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Abstract

 The effects of high order schemes of biorthogonal spline spatial discretization  are studied in a
shallow water f plane model.  A semi-implicit model is used in this temporal discretization. The
accuracy  of this discrete model is analyzed in phase frequency and group velocity. Thus, a significant
discretization error reduction  is found in the slow mode oscillations for high order schemes. On the
other hand, the error of  the  fastest modes ("gravity modes") is not  improved   when order schemes
higher than four are applied.
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1. INTRODUCTION

 Elvius and  Sundström (1972)   analyzed the error introduced in time and space discretization in
finite differences of a linear shallow water model. These authors used a method of semi-implicit time
discretization in this model. This method separates the spatial derivative from the temporal one. In this
last case, this method divides the temporal derivative  in two categories: the  responsible terms for
severe restrictions in the time step are dealt with an implicit dicretization, while the other terms are
dealt with an explicit discretization.

In 1976, Grotjam and O'Brien  evaluated this type of error in phase frequency  and in group velocity
of a semi-implicit model, in approaches of second order. The group velocity components are calculated
by  the phase frequency  wave number derivative, respectativelly. This physical amount is very
important in the understanding of the dispersion of energy of these waves (Dias, 1996). Moreover, this
amount is important for the agreement of numerical models, because even if a differential equation is
non dispersive, its numerical equivalents are dispersive (Trefethen, 1982).

 In this work the error introduced in the phase frequency and group velocity of a non dissipate
shallow water f plane model is evaluated for the biorthogonal spline higher order space discretization
in the semi-implicit  time model described above.

2. PRELIMINARY

              The families of biorthogonal spline functions were built by Cohen et al. (1992), and are
generated by a couple of functions{φ(x),φ*(x)}, where φ*(x)   is a B-splines of order  N*  and φ(x)
depends on a parameter N with the same parity of  N*. From these functions the operators of restriction
and prolongation define themselves (rd f)k = h-1 ∫ f(x) φk

*h(x) dx,     (pd fd)(x) = ∑k fk
d φk

h(x),  where
φk

*h(x) = φ*(h-1x-k) and φk
h(x) = φ(h-1x-k). Biorthogonality  means that the  approximation scheme

{r d,pd}  is conservative in the sense that  rd[pdfd]= fd.
 A discretization of a differential operator  D in the form Dd fd  = rd[Dpd fd] can be thought as a

Petrov-Galerkin type scheme, where φk
*h  are the test function and  φk

h  are the trial functions.               
For the linear case and in case that operators have constant coefficients, Dd fd it can also be interpreted
as a scheme of finite differences. It considers, for instance,  Df(x)=f '(x).The discrete operator  Ddfd has
the following expression: (Dpd fd)p = h-1 ∑k f

d
k Γ(p-k), where Γ(s)= ∫ φ'(z) φ*(z+s) dz. It can be proved

that these coefficients depend only on M=N+N* (Cunha and Gomes, 1995). Therefore the analysis



done in this work is restricted to the case N*= 0, for which φ*(x) = δ(x), Dirac function,  and φ(x) is an
interpolator function, of degree M-1,  that corresponds to a collocation scheme.

3. ANALYSIS OF THE SHALLOW WATER DISCRETE MODEL

The following shallow water discrete f plane model can be obtained by coupling the biorthogonal
spline space discretization, presented in Domingues (1997), with a semi-implicit  temporal scheme of
finite differences.

  Ld ud  =  f0 v
d - Dx

d ϕd,
Ld vd  =  -f0 u

d - Dy
d ϕd,

          Ld ϕd  =  - Φ( Dx
d ud+ Dy

d vd ),
where (Ld gd) p,q,n =  1/(2 ∆t) [ gd(p,q,n+1) - gd(p,q,n-1) ] +  U/h ∑k g

d(k,q,n) Γ(p-k) + V/h ∑l  g
d(p,l,n) Γ(q-l),

( Dx
dgd)p,q  =  1/2 ∑k [ g

d(k,q,n+1) + gd(k,q,n-1)] Γ(p-k)  e (Dy
dgd)p,q   =  1/2 ∑l [ g d(p,l,n+1) +gd(p,l,n-1) ] Γ (q-l).

As these discrete operators are expressed as convolutions, they can commute. Thus, after some
manipulation an ϕd expression is derived as: Ld [ [Ld

2+f0
2] - Φ [ Dxd

(2) + Dyd
(2) ] ] ϕd = 0.

Assuming ϕd(ph,qh,n∆t) = ei (hξ p+h υq - n ω ∆t), three solutions are obtained, as in the continuous case. The
first one is given by  ωe and the others by ω±

si. To follow values of ωe and its respective zonal group
velocity are presented:

where A=  i/h [U  Γ'(hξ )+VΓ'(hυ)]  and Γ'(ζ)=∑se
-iζs Γ(s). This phase frequency is associated to the

explicit discretization solution of the linear advection equation. Figure 1 presents the graphs of the
error |1-ω /ωe|  for M=2,...,8. A significant error reduction occurs for M values higher than 4, as
observed in this figure. The same kind of error analysis is made for the zonal group velocity (for
hυ∼0 − Figure 2). The two other solutions are given below:

where G± =-iA±R /(1-ΛB), R2= (∆t2f0
2-ΛB) (1-ΛB) - λ BA2 , B=Γ'2(hξ)+Γ'2(hυ), Λ=Φ(∆t/h)2  and

λ=U∆t/h. These two phase frequencies  are associate to the discrete operator [ [Ld
2+f0

2] -  Φ [ Dxd
(2) +

Dyd
(2)] ] ϕd =0. In Figure 3 is presented the error |1-ωsi

+/ω+| for M=2,.., 8. The zonal component of the
group velocity associated to the frequency ωsi

+ is given by

where ∂G+/ ∂ξ  = ( -i  ∂A/∂ξ + ∂R/∂ξ) / ( 1 - Λ B) +  Λ∂ B/∂ξ    ( -i A + R)/(1- ΛB)2,
 ∂A/∂ξ  =  λ d Γ'(h ξ) /dξ,
∂B/∂ξ = 2 Γ′(h ξ)   d Γ'(h ξ)/d ξ,
∂ R/∂ξ = - 1/2 ΛR-1 [∂B/∂ξ ( -2 ΛB + ∆t2  f0

2 + A2 + 1 ) + 2 A B ∂A/∂ ξ ]. In these two cases (Figures 3
and 4), a significant error  reduction  do not occur, in phase frequency or in group velocity, by
introducing  the  discretization in order higher  than  four.

  4. CONCLUSIONS

Swartz and Wendroff (1974) demonstrated that the phase frequency error,  in an undimensional
advection equation for usual finite differences,  decreases to hξ<π/4,  when  the order of the numerical
schemes is incresed.   This result was also numerically verified in the present work for the
biorthogonal discretization. However, for  values π/4<hξ, hυ>π/2,  the best  results are obtained for the
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family M=4. Mesinger and Arakawa(1976) and Grotjam and O'Brien(1976) emphasized the
importance of the inversion of the sign of the group velocity propagation sign ( with  the occurrence of
the group velocity zero) in the discrete finite difference model of second order. This occurs in regions
hξ~π/2. In these regions, the relative discretization errors  are significantly high, what discards the
physical usage of  such regions. As the scheme order increases,  the  physical reliability region
increases,  for ωe and for its group velocity.  In this case ωe is almost non divergent and
geostrophically balanced, moreover it possess slower modes than the other two solutions (Elvius and
Sundström, 1972). In  many situations of meteorological interest, this frequency is of great
importance.Therefore, the methods of higher order  are better than the ones of low order in relation to
the accuracy in the phase frequency and group velocity, in these slow modes. The other two
frequencies, associated to the gravity waves, are many times assumed  as noise. So, the effort to use
higher order schemes  is of  great interest, specially in  these cases.

As it was already  mentioned, biorthogonal discretization method  can be interpreted as a  finite
difference scheme. In this case,  it is possible to take advantage of the multi-level basis of wavelet
associates and to develop adaptive schemes in the space (Bacry et al., 1992), which  is being treated in
a work in progress.  However, it is still necessary to evaluate the expenses of these methods in terms of
flop requirements and computational efficiency  implementation.
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                Fig.1 - Relative error in the phase frequency  ωe (λ = 0.17, U=V).
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Fig. 2 - Relative error in  group velocity we (for hυ∼0, λ=0.17, U=V).
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Fig. 3 - Relative error in  phase frequency wsi
+ .



 M =2

0
0

 π
4

π
2

 π
4

π
2

 υ
 

 h
 

 ξ  h  

 M =4

0
0

 π
4

π
2

 π
4

π
2

 υ
 

 h
 

 ξ  h  

 M =6

0
0

 π
4

π
2

 π
4

π
2

 υ
 

 h
 

 ξ  h  

 M =8

0
0

 π
4

π
2

 π
4

π
2

 υ
 

 h
 

 ξ  h  

λ=0.17, Λ=2.0

Fig. 4 - Relative error in  group velocity  wsi
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