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Abstract-
This paper presents the results from a prcliminary performance eval

uation of parallel RAMS, a numerical weather prediction model de
signed to simulate atmospheric phenomena at a regional levei. The 
main goal in our work was to study in detail the performance of the 
current RAMS version, and to uncover aspects of its code where op
portunities for optimization exist. We present our observations on both 
computation and communication performance ofRAMS executing on a 
distributed mcmory parallel platform, and analyze their contributions 
to total program performance. From the observed data, we present sim
ulations that predict bounds on potential performance gains for possible 
load balancing strategies. 

Ke)wurds- Performance analysis, Numcrical weather prediction, 
Performance measurement. 

I. lNTRODUCTION 

Finding optimization opportunities in large scientific soft
ware codes is an enterprise as old as wriling the code itself. 
There are many reports o f successful optimizations published 
in the open literature. But how does one select where 10 op
timize, among a set of potential opportunities? In fact, to 
evaluate optimization gains before implementation is a very 
hard task. 

In this paper, we describe the mechanisms used to select 
optimization directions for a large, commercially available 
regional weather prediction production code, the Regional 
Atmospheric Modeling System (RAMS). This effort is be
ing conducted as part of the FINEP-RAMS project, a project 
sponsored by FINEP (Financiadora de Estudos e Projetos), 
an agency of the Brazilian Ministry of Science and Technol
ogy (MCT). 

The FINEP-RAMS project, being executed by Elebra 
Systems, aims to produce an improved version of parallel 
RAMS . Improvements will occur in many directions, in
cluding new meteorological functionalities, better documen
tation, improved coding practices and strategy, and better 
speedups on parallel systems with up to 64 processors. In 
this paper, we limit our presentation to just one of these as
pects, namely speedup improvement. 

The current parallel RAMS implementation is targeted to 
a modest number of processors. It is immediate, once the 

parallel computation is understood, to devise optimization 
opportunities that result in better speedups for the devised 
range o f processors. The hard task is to choose which oppor
tunity to pick. 

We describe a mechanism tO' evaluate opportunites, com
posed of an instrumentation scheme with minimal intrusion, 
performance data sets obtained from instrumented code exe
cution, and simulation procedures that, in some cases, antici
pate gains in optimization candidates. This set of techniqucs 
permits a higher levei of confidencc in achieving projcct 
goals than the usual round-table discussion. 

The remaining o f this paper is organized as follows. In §li, 
we comment related work. We analyze RAMS perfonnance 
in a global form in §III and in much deeper detail in §IV. §V 
prcsents promising candidates for optimization. Finally, we 
conclude and comment on future work in §VI. 

11. RELATED WORK 

Since the introduction of vector machines, in the 60's, im
plementation of numerical weather forecasting models has 
been one of the major applications o f high perfonnance sys
tems. Traditionally, mosto f those applications were based on 
global models [DRA 95). More recently, however, regional 
models, like RAMS, emerged as an interesting alternative to 
improve the accuracy in the forecast for a limited region [BAI 
95). 

Like in other scientific applications, there are a number of 
computational issues involved in the parallel implementation 
of regional models similar to RAMS. Load balancing is one 
of such issues: Schalter and Krenzien quantify the Joad im
balance in model physics in the Deutschland Model [SCH 
97]. Michalakes designed and implemented dynamic load 
balancing in the parallel version of MM5 [MIC 95). Al
though the RAMS code has been designed with Joad balanc
ing facilities in mind [TRE 97], there is no such support in 
its current version. 

Portability has also been a main target for various designs. 
Some authors discuss software techniques aimed at enhanc-
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ing portability of atmospheric codes, especially across par
aliei architectures [SAT 97]. [WAL 97]. This includes the 
ability to maintain a single model to run on diverse comput
ing platforms. In this regard, RAMS has fully achieved its 
goal: it is available as a single source code, which can be 
used both on sequential and on parallel systems from a vari
ety o f vendors. 

Because high performance is the main motivation for 
the use of paralle l systems, performance analysis is an ac
tive arca of research in the parallel computing community. 
While the current state of the art comprises real-time per
formance optimization of heterogeneous systems [REE 98], 
post-mortem analysis techniques remain important to pro
vide the user with valuable information about program ex
ecution on existing homogeneous systems. The instrumenta
tion and analysis techniques that we developed in this work 
were based on our experience with the Pablo system [REE 
93]. Although Pablo provides a powerful infrastructure, 
ou r technique attained much lower instrumentation overhead, 
and fully met our requirements of exposing criticai perfor
mance issues in RAMS. 

III . TOTAL PROGRAM PERFORMANCE 

In this work, we analyzed RAMS version 4.26. This ver
sion comprised a complex set of procedures written mostly 
in Fortran77 , with a few routines in C. The part of the code 
where numerical integration is performed contains more than 
36,000 I ines of source code, spread across more than 50 files. 
The original program was built to run on parallel machines 
with either the PVM or MPI communication environments. 
In our experiments, we havc always used MPI only. 

The actual configuration o f the desired execution is im
plemented through a configuration file previously created by 
the user. This ascii file, named RAMSIN, defines the data 
set, size o f the grid representing the atmosphere, integration 
timesteps, etc. It is also in this file that the user selects which 
physical phenomena will bc simulated. There are flags, for 
example, to control the extent of cloud microphysics simula
tio n. 

A. Code Structure 

The parallel RAMS code has a master-slave structure: 
there is a master process that does the initia lization, reading 
input data and dividing the work among slave processes. At 
the end, the master coÜects results from slaves and writes the 
data to output files. 1 SI ave processes perform the numerical 
integration, simulating the state of the atmospherical entities 
(temperature, wind, etc.) at each point of a 3-D grid repre
senting the atmosphere. The simulation is conducted for a 

1 The recording of panial results is also available, and is sclected by ap· 
propriate commands in the RAMSIN file. 

TABLEI 

NUMB ER OF GRID COLUMNS ASSIGNED TO SLAVE PROCESSES 

Number Ratio 
ofSiaves Smallest Grutest Great./Small. 

I 6084 6084 1.00 
2 3042 3042 1.00 
3 2028 2028 1.00 
4 1521 1521 1.00 
5 1175 1269 1.00 
6 975 1053 1.08 
7 825 897 1.09 
8 725 8 10 1.1 2 
9 625 729 1. 17 

lO 575 648 1.13 
11 525 580 1.10 
12 475 540 1.14 
13 427 5 13 1.20 
14 399 460 1. 15 
15 375 440 1.17 

certain number of timesteps, as programmed by the user in 
the RAMSIN control file. 

Parallelization of the work across processors is imple
mented in a domain-decomposition fashion: cach slave pro
cess is assigned to a 3-D sub-grid above a given arca on 
Earth's surface. In the current RAMS version, such areas are 
rectangular. RAMS tries to ensure that the various processes 
receive sub-grids with nearly the same number of vertical 
columns; this is difficult to achieve in some cases, causing 
potential performance problems, as we will show. 

Assuming a grid with 80x80x35 points, Table I shows the 
resulting smallest and greatest numbers of vertical columns 
assigned by RAMS to any slave process, as a function of the 
number o f slaves. As one can see, thc difference between the 
numbers o f assigned grid columns is often larger than I 0%, 
and can be as large as 20%. This means that a given slave 
wi ll receive 20% more columns to process than anothcr one. 

B. Speedup 

An important feature of any parallel program is how per
formance improves as more processors are addcd. In RAMS, 
we always map each master or slave process to an exclusive 
processar; thus, the processors do not have to be timeshared 
between RAMS processes. Because a li the program UO is 
performed solely by the master, and occurs only at a few 
points across program execution, the slaves spend most of 
their processing time computing or exchanging data among 
them. Figure I shows RAMS speedup on PAD,2 for a data 
set comprising an 80x80x35 grid and an integration period 
of six hours, corresponding to 480 timesteps. 

The speedup curve for the current RAMS version shows 
good performance for small numbers of processors. There 

2The PAD system (Processador de Alto Desempenho [BER 99]). man
ufactured by Elebra, is a Beowulf class parallel machine, comprising dual 
Pentium-11 boards intcrconnected by Myrinet. 
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Fig. I. RAMS Spcedup on PAD 

is, however, a decrease in efficiency as the number of pro
cessors grows. This indicates that we might have a serious 
performance problem when we port the program to system 
configurations with larger numbers of processors, as origi
nally intended. 

IV. DETAILED PERFORMANCE ANALYS IS 

Understanding the main causes of inefficiency is essential 
to optimize a parallel program and achieve good scaling with 
the number of processors. However, for a complex cede like 
RAMS, therc are many optimizing possibilities, comprising 
varying degrees of both implementation effort and improve
ment return. Selecting the best aspect to be optimized bc
comes nearly impossible without a detailcd analysis of pro
gram behavior during a real execution. 

In the process of analyzing RAMS performance, our first 
step was to conduct a series of experiments where we instru
mented the code and measured its performance under varying 
system configurations. 

A. Insrrumentation Infrastructure 

There are many instrumentation packages available, with 
different leveis o f capability and portability [DER 98), [HOL 
96) . Many of these packages, however, either are limited to 
specific platforms or languages, or employ tcchniques that 
are more suited to systems with very high numbers of pro
cessors. Our emphasis was to kccp instrumentation intru
sion low, yet being ablc to observe RAMS behavior in detail 
on systems with small and medium numbers of processors. 
Thus, we decided to build our own instrumentation infras
tructure, such that we c·ould make it as capable as we needed 
and still meet our low intrusion requirements. 

We developed a generic instrumentation tool that is able to 
track computation and communication events during execu
tion of the underlying program. The current version of our 
tool operates completely by software, although we envision 
expanding it to use hardware monitoring resources avai lable 
in modem microprocessors. By using MPI's profiling inter-

face [PAC 97), we are able to trace communication events 
without changing a single line in the source program; ali that 
is required to create an instrumented executable is to relink 
the RAMS object files. 

For code fragments with pure computation, we used a 
facility that already existed in RAMS (structure acctimes), 
which accumulates the time spent inside each meteorologi
cal functionality for every simulation timestep. Ali we had 
to change in the RAMS source code was to add one line, at 
the end of the timestep, with a tracing call to record thc set 
of such durations. 

In our tracing scheme, each processar produces an individ
ual trace file that can be processed after the end of execution. 
We developed scripts and programs that read those trace files 
and compute various statistics about the execution. We also 
planto create programs to transform these traces into the for
mal of other existing performance analysis tools, such that 
we can use the visualization facilities of those tools in the 
future. 

To keep intrusion as low as possible, our tool stores trace 
data in a memory buffer, and postpones writing to the trace 
file until the end of the execution, or until the buffer gets 
full . Practical experience with RAMS has shown that even 
with moderate buffer sizes (around 2 MBytes), dumping a 
full buffer to disk prior to the end of execution rarely hap
pens. Also, our expectations of low tracing overhead have 
been fully achievcd: in ali conducted experiments, an instru
mented execution took at most O. 7% more elapsed time than 
the corresponding execution without instrumentation. 

B. Observed RAMS Performance 

We started our experiments by executing an instrumented 
version ofRAMS on six PAD processors, with one processar 
running the master process and five processors running slave 
processes. We used the same data setas before, with a grid 
of 80x80x35 points anda simulation of six hours. After ex
ecuting the program and obtaining the corresponding traces, 
we processed them to extract performance data. 

Figure 2 illustrates the type of information produced by 
one of our analysis programs. It shows communication data 
collected from the trace of the first slave process (running 
on processar P I). In this figure, for each MPI function , we 
present (in parenthesis) the number of times the function was 
invoked, and the accumulated time inside that function for 
the complete execution. 

In the RAMS code, communication between a slave 
and the master is implemented with blocking MPI func
tions (MPLSend,MPI...Recv), while communication among 
the slaves is implemented with nonblocking functions 
(MPL.Isend,MPL.Irecv) followed by MPLWait. Thus, one 
can see from the data in Figure 2 that most of the communi
cation time in this processar corresponds to waiting for mes
sages from slave P2. In fact, slave processar Pl exchanges 
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Trace File: Trace_1.bin 
Total Times (sec): 

MPI_Send (570) : 2.272 128 
MPI_Recv: (182) 23.342901 
MPI_Isend: (5760) 2.088392 
MPI_Irecv: (5760) 0.13 4289 
MPI_Wait: (17280) 97.233113 

Wait-dummy: (5760) 0.082852 
Wait- isend: (5760) 0 .079963 

to P2: (2880) 0.04968 4 
to P4 : (2880) 0 . 030279 

Wait-irecv : (5760) 97.070298 
By Source- Processor: 

from P2: (2880) 93 . 010 45 6 
from P4 : (2880) 4 . 059842 

By Msg-Tag: 
tag=20001 (9601 0. 44 394 9 
tag=11000 (960) 51.792250 
tag=10004 (1920) 37.097457 
tag=10005 (960) 0.533148 
tag=10006 (9601 7.203494 

MPI_Barrier : (4) 29 . 912332 
Total Prog: 1025.367786 

Fig. 2. lnformation extracted from RAMS crace. 
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Fig. 3. RAMS domain decomposition with 5 slaves. 

messages with two neighbors, P2 and P4, as indicated by the 
domain decomposition in Figure 3. This figure also shows 
the number o f grid columns assigned by RAMS to each slave. 

Using another analysis program, we can inspect how much 
time the slave processors spent on the computation of mete
orological functionalities. We can do this both in a func
tionality by functionality basis, or in a collective form for ali 
functionalities. Table II shows the tive functionalities wi th 
the largest time contributions, as well as the total computa
tion time for a li functionalities. As expected, slave proces
sar P2, which received the Iargest number of grid columns 
(see Figure 3), had the greatest computation time. Mean
while, slave processar Pl , containing the smallest number of 
grid columns, had the smallest computation time. 

One of the most importan t uses of trace data is to ana-

TABLEII 

RAMS COM PUTATION TrMES (SECONDS) FOR SLAVE PROCES SORS. 

I Functionality 11 PJ P2 PJ P4 PS 
ACOUSTIC 172.33 190.90 178. 13 179.61 179.04 
DIFFUSE_2 172.41 1&6.53 168.73 178.61 178.97 
ADVECTv 145.33 162.56 149.49 151.28 150.77 
ADVECTs 85.43 94. 11 87.24 91.02 90.91 . 
DIFFUSE_1 63.60 69.63 6 1.68 67. 17 66.95 

Ali 
Functiona1ities 866.97 945.20 872.22 902.41 901.18 
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Fig. 4. Computation times across RAMS iterations. 

lyze the dynamics of program execution. As an example, 
we can check how the total computation times, presented at 
the bottom o f Table II, are divided along the execution. Fig
ure 4 presents the computation times for the slaves at every 
timestep ofthe integration. This same kind of analysis can be 
carried out for any o f the individual functionalities. By doing 
that, we found that the peaks in Figure 4 are due to the RA
DIATE functionality: it is activated only at a few timesteps, 
as programmed by the user in RAMSIN; when it is active, 
however, it has a d uration that is larger than any other func
tionality. 

C. Data Set Variations 

Our next step in observing RAMS performance was to 
modify the input data set. In particular, we decided to re
quest a higher levei of microphysics analysis employed by 
the program. With that higher levei, a wider variety of phys
ical phenomena is considered during the simulation. 

Execution of RAMS with the same grid as before, under 
the new microphysics levei, produced the data presented in 
Figure 5. These plots show the computation times for each 
slave processor.3 There are at least two features in these 
plots that make them remarkably different from the data in 
the Iower part of Figure 4: the shape of the curves and their 
relative positions along the execution. 

Beca use o f microphysics processing, ali the slave compu
tation times in Figure 4 grow in the first half o f the execution. 
After that, most of them tend to assume a nearly constant 
v alue, although ata higher levelthan in Figure 4 . The rei ative 
positions o f some of the curves change across the execution. 
Meanwhile, one of the slave processors (P3) remains always 
much below the other slaves. 

Ali these varying features clearly indicate that micro-

3 The computation times in Figure 5 include only functionalities that are 
ac1ive on every timestep. Thus, functionalities like RADIATE are not 
represented. 
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Fig. 5. RAMS computation times with microphysics. 

physics processing introduces a degree of variability in the 
execution. There are significant differences between the 
computation times of certain slaves (of more than 20% in 
some cases). Those differences are expected: regions of the 
atmosphere containing clouds will require more processing 
work than regions where no clouds exist. This fact represents 
a potential source of load imbalance between processors, as 
confirmed by Figure 5 . We will return to this point in §V-C. 

V. DIRECT10NS FOR 0PT1M1ZATION 

Given the observed RAMS behavior, we now show pos
sible directions to be followed as an attempt to optimize its 
per f orrnance. 

A. Master Process 

We start the exploitation of optimization directions by 
understanding how the master process spends its execution 
time. Table III shows the components of master's execution 
time for two configurations of the input data set and for tive 
and fourteen slavc processes. Contigurations labeled "Reg
ular" are the ones with a lower levei of microphysics. Con
tigurations labeled "Micro" stand for a higher levei o f micro
physics. 

Mastcr 's computation starts by reading problem data and 
computing domain decomposition (Table III row "Initializa
tion"). It follows by sending to the slaves problem data 
and the domain partition they should compute (Table III row 
"Master sends data"). In sequence, the master waits while 
slaves compute during timesteps that do not require output 
(Table III row "Siaves compute"). If the current timestep 
requires output (a user specified input argument), then the 
master collects slave's results, outputs them to appropriate 
files and restarts slaves computation (Table III rows "Siaves 
send results" and "Interrnediate 1/0"). At the end, the master 
outputs final results and finalizes the computation (Table III 
row "Final data/trace 1/0"). Master-slave communication at 
input/output timcsteps is barrier synchronized (Table III row 
"Barrier synch"). 

TABLE 111 

COMPONENTS OF RAMS MASTER EXECUTION TIME, IN SECONOS. 

5 Slavcs T 14 Slavcs 
Phase Kegu ar Micro 1 Regu ar Micro 

lnitialization 26.83 52.38 26.70 47.53 
Master sends data 2.30 2.97 5.54 5.83 
Barrier synch 0.04 0.04 0.08 0.08 
Slaves compute 967.22 2317.22 399.00 897.32 
Slaves send results 2.46 4. 10 1.20 3.07 
lnterrnediate UO 24.04 87.25 25.09 43.30 
Final data/trace UO 22.70 51.82 42.86 62.89 

Table III accounts exactly for ali master's execution time 
in ali cases. Instrumentation interference in cxecution times 
is restricted to the final row, where trace output is perforrned. 
Due to this interference, we neglect the values presented at 
that row. 

There are two clear messages from Table Ill. First, execu
tion time is dominated by the slaves computation (minimum 
o f 86,5%, maximum o f 94.3% over ali cases). Consequently, 
that is where optimization efforts should be centered. The 
second most important factor is input/output (minimum of 
4.7%, maximum of 10.6%), which is entirely perforrned by 
the master. 

Optimization o f RAMS input/output execution time is, for 
us, an open problem. One obvious solution is to use parallel 
1/0. But there are serious doubts that a portable and efficient 
(across a li target machines) implementation exists. 

To improve RAMS efficiency without loosing portability, 
an intermediate solution to the 1/0 problem isto overlap slave 
computation with master 1/0. That requires detaching the 
slave computation from the master computation as much as 
possible. A solution that increases slave's intelligence is cur
rently under study. lts impact on the execution time clearly 
increases with the number of processors, since it alleviates 
the master-slave dependency. 

B. Slave Processes 

We now concentrate on slave computations, trying to ex
plain the numbers at row "Slaves compute" in Table Ill. We 
conducted a detailed analysis using trace files from slaves. 
From those files, we extracted computation timings and se
lected the events where slaves communicate with each other 
and wait for actions of other slaves. 

The summation of computation times plus communication 
and waiting, in the traces from slaves, accounts for 99.76% 
to 99.93% of the "Siaves compute" row in Table III. That 
is impressive, since slave and master traces are independent. 
It also shows that we can confidently explain the data in Ta
ble III by just looking at slave behavior. For example, in the 
case of tive slaves with high microphysics, our slave traces 
account for23 I 5.7 ofthe 2317.2 seconds previously reported 
in Table Ill. 
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Figure 6 shows how each slave spends its execution time, 
in the case o f tive slaves with high microphysics. Again, this 
is the parto f the slave 's execution time that is independent o f 
the master's execution. For example, the time where slaves 
wait while the master performs I/0 is not reported. 

Each slave spends most of its time computing, and then, 
waiting for data originated at neighbor slaves. Communica
tion time is negligible - it averages 0.22% of the accounted 
time. This is a c lassical case o f load imbalancc. The variation 
of computing times among the processors shows that load is 
far from beeing perfectly distributed. Based upon this analy
sis, a better load balancing strategy is a strong candidate for 
program optimization . 

C. Load Balancing 

We carefully studied the strategy to improve load balanc
ing. A better static load balance strategy was tirst considercd, 
since it is easier to implement than dynamic load balance. 
But Figure 5 shows that the execution time of each slave 
processor varies with the timestcp. That is due to thc dy
namic naturc of the meteorological phenomena being mod
eled. as we explained before. Since one cannot predict where 
the hcavy load will be located as the computation evolves
one should know where the meteorological phenomena that 
causes the load wi ll go, and that is exactly what RAMS com
putes - it is impossible to predict the best possible static 
load distribution scheme. Consequently, one should consider 
dynamic load balancing. 

But what are the gains in each case? Is it worth ali the ef
fort to implement dynamic load balancing? To answer these 
questions, we developed a program that simulates the exe
cution time behavior of RAMS slaves. It predicts the wall 
clock execution time of every slave at each timestep, given 
the computation time of each slave at each timestep and the 
slave's communication graph. It is a simple calculation: the 
wall clock time at each slave at the end of a timestep is 
the wall clock time of this slave at the end of the previous 
timestep, added with computation time of this slave at the 

current timestep, plus a delay due to load imbalance. The 
load imbalance delay is how long this slave waits, at the end 
of a given timestep, for data from other slaves that are not 
ready to send data yet (because they are still computing, that 
is, their wall clock value at the moment of data transmission 
is greater than this slave's current wall clock value). The 
communication graph stores information about which slaves 
communicate with any given slave. 

This simulation procedure is a grossly simplitied model of 
the slave's execution time. In RAMS, communication among 
slaves is spread over the timestep; in our model, communi
cation among slaves is deferred to the end of the timestep. 
In RAMS, two slaves may communicate many times per 
timestep; in our model , there is at most a single communi
cation among two slaves per timestep. Even with such a sim
plification, simulation results are meaningful. Wall clock val
ues obtained from the simulation differ from measured wall 
clock values by a constant factor in each case. That differ
ence is due to the portion o f the waiting time that is not con
sidered by the simulation model. Our simulation captures 
8 1% of the slaves' waiting time in the ' Regular' case with 
tive slaves, 64% in the 'Microphysics' case with tive slaves, 
47% in the ' Regular' case with fourteen slaves and 70% in 
the ' Microphysics' case with fourteen slaves. 

The main power of simulation is that one can forecast 
program behavior with static or dynamic load balancing 
schemes without actually implementing them in the real 
code. Any load balance strategy will change computation 
time. Givcn thc observed computation times, onc can ap
proximately state what will be the computation times when 
a particular load balance strategy is applied. By assuming 
these new computation times in the simulation model, one 
can obtain an approximation of the slaves' wall c lock time 
under that particular strategy. Consequently, one can foresee 
and compare the benetits of different strategies. We proceed 
by explaining how each strategy was implemented and show 
our simulation results. 

C. l Static Load Balancing 

What will be the total computa tion time, on each slave, 
when a perfect static load balance strategy is implemented? 
lf the load balance is perfect, it means that the original do
main is partitioned in such a way that a li slaves end up with 
exactly the same total computation time. Assuming that the 
overall computation time will not vanish ( or be created) by 
moving a set of vertical grid columns from one slave to an
other, the sum of total computation times across ali slaves in 
the static load balance case should be the same as in the avail
able measured execution. Thus, the total computation time o f 
a slave in a perfect static load balance execution should be the 
average, over ali slaves, of the measured computation time. 

Given the predicted total computation time of each slave 
under perfect static load balance, the next problem is how 
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Fig. 7. Computation times in RAMS with static load balance. 

to predict its computation time at each timestep of the exe
cution. We first compute a multiplication factor that, when 
applied to the measured total computation time of a slave, 
produces the perfect static Joad balance. Once that factor is 
known, it is applied to the measured computation times of 
each timestep for this slave. 

Wc inserted the computation times obtained in this way 
into the simulation procedure, for the case of five si aves with 
high microphysics. Table IV reports simulation results and 
measured original data. It shows that static load balance de
creases wall clock execution time, by composing improved 
computation times with reduced delays. Computation times 
are perfect, but there still exists a delay at each slave, dueto 
waiting. 

To understand the presence of delays under the perfect 
static Joad balance situation in Table IV, one must consider 
that the amount of computation at each grid point changes 
wi th time. We can see this variation in Figure 7, which 
shows the new computation times assuming perfect static 
Ioad balance. Although the sum of computation times over 
ali timesteps is now constant across slaves (see Table IV), at 
a fixed timestcp computation times vary from slave to slave. 
This difference generates delay at the end of each timestep. 

Comparing Figures 7 and 5 (that is, perfect static load bal
ance against original data), one can see that perfect static load 
balance packs slave computation times closely. But it also 
shows the need for dynamic load balancing, due to the varia
tions of computation times across slaves along the timesteps. 

TABLEIV 

TIMES (SECONDS) FOR STATI C LOAD BALANCE IN RAMS. 

11 Original Run Static Load Balanc~ 

11 omp Wait Wall Comp 1 Watl Wall 

Pl 2129.09 88.25 22 17.34 2054.78 74.02 2128.81 

P2 2165.25 52.08 2217.34 2054.78 74.02 2 128.81 
P3 1728.58 488.75 2217.34 2054.78 74.02 2128.81 
P4 2072.93 144.40 2217.34 2054.78 74.02 2128.81 

P5 2178.06 39.27 2217.34 2054.78 74.02 2128.81 

TABLEV 

EXPECTED EFFECT OF RE-BALANCING ON RAMS. 

I lnt~rval I Wall Clock Tim~ (s) I 
original 2217.34 

240 2188.57 
200 2168.75 
160 2156.53 
120 2135.95 
80 2117.08 
40 2093.78 

I 2118.95 

C.2 Dynamic Load Balancing 

With dynamic load balancing, slave domains are rear
ranged during execution, according to a Joad imbalance 
metric. The idea is to measure load imbalance at certain 
timesteps. Whenever this measured value exceeds a certain 
threshold, the domain is re-partitioned over slaves to evenly 
distribute the computation. 

We simulate the effect of domain re-partitioning at a given 
timestep by multiplying computation times of the remaining 
timcsteps by the re-partitioning factor. By applying this pro
cedure at evenly spaced timesteps, we simulate dynamic Ioad 
balancing. It is important to observe that we do not account 
for the cost o f re-partitioning. In other words, our cstimate is 
optimistic. 

Table V shows how the slave 's wall clock time varies with 
the frequency o f re-balancing. The column Jabeled 'Interval' 
reports the number o f timesteps in which a certain partition
ing remains unchanged. One can see from the data in Table V 
that there is a continuous decreasing trend in exccution time 
as the frequency o f re-balancing increases. until re-balancing 
is performed at every timestep. At this point, wall clock time 
increases; there are two reasons for this phenomena, both due 
to the fact that the computation time in the next timestep is 
corrected by the re-balancing factor o f the previous timestep. 

The first rcason is the wild variation of computation time 
per timestep due to the processing o f the RADIATE functio n 
(remember, from Figure 4, that RADIATE is active only at 
some timesteps). The computation time in a timestep imme
diately after the execution o f RADIATE was corrected by the 
variation of computation time under RADIATE. Second, and 
most important, o ne should consider the history of computa
tion times in previous timesteps to extrapolate future behav
ior, instead of simply assuming that the next timestep will be 
similar to the previous one. 

Suppose we could solve these problems and had a mech
anism that perfectly predicted computation times in future 
timesteps. In that case, what would be the total wall clock 
time? Since we have ali computation times, we could sim
ulate an oracle. That is, at any timestep, we know the com
putation times of slaves in the next timestep, and thus, we 
could compute and use a perfect re-balancing factor. Since 
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we are using dynamic balance, this re-balancing factor would 
change on every timestep. 

We simulated this procedure, named "Dynamic Balanc
ing with Oracle". It results in a total computation time o f 
2054.78 seconds. Not surprisingly, this is the same compu
tation time as with the "Perfect Static Load Balancing" case. 
However, now there is no delay and wall clock time is the 
same as computation time. 

VI. CONCLUSION ANO FUTURE WORK 

Wc presented an experimental performance analysis of the 
current parallel RAMS version. This analysis was based on 
instrumented executions of the program, detailed analysis 
of obtained traces and simulation of possible optimization 
schemes based on load balancing. By using the technique of 
event tracing, we were able to capture low levei information 
on the dynamics of program execution, and use such infor
mation to locate and quantify criticai performance issues. 

Our instrumentation and simulation infrastructure allowed 
us to restrict the effort of improving parallel RAMS perfor
mance to two directions: 

I. Overlap master's 110 with slave computation. That re
quires increasing the intelligence of the slave, imple
menting a distributed scheme to replace the current mas
tcr's centralized control ; 

2. Select dynamic load balance over an improved static 
load balance. Within dynamic load balance, the extrap
olation of future computation times across timesteps is 
crucial. due to the dynamic nature of load distribution, 
originated by the spatial and temporal traveling nature 
of the atmospheric phenomena being modeled. 

The same infrastructure allows the determination of an up
per bound on wall clock time reductions without actually im
plementing each strategy. By overlapping master's 110 with 
slave computation, we can reduce wall clock time in the case 
of five slaves with high microphysics by around 146 seconds 
(adding selected cntries of Table III). On the other hand, 
implementing a perfect dynamic load balancing scheme can 
reduce exccution time by at most 163 seconds.4 

Our future work includes improving our execution time 
model, by spreading slave communication ovcr the timestcp, 
instcad o f the current concentration at the end o f the timestep. 
lt also includes model validation, whenevcr a dynamic load 
balancing schemc is available for RAMS. Meanwhile, we in
tend to explore hardware monitoring techniques to collect 
performance information that is not obtainable by software 
based approaches. 

4 This is achieved by subtracting, from the 'originru' execution time re
poned at Table V (22 17 seconds), the execution time obtained with a per
fect load balancing scheme (2054 seconds). which cannot be bener than the 
oracle. 
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