order increases, the physical reliability regio
increases, forw® and for its group velocity. In this case® is almost non divergent and
geostrophically balanced, moreover it possess slower modes than the other two solutions (Elvius at
Sundstrém, 1972). In  many situations of meteorological interest, this frequency is of great
importance.Therefore, the methods of higher order are better than the ones of low order in relation 1
the accuracy in the phase frequency and group velocity, in these slow modes. The other tw
frequencies, associated to the gravity waves, are many times assumed as noise. So, the effort to |
higher order schemes is of great interest, specially in these cases.

As it was already mentioned, biorthogonal discretization method can be interpreted as a finit
difference scheme. In this case, it is possible to take advantage of the multi-level basis of wavele
associates and to develop adaptive schemes in the space (Bacry et al., 1992), which is being treatec
a work in progress. However, it is still necessary to evaluate the expenses of these methods in terms
flop requirements and computational efficiency implementation.
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Fig.1 - Relative error in the phase frequenti = 0.17, U=V).
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Fig. 3 - Relative error in phase frequencyw
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