TURBULENT COEFICIENTS IDENTIFICATION UNDER CONVECTIVE AND NEUTRAL CONDITIONS
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ABSTRACT: An inverse analysis is used to identify the vertical eddy cofficient. The inverse solution is performed minimizing an objective function: the square difference between experimental and model data added to a regularization function. Three different optimization methods are utilized. The inverse methodology is tested with synthetic data corruped with white Gaussian noise.
RESUMO: Uma análise inversa é realizada para identificar o coeficiente de difusão vertical. A solução inversa é obtida minimizando uma função objetivo, a diferença quadrática entre dados experimentais e do modelo matemático, associados a uma função de regularização. Três métodos de otmização são utilizados. A metodologia inversa é testada com dados sintéticos perturbados por um ruído branco gaussiano, simulando dados experimentais.

INTRODUCTION


Turbulence terms can be represented by Reynolds fluxes. The process to parameterize the Reynolds tensors is called the closure problem. In the first order closure, turbulent fluxes are given by the product between the gradient of the mean quantity and an eddy diffusivity, or diffusion coefficient. Turbulence is always present in the Planetary Boundary Layer (PBL), where several stability conditions are found: convective, neutral, and stable. There are many parameterizations eddy diffusivity. Degrazia et al. (2000) used the Taylor statistical diffusion theory, and the observed spectral properties [where a linear combination of the two turbulent forcing mechanisms (shear + buoyancy) (Frisch, 1995) is assumed] to estimate the eddy diffusivities. These parameterizations give continuous values for the PBL at all elevations 
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 is the convective, neutral or stable PBL height, 
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 is the aerodynamic roughness length, and 
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 is the Monin-Obukhov length.


Campos Velho et al. (2000) have suggested a methodology to estimate the eddy diffusivity using numerical procedures. The methodology uses an implicit inversion technique for determining the eddy diffusivity by a numerical scheme. The inverse problem is formulated as an optimization problem, where the objective function is defined as the least-squares fit between model results and experimental data. A stabilizer (or regularization) operator is added to the objective function with help of a Lagrange multiplier (also called regularization parameter). Iteration proceeds until objective function converges to a specified limit value. Synthetic data with Gaussian white noise corruption are used to simulate experimental data.


In this work, three different optimization methods are employed to obtain the vertical eddy diffusivity. The optimization methods are, quasi – Newtonian, Levemberg–Marquardt (deterministic methods), and Simulated Annealing (a stochastic search method). 

VERTICAL EDDY DIFFUSIVITY


Accounting for the current knowledge of the PBL structure and characteristics, Degrazia et al. (2000) have derived parameterizations for wind velocity variances (
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). This parameterization is obtained from the Taylor statistical diffusion theory; observed spectral properties, where a linear combination of the two turbulent forcing mechanisms (shear + buoyancy) is assumed (Frisch, 1995), and the value of the wavelenght associated to the energy containing eddies. These parameterizations give continuous values for the PBL at all elevations 
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 is the PBL height, 
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 is the aerodynamic roughness length and 
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 is the Monin-Obukhov length. The general expression to diffusion coefficients (
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where 
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 are the nondimensional molecular dissipation rate functions associated to buoyancy and mechanical productions, respectively, 
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  is the von Karman constant,   and 
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To construct turbulence parameterization from equation (1) it is necessary to have expressions for 
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 expressions for all wind velocity components can be derived. According to Kaimal et al. (1976), Caughey (1982), and Degrazia and Anfossi (1998),
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and
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so that
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For a neutral or stable PBL, 
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 for the neutral case (Wyngaard et al., 1974). Then, following Delage (1974), Stull (1988) and Sorbjan (1989), it is obtained:
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where 
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 is the frequency of the spectral peak in the surface for neutral conditions, 
[image: image46.wmf]G

 is the geostrophic wind speed, 
[image: image47.wmf]1

4

10

-

-

=

s

f

c

 is the Coriolis parameter and 
[image: image48.wmf])

5

.

1

(

2

1

)

/

1

(

a

-

a

-

=

L

h

z

L

 (Degrazia and Moraes, 1992) is the local Monin-Obukhov length. For a shear dominated stable boundary layer, 
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 (Hanna, 1968; Hanna, 1981); as a consequence of the Blackadar (1962) mixing length hypothesis (i.e., the asymptotic length scale 
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By considering 
[image: image61.wmf]03

.

0

/

)

(

0

=

*

G

u

 (Tennekes, 1982; Hanna, 1982), equation (16) can be written as
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It is important to emphasize the meaning of continuous parameterization for all stabilities  in the present paper is the following. At the same time and location stable and unstable conditions cannot coexist. Unstable and neutral effects may be jointly take into account due to the contemporary presence of mechanical and convective turbulence. Stable and neutral effects may also jointly be accounted for because of the competition between wind-shear generated turbulence and stabilising effects of stratification. Therefore, in unstable-neutral conditions the last term of equation (5) is set equal to zero, whereas in the neutral-stable conditions the term 
[image: image63.wmf](

)

c

i

m

f

*

1

 is set to zero.

For horizontal homegeneity the PBL dynamics is driven mainly by the vertical turbulent transport. Therefore, the present work ill focus on the vertical eddy diffusivity. In unstable conditions (
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When the shear production term is the only input to the reservoir of turbulent energy (neutral boundary condition or shear stable boundary layer, 
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), the vertical eddy diffusivity can be write as
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In figure 1 are ploted both vertical eddy diffusivity convective and neutral to zi=1000m, w*=2.0m/s, L= -10m, for convective case and zi=1000m, u*=0.8m/s, L= 10m for neutral case.
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Figure 1: Nondimensional vertical eddy diffusivity for instavel (
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ESTIMATION OF VERTICAL EDDY DIFFUSIVITY BY NUMERICAL PROCEDURES

As pointed out by Campos Velho et al. (2000), fully computational methods can be used to estimate some properties in turbulent flows. The inverse methodology is illustrated considering a one-dimensional pollutant dispersion model. The diffusion of passive scalars is given by mass conservation principle. A special case occurs in the dispersion of the instantaneous area sources. In this case, the diffusion equation can be simplified to:
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with following initial and boundary conditions
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where 
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 is the mean concentration to be measured, Kw is the vertical eddy diffusivity to be estimated, h is the height of the atmospheric boundary layer. Our numerical model consists of Eq. (8) numerically solved by central finite difference method in space and the explicit Euler method in time. The approximate solution is denoted by 
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Inverse Model

In order to establish the inverse analysis, it is assumed that measurements 
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 are available at i = 0, 1, …, Nz  vertical points, and at n = 1, 2, … , Nt  time steps. The vector 
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where the objective function is given by
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with ( begin a regularization function and ( a positive parameter, called Lagrange multiplier. The bounds li and ui are chosen to allow the inversion to lie within some physical limits. The least square difference between experimental data and the calculated values is represented by 
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The regularization operator can be expressed by Tikhonov scheme (Tikhonov and Arsenin, 1977):
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here 
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Another regularization technique is given by an entropic scheme (Campos Velho et al., 2000; Muniz et al, 1999; Ramos et al., 1999)
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with
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and rq(m) represents the m-th difference among the parameter vector. The function Sm attain its global maximum when all rq are the same, i.e., a uniform distribution with Smax=log(Nq), in contrast, the lowest entropy value Smin=0 is reached when all elements rq but one are set zero. This scheme is based on Jaynes’ criterium of inference (Jaynes, 1957), called maximum entropy principle (MaxEnt). 

Optimization Algorithms 

The optimization problem is iteratively solved by three different algorithms: the quasi­newtonian optimizer routine E04UCF, from the NAG Fortran Library (1995); the Levenberg–Marquardt optmizer routine DBCLSF, from the IMSL (two deterministic methods); and Simulated Annealing (stochastic method).

Quasi Newtonian

The minimization of the objective function (eq. 11), subject to simple bounds on 
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, is solved using a first-order optimization algorithm from the NAG Fortran library [13]. This routine is designed to minimize an arbitrary smooth function subject to constraints (simple bounds, linear and nonlinear constraints), using a sequential programming method. For the nth iteration, the calculation proceeds as follows.

1. Solve the direct problem for 
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4. Compute the search direction 
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Minimize
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6. Test the convergence; stop or return to Step 1.

Levenberg – Marquardt

The IMSL subroutinme DBCLSF uses a modified Levenberg-Marquardt methods of minimization and an active set strategy to solve nonlinear least-square problems subject to simple bounds on the variables. The problem is stated as follows:
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, are the lower and upper bounds, respectively. From given starting point, an active set S, which contains the indices of the variables at their bounds, is built. A variable is called a “free variable” if it is not in the active set. The subroutine then computes the search direction for the free variables according to the formula
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 is the Levenberg-Marquardt parameter, 
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 with respect to the free variables. The search direction for the variables in S is set to zero. The trust region approach discussed by Dennis and Schabel is used to find the new point. This process is repeated until  the optimality criterion established in subroutine DBCLSF is achieved. The active set is changed only when a free variable hits its bounds during an iteration or the optimality ocnditionis met for the free variables but not for all variables in S, the active set. In the latter case, a variable that violates the optimality conditions will be dropped out of S.

Simulated Annealing

This method is borrowed from materials science, where it is well known that to produce a solid in a low energy state (such as a perfect crystal), you first heat the system to a high temperature, and then slowly cool it. At any given temperature, the probability that a change in the structure with energy change 
[image: image112.wmf]E

D

 will occur is
[image: image113.wmf]min,1

E

kT

e

D

æö

ç÷

èø

, where 
[image: image114.wmf]k

is Boltzmann's constant and 
[image: image115.wmf]T

is the temperature of the system in degrees Kelvin. When the temperature is high, the system can change radically and many changes that do not lower the energy level are allowed. As the temperature decreases, fewer and fewer ‘bad’ changes are permitted, until finally a fairly optimal state is achieved. 

For a general optimation problem, an initial system is chosen and then iteratively optimized. During each pass, a generator of randon changes the configuration of parameters 
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is the ‘temperature’ of the system. 
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 is gradually decreased according to an ‘annealing schedule’ as more optimizations are applied, thus causing the system to gradually accept fewer and fewer ‘bad’ changes. 

RESULTS FOR VERTICAL EDDY DIFFUSIVITY ESTIMATION

In order to test the methods presented for estimating numerically the eddy diffusivity, some computer experiments were performed. The use of synthetic data is a standard procedure to test a methodology in inverse problems to emulate experimental data. Therefore, the synthetic data are obtained from a concentration computed in the forward problem added with random perturbation.

In all simulations the following discretizations were used (z = 10 m with Nz = 100, and  (t = 0.4 s with Nt = 1000. For meteorological parameters the following values were used: h = 1000 m; w* = 2.0 ms-1; u* = 0.8 ms-1 and L=-10m and L=10m to convective and neutral conditions, respectivaly.

For the estimation of the vertical eddy difusivity three levels of noise were used: 1%, 2.5%, and 5%. The results are presents for three differents optimizator rotine. For Simulated Annealing and Quasi-Newtonian, the MaxEnt regularization was used. The Levemberg Marquardt optimizator looking for the solution by a quadratic. Figure 2 shows the reconstrution for n points with Levember-Marquardt scheme. The reconstruction using quasi-Newtonian and Levembert-Marquart schemes were similar. The numerical values for regularization parameters for simulated annealing and quasi-Newtonian optimization methods are shown in Table 1. Figures 3 up to 8 show the inversion for different levels of noise for each optimization scheme under convective and neutral stability conditions. As expected, increasing the level of noise the inversion become poorer. 

Table 1. Numerical values for regularization parameters for convective and neutral condition.


Convective
Neutral

Optimization Method
Level of Noise
Level of Noise


1%
2.5%
5%
1%
2.5%
5%

Quasi-Newtonian
1.0x 107
8.0 x 106
9.0 x 107
9.0 x 107
1.5 x 107
6.0 x 107

Simulated Annealing
80
70
70
125
100
120

[image: image125.wmf]0

0.05

0.1

0.15

0

0.2

0.4

0.6

0.8

1

K

w

c

/w

*

z

i

z/z

i


Figure 2. Convective vertical eddy diffusivity estimation by Levemberg-Marquardt method for n sampled values: solid line (
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Figure 3. Convective vertical eddy diffusivity estimation by second-order maximum entropy regularization whit a quasi-newtonian optimizator: (a) noise 1%, with ( = 1.0 x 107, (b) noise 2.5%, with ( = 8.0 x 106, and (c) noise 5%, with ( = 9.0 x 107. Solid line:
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Figure 4. Convective vertical eddy diffusivity estimation by second-order maximum entropy regularization whit a Simulated Annealing optimizator: (a) noise 1%, with ( = 80, (b) noise 2.5%, with ( = 70, and (c) noise 5%, with ( = 70.
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Figure 5. Convective vertical eddy diffusivity estimation by Levemberg Marquardt optimizator using a quadratic function to estimate: (a) noise 1%, (b) noise 2.5%, and (c) noise 5%; solid line (
[image: image139.wmf]c

w

K

 given by Degrazia et al. (2000)), dashed line (
[image: image140.wmf]c

w

K

estimated).

[image: image141.wmf]0

0.01

0.02

0.03

0.04

0.05

0

0.2

0.4

0.6

0.8

1

K

w

n

/u

*

h

z/h

[image: image142.wmf]0

0.01

0.02

0.03

0.04

0.05

0

0.2

0.4

0.6

0.8

1

K

w

n

/u

*

h

z/h

[image: image143.wmf]0

0.02

0.04

0.06

0

0.2

0.4

0.6

0.8

1

K

w

n

/u

*

h

z/h


(a)


(b)


(c)

Figure 6. Neutral vertical eddy diffusivity estimation by Quasi - Newtonian optimizator: (a) noise 1%, with ( = 9.0 x 107, (b) noise 2.5%, with ( = 1.5 x 107, and (c) noise 5%, with ( = 6.0 x 107. solid line (
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Figure 7. Neutral vertical eddy diffusivity estimation by Simulated Annealing optimizator using a quadratic function to estimation: (a) noise 1%, (b) noise 2.5%, and (c) noise 5%; solid line (
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Figure 8. Neutral vertical eddy diffusivity estimation by Levemberg Marquardt optimizator using a quadratic function to estimation: (a) noise 1%, (b) noise 2.5%, and (c) noise 5%; solid line (
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In order to become clear the role of regularization parameter, Fig. 9 shows the estimation for several different (’s (under convective condition). Clearly, as ( ( 0 some spurious solutions (oscillations) appear in the inversion (Fig. 9a), for ( ( ( the optimization is only focused on the regularization term (see Fig. 9b). Good inversions are obtained with appropriate values for (, as it shows in Fig. 9d. An important feature is a good choise of the regularization parameter.

Many schemes have been proposed to find the value of  the regularization parameter which gives a fine balance between square difference and regularization terms. Some of these techniques are: Morozov’s discrepancy principle (Morozov, 1966; Bertero and Boccaci, 1999), the L-curve, and the generalized cross validation (Bertero and Bocacci, 1999). Here, the Hansen’s procedure (Hansen, 1992), essentially the maximum curvature of the L-curve, was used with good result. Figure 10 displays the L-curve for different Lagrange multipliers, for estimation with 1% of noise (in neutral condition). From the plot it can be seen that ( ( 9x107 is a good choise.
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Figure 10: Influence of the regularization parameter to 1% of noise in convective condition: (a) without regularization; (b) ( = 1.0 x 106; (c) ( = 1.0 x 107; (d) ( = 1.0 x 109.
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Figure 9: L-curve for reconstruction of eddy diffusivity with 1% of noise in neutral condition.
CONCLUSION

The methodology used for estimating the vertical eddy diffusivity was effective to produce nice reconstructions of this function whit three different optimization methods. The best results were obtained even for a high level of noise with quasi-Newtonian and Levembert-Marquartd optimizators, however the quasi-Newtonian determine a sampled function, instead of the Levembert-Maquartd that estimates just the coeficients for a quadratic fucntion.

In order to evaluate the performance of the methods, Table 2 presents the mean quadratic error for eddy diffusivity and concentration, and number of the interactions. The Levemberg Marquardt is the fastest method, and it presents good inversions, only considering a fitting curve. The quasi-Newtoniian is slower than Levemberg-Marquardt, but very good inversions are obtained, in addition, no functional form is assumed for the eddy diffusivity. The eddy diffusivity estimation using simulated annealing did not present good results,  and the method is the most expensive in terms of CPU-time. However, more study are necessary for a definitive opinion, mainly considering the SA-method,  because there are many free parameters that deserves a more extensive investigation. 

Table 2 - Mean Quadratic error in K and C and in interact number for Convective condiction.
Optimizator
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Interactions number


1%
2.5%
5%
1%
2.5%
5%
1%
2.5%
5%

Quasi-Newtonian
504.448
822.39
1239.66
0.302
0. 410
0.689
12739
12293
15246

Levembert-Marquart
436.239
397.919
396.607
0.219
0.222
0.254
73
68
78

Simulated Annealing
4025.106
4852.892
5665.467
0.062
0.078
0.280
208238
174104
216054

Table 3 - Mean Quadratic error in K and C and in interact number for Neutral condiction.
Optimizator
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Interactions number


1%
2.5%
5%
1%
2.5%
5%
1%
2.5%
5%

Quasi-Newtonian
11.670
10.161
17.206
0.226
0. 197
0. 383
14625
15604
14139

Levembert-Marquart
12.370
12.789
14.496
0.236
0.238
0.327
85
83
93

Simulated Annealing
85.412
83.265
132.759
19.541
20.345
22.588
331661
355146
296479
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