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RESUMO

Neste artigo, um modelo de interacao, entre um sensor de baixa
resolucdo com largo campo devisada abordo deum satélitede observacdodaterra, e
asuperficiedaterraéapresentado. O sensor ssmulado éobtido atravésdacomposicao
deum algoritmo desimulagdo digital por um sensor dealtaresolucédo e menor campo
de visada. Uma nova técnica de desenvolvimento de filtro digital é proposto para
aproximar um filtro Gaussiano ideal. O filtro resultante pode ser implementado em
qualquer platafor ma existente de processamento deimagens. Finalmente, doisretal-
hos deimagem, da maneira que eles seriam produzidos pelo SSR (Satelite de Senso-
riamento Remoto) daM ECB (Missdo Espacial CompletaBraasileira) apartir deuma
cena LANDSAT-TM (Thematic Mapper) sao apresentados como exemplo.



ABSTRACT

In this paper, a model of the interaction, between a large-field—
of—view low-resolution sensor on board an earth observation satellite, and the earth
surfaceis presented. The ssmulated sensor is obtained through the composition of a
digital ssimulation algorithm by a smaller field—of—view and higher resolution sensor.
A new digital filter design techniqueis proposed to approximate an ideal Gaussian
filter. Theresulting filter can beimplemented on any existing image processing plat-
form. Finally, two image patches as they would be produced by the SSR (Remote
Sensing Satellite) of MECB (Brazilian Complete Spatial Mission) from aL ANDSAT -
TM (Thematic Mapper) scene are presented as an example.
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1 INTRODUCTION

In order to evaluate the future images that would be produced by the
SSR (Remote Sensing Satellite) of MECB (Brazilian Compl ete Spatial Mission), animpor-

tant task isto perform some previous sensor simulations.

Thesimulated | arge—fiel d—of—view |ow-resol ution sensor isobtained
through the composition of adigital simulation algorithmwith asmaller field—of—view and
higher resolution sensor. The digital simulation algorithm consists in a batteries of linear

digital filters.

In this paper, we propose anew techniqueto design such linear digital
filters. Thistechniqueisbased on theassumptionthat theM TF (M odulation Transfer Func-
tion) of both sensors can be approximated by a centered Gaussian type function (Leger et
al., 1986). With this assumption, the 2D MTF of theideal simulation filter isGaussianand
simply characterized by two parameters. With these two parametersat hands, the proposed
design technique consistsin specifying the parameters of the smulation digital filter. The
digital filter is supposed to be the convolution product extended to n identical Moving
Average(MA) filterswhose coefficientsfollow aGaussian law. The parametersto be speci-
fied arethesize N of theimpul seresponse support of theMA filtersand the number n — 1 of
convolution products. These parameters must satisfy an inequality relation that derives
from the spread constraintsontheimpul seresponse of thedigital filter to bedesigned. Once
theparametersN and n are chosen, the coefficientsof theMA filtersare obtained by solving

a polynomial equation.

In Section 2, we present the sensor—earth surface interaction model.
The definition of some usual resolution parameters and their relationships are recalled.
Becausethe simulated sensor has awide field—of—view, the earth surface curvature hasto

be considered and the resolution parameter value changes from point to point.



In Section 3, we introduce the simulation process. This process con-
sistsinapplying linear digital filtersto theimages produced by ahigh resol ution sensor and
to derivethe pixel valuesof the simulated image by interpolation. Suchfiltersaretypicaly

non tranglation invariant and have adaptive finite impul se response.

In Section 4, we introduce the digital filter design technique.

Finally, in Section 5, we use and eval uate the abovetechniquethrough
the simulation of the sensor on board the SSR. For such sensor simulation, thedesignfilters

are applied to LANDSAT-TM (Thematic Mapper) images.

2 SENSOR-EARTH SURFACE INTERACTION MODEL

The sensor on board an earth observation satellite transforms any
earth sceneinto acollection of digital images. Wewill denote an earth sceneby f and adigi-

tal image by g.

2.1-SET OF EARTH SCENES

By aearth scenef, we actually mean an equival ent scene with respect
to a given spectral sensitive curve (Begni et al., 1986), that is, assuming that the sceneis
Lambertian, f can be seen ssmply asafunction from asurface S(representing the earth sur-
face) to R, the set of real numbers (a subset of which representing all the possible spectral
radiance values with respect to a given spectral sensitivity curve — one for each spectral
band of the sensor). Mathematically, wewritef [ RS . Fi gure 1 showsagraphical illustra-
tion of aparticular earth scenef. With respect to the point x on the earth surface S, the earth

scene f assumes the spectral radiance value f(x).



Fig. 1. Graphical illustration of a particular earth scene f.

2.2-SET OF DIGITAL IMAGES

A digital image g is afunction from a subset E of R?, the set of real
pairs, to R. A pair (y, g(y)) formed by an element y of E and the corresponding element g(y)
of R throughgiscalledpixel of g. Giventhepixel (y, g(y)), yiscaleditspositionand g(y) its
value. Mathematically, wewriteg [ RE Fi gure2 showsagraphical illustration of apartic-

ular digital image g that has as domain E arectangle of 772, the set of integer pairs. With

respect to the position y in E, the digital image g assumes the value g(y).

In Figure 2, thearray of black pointsrepresentsthe set E of pixel posi-

tions.
2.3—-SENSOR MODEL

By sensor model we mean amodel for the sensor—earth surface inter-
action. Themodel for the sensor isrepresented as a collection of functionsy;,i =1, ..., m,

where the it function v, transforms an earth scene f into an ith digital image ;.



Fig. 2. Graphical illustration of a digital image g.

For passive sensors, like the “ Thematic Mapper” (TM-LANDSAT),
the“HauteRésolution Visible” (HRV-SPOT) and the“ Satélite de Sensoriamento Remoto”
(SSR-MECB), if wedisregard thedigital conversion process, wecan assumethat eachv; is

the composition of a Sampling Process (SP) represented by ageometrical transformations
t; from R? to SwithaContinuousLinear Mapping (CLM) represented by afunction h; from

Sto RS, that is, for any earth scene f UJ 7S and any pixel positiony [ E,

g (v) = (W (DY) = [ fluh (U (y)du, =1, ..., m. D

S

Wewill denoteacollection of mdigital images produced by the sensor

by {g;}7 or simply {g;}. Figure 3 gives agraphical illustration of the sensor model.

A particular geometrical transformationt; , or ssimply t, mapsany pixel

positionyin E (O Rz) to the point t(y) on the earth surface S(see Figure 4 ). At each pixel
positionYy, it corresponds a given detector and agiven instant. The point t(y) isthe projec-

tion on the earth surface , through the sensor, of the center of such detector at that instant.
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Fig. 3. Sensor model.

Fig. 4. Graphical illustration of a geometrical transformation t.

A particular continuous linear mapping from RS torS , represented
by h;, or simply h, transforms an earth scenef into ablurred earth scene f°. In other words,

for any earth scenef [J ®S and for any xS

f(x) = [ f(u)h(u)(X)du. )
S



The blurred earth scene indicates how the sensor “see” the original

earth scene.

Thevalueat uin Sof hisafunction that maps any point x in Sto the

real value h(u)(x) (see Figure 5). The function his called adaptive point spread function of

, R

() along track

. <

across track

Fig. 5. Graph of the value at u of a particular adaptive point spread function h.
thesensor. The adaptive point spread function definesthe spatial resol ution of the sensor at

the earth surface levdl.

A particular function h(u) can beinterpreted asthe transformation of
anideal point scened,,, the Dirac function from Sto IR located at u, by the continuouslinear

mapping given by Expression (2), that is, for any x 0 S

h(u)(x) = [ 0, (V)h(v)(X)av. 3

S
The above sensor model is appropriate for large—field—of—view sen-

sors. Because of the sphericity of theearth, the sensor—earth surfaceinteraction model isnot



tranglation invariant. In other words, the transformation of anideal point sceneisposition

dependent and the point spread functions have to be adaptive.

Finally, from Expressions(1) and (2), we observethat at positionythe
pixel valueg(y) produced by the sensor issimply asampleof theblurred earth scenelocated
at 1(y),

g(y) = F(&(y))- (4)
We call detectorsline the smaller straight line segment that contains

all the detector centers and view plane the plane that contains the optical center p of the

telescope and the virtual detectorsline (see Figure 6.)

virtual detectors line

optical center p

view plane

Fig. 6. View plane.



In order to get atractable model for the sensor—earth surface interac-
tion, the earth surface will be assumed ellipsoidal, theview planewill containanormal at S
that passes through the optical center of the telescope, and the value at u of the adaptive
point spread function of the sensor will be derived from a separable real valued function

h'(u) defined on T, the tangent planeinu at S that is, for any x 0 S,

hU(u(¥) ifx0$,
h(u)(x) = 0 (5)

otherwise,

wherepistheoptical center of thetelescopeintheview planethat containsu (see Figure 7);

Fig. 7. Geometrical construction of §,(x) for a point x in the view plane.

where§, istheset of pointsx of Sthat are“visible” fromtheoptical center p (seeFigure7);

where s,(X) is the intersection between the straight line xp and the tangent plane T, (see

Figure 7).

Because of the drastically different scales between the ellipsoidal
earth surfaceand the spatial resol ution of the sensor, we can approximatethe earth surface S
around the point u by itstangent plane T,,. For that reason, wewill also call h' the adaptive

point spread of the sensor and will denote it ssimply by h.



The above separability assumption on h means that there exits two

functions h; (u) and h, (u) from R to i such that, for any uin Sand zin T,,,

h(u)(2) = hy (U)(z), (U)(2), (6)
where z; and z, arethe coordinates of the point zwith respect to the coordinate system with
origininuandformed by thetangentsinuat theal ong track and acrosstrack pathsdrawnon

S respectively.

The functions h; and h, are called 1-D adaptive point spread func-
tionsfor the along track and acrosstrack directions, respectively, and they define the spa-

tial resolution of the sensor for these two directions.
2.4 -PARAMETERSOF THE SENSOR MODEL

In this subsection, we recall the definitions of some usual resolution

parameters and their relationships.

Let usdenotesimply by hthevalueat u [ Sof any of both 1-D adap-
tive point spread functions. Wewill usetheletter H to represent the Fourier Transform of h.

For asymmetrical function h suchthat H(0) = 1, the value at u of the 1-D adaptive modula-

tion transfer function of the sensor for the chosen direction [H/H(0)| is simply H. For the
sake of simplicity, we will refer to h as a point spread function and to H asaModulation

Transfer Function (MTF).

Thevariance (using the Probability Theory terminology) of the func-

tion h, denoted by o?, isthe positive real number given by

o = ( [ (x — w)*h(x)dx)/( [ h(x)dx), (7)
R R
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where
u=( [ xh(xX)dx)/( [ h(x)dx). (8)
R R
Figure8 showsthestandard deviation o for agiven symmetrical func-
tion h.

TheFull Width Half Peak of thefunction h, denoted FWHP, isthe pos-

itive real number that satisfies (see Figure 8)

h(0
(FV\éHP, %) O graph of h. ®
A
R
- 12
i (0, h(0))
«— 0 —) (FWHP/2, h(0)/2)
<— FWHP
: »>
. 0 o R

Fig. 8. Definition of o and FWHP.

The Effective Instantaneous Field Of View of the function h, denoted
EIFOV, isthe positive real number that satisfies (see Figure 9)
(s=+ 1) O graph of H/H(0) (10)
2EIFOV ' 2 )
The attenuation factor of the modulation transfer function at half the

sampling frequency v for the chosen direction, denoted v, isthe real number that satisfies

(see Figure 9)
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A
R
0, 1
H/H(0) L ©.1)
1/(2EIFOV), 1/2
12 (1 ), 1/2)
v (v/2, )
~— 1/EIFOV —>
l I . >
-1/2 mo 0 1/2n0 v R
Fig. 9. Definitions of EIFOV and vy.
(5, 7) O graph of H/H(0). (1)

The sampling frequency v for the chosen direction is 1/0, where d is

thedistance between two consecutive sampl e positions along that direction (see Figure 10.)

0 0
8/21 8/2
r___ ___-i direction
| ° [} [} ° ° | —_—
!____ ____! under study
IFOV

Fig. 10. Detector array projection on a tangent plane at nadir.
If we assumethat h isa1-D Gaussian function with variance o, that
is,

h(x) = W exp( - 2%‘22) (xO R), (12)

then the function H is given by

H(y) = exp(— 2r%0%?) (yOR), (13)
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and we can establish, from Expressions (9)—(13), the following relationships between the
parameters o, FWHP, EIFOV and & (Banon,1990)

F\’\(’jHP = (8In(2))"? (= 2.35482), (14)

EIFQV - r2in(2)) 2 (= 2.66822), (15)
o

g = m(2In(Ly))™"? (= 2.16809 for y = 0.35). (16)

Expression (16) can still be written

1202
v = exp(— W . (a7

Table 1 givesthe numerical relationships between the above parame-

tersfor y = 0.35.

TABLE 1-RESOLUTION PARAMETERS RELATIONSHIPSIN THE GAUSSIAN

CASE.
o FWHP EIFOV S (v = 0.35)
o= - 0.42466 X FWHP | 037478 XEIFOV |  0.46124 &
FWHP = 235482 X0 - 0.88254 X EIFOV | 1.08613 x 0
EIFOV = 2.66822x0 | 1.13309 x FWHP - 1.23068 X &
S (v =035) = 2.16809xa | 0.92070 x FWHP | 0.81256 x EIFOV

If, for the chosen direction, the distance & between two consecutive
samplepositionsisequal to theinstantaneousfield of view, denoted IFOV, asshownin Fig-
ure 10, then we can establish from Expression (16) the following relationships between o
and IFOV

o = L2In(wy)) 2 IFov. (18)
T

In particular, for y = 0.35, from Table 1,
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o = 0.46124 % |[FOV. (19)
FWHP = 1.08613xFOV. (20)
EIFOV = 1.23068x |FOV. (21)

For both directions, the parametersy, o, FWHP and EIFOV depend
on the point u on the earth surface, and they define, in the neighborhood of u, the spatial
resolution of the sensor. The greater isy or the smaller are o, FWHP and EIVOF, and the

thinner is the spatial resolution.
25—-1FOVSDETERMINATION

For agiven u 0 S we are interested in finding the size IFOV, and
IFOV, of arectanglein thetangent planein u at Swhich projection on Sbest approximates

the detector projection on the earth surface (see Figure 11.) For this purpose, we will con-

o along track
detector projection A
ons rectangle in the
\ / tangent plane
m—l—_
across
IFOV, u > track
Y —
IFOV,

Fig. 11. Rectangle approximation of a detector projection onto the earth sur-
face (downward view).

sider the curvature of the Ssection in the view plane that contains u.
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We now consider thefollowing parameterswithin the view plane (see

Figure 12):

let q be the orthogonal projection of the optical center p onto the earth surface;
let r be the length of the segment up;

let d be the size of the square representing the detector shape;

let f be the focal length of the telescope;

let 6 be the view angle upq;

let c be the curvature center;

let 6, bethe angle ucq;

let r. be the curvature radius at u;

let h be the satellite altitude.

y
fop

. f y T, (tangent plane in u at S)
(\\%/’— 1
—"\

/

IFOV, length
9c

N\ curvature center ¢

IFOV, length

Fig. 12. Acquisition geometry of a pixel.
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From Figure 12 we can establish that

IFOV; =rcos(|6])(d/f) (from triangle uq.p), (22)
IFOV, = IFOV, cos(|0])/cos(|0] + 6,) (from the zoomed part of Figure 12), (23)
r=(r, + h)cos(|0]) — (r.2 — (r. + h)?>sen?(|6]))/> (from trianglesjpc ejuc), (24)
0, = arcsen(rsen(|6[)/r.) (from triangles ug.p e ug.c). (25)

In other words, under the Gaussian assumption and y = 0.35, for a

given u O S the parameters o, (u) and o, (u), in the expression of h(u)(2),

_ 1 _ 4 zy?
h(u)(z, ) = 2r0, (U)oU) exp( (201(u)2 202(u)2)) (z1,) 0T, (26)
are given by, from Expression (19),
0(u) = 0.46124x IFOV/, (27)
0, (u) = 0.46124 % IFOV,, (28)

where IFOV, e IFOV, are obtained from Expressions (22) to (25).
3 SIMULATION PROCESS
3.1 -VARIANCES PROPERTY IN LINEAR MAPPINGS COMPOSITION

Let hl and h2 be the adaptive point spread function of two sensors
called here Sensor1 and Sensor 2, respectively. Let us assumethat hl and h2 are such that,

for any u [ S there exists a unique function 7 (u) from Sto = such that, for any x 0 S,

h2(v)(x) = [ hi(v)(wWZ(u(X)du (vO9S). (29)

S

If 1° and f2° aretheblurred earth scene obtained by transformation of

the earth scene f through the continuous linear mappings represented, respectively, by hl
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and h2, then the above assumption guaranteesthat f2° can be derived from f1° through the

continuous linear mapping represented by 7. More precisely, for any x J S

f2°(x) = [ £1° (u) 71 (u) (X)du. (30)
S
Thisresult isillustrated in Figure 13 .

h2 (Sensor2)

|

]czb
CLM
f
h1 (Sensor1) ‘I (Continuous filter)
earth l 1
scene ﬂb fzb
CLM CLM

Fig. 13. Alternative option to obtain the blurred earth scene relative to Sensor2.
Let us approximate, as in Subsection 2.3, the earth surface Saround

the point vin Shy itstangent plane T, and |et us assume that there exists a unique function

#i, from T, to it such that, forany zO T,

h2(v)(2) = [ h1(v)(u)#, (z— u)du. (31)

Ty

Returning to the separability assumption of Subsection 2.3, Expres-
sion (31) also appliesto the 1-D adaptive point spread functions for each of the along and
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across track directions, that is, with the notational convention of Subsection 2.4, for any

zUO R,
h2(v)(2) = [ h1(v)(u)#, (z— u)du. (32
R
In other words, h2(v) istheresult of the convolution product of h1(v)
and 7

e

Let us assume that, in both directions and for both sensors, the 1-D
adaptive point spread function, say h, is*“centered” at v (v = (0, 0), with respect to the coor-
dinate system used in Expression (6)), that is, satisfies, for any v S

( [ uh(v)(u)du)/( [ h(v)(u)du) = 0. (33)
R R

In this case, in both directions, the solution 7, satisfies, for any

vOR,

( [ Zh, (2)d2)/( [ #,(2)d2) = 0. (34)
R R

Let 012, 627 and 52 bethereal valued functionsdefined on Sand such

that their valuesat vin Sarethevariances of thefunctionsh(v), h2(v) and7,,, respectively.

We have, forany v S

022 (v) = ( [

Zh2(v)(2)d2)/( [ h2(v)(2)d2) (35)
R

R

(from Expressions (7), (8) and (33))

= ( [ 2 [ h1(v)(u)%, (z — u)dudz)/( [ h2(v)(2)d2) (36)
R R R
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(from Expression (32))

=( [ h1(v)(u) [ Z%, (z— u)dzdu)/(( [ h1(v)(u)du)( [ 7, (2d2) (37)
It It It It

(by the distributivity property and a convolution property)

=( [ h1(v)(u) (52(v) + u?)du)/( [ h1(v)(u)du) (38)
R R

(from Expressions (7), (8) and (34))

=( [ hl(v)(u)“oz(v)du+[ uh1(v)(u)du)/( [ h1(v)(u)du) (39)
R R R
=o%(v) + 061%(v) (from Expressions (7), (8) and (33)) (40)

Therefore, from Expressions (35) to (40), we havethefollowing vari-

ances property, for any v S

02%(v) = B2(V) + 613(V). (41)

Expression (41) is actualy the Bienaymé equality (Loéve, 1955,
p.12) of the Probability Theory. From Expression (41), we seethat anecessary conditionto

guarantee the existence of the solution 7, in equation (31) is

012(v) < 02%(v). (42)

Furthermore, when h1(v) and h2(v) are two Gaussian functions, we

know (e.g., by using the convolution theorem of the Fourier Transform Theory (Jain,

1989)) that the solution 7, is also a Gaussian function.
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3.2—-CONTINUOUS SIMULATION PROCESS

L et Sensorl and Sensor2 be thetwo sensors of Subsection 3.1. Weare
now considering the simulation of Sensor2 through the composition of alinear filter with

Sensorl.

By assuming that the adaptive point spread function hl for Sensorlis
thesamefor all theimages, that is, it doesnot depend oni, and by using theresultillustrated

on Figure 13, we can derivethe continuous simulation processfor Sensor2 showninFigure

14.
1
hl ﬁj 121
! b !
f N Y 82; 182}
J
earth CLM CLM SP digital
scene images
collection
Continuous simulation process n

Fig. 14. Continuous simulation process for Sensor2.

The continuous simul ation processis based on the blurred earth scene

f1° relativeto Sensor1 and cannot bei mplemented unl essf1® isreconstructed fromitssam-

ples. In the next subsection we propose adigital simulation processthat avoidsthe explicit

reconstruction of f1°.
3.3-DIGITAL SSIMULATION PROCESS

In place of the continuous simulation process, we propose the digital

simulation process shownin Figure 15. Instead of the digital images collection{g2; }, the
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{y1;} {w2;}
f 1 {gl;} {1, w1y} 1] {g2;}
— i J
Sensor1 DSA
earth 2 calibrated - simulated
scene digital digital
images images

collection collection

DSA: Digital Simulation Algorithm

Fig. 15. Digital simulation process for Sensor2.

digital simulation process produces asimulated digital images collection denoted {g2; },

that should be a good approximation of {g2; }.

The simulated digital images collection is the result of the transfor-
mation of acollection of calibrated digital images produced by Sensorl through a Digital
Smulation Algorithm (DSA) which design depends on Sensor2 model.

Wewill denoteacollection of mcalibrated digital imagesproduced by

Sensorl by {(g1;, y1;)}’" and acollection of n simulated digital images produced by the

DSA by {£2} .

A calibrated digital image (g1, y1) isapair formed by adigital image
g1, produced by Sensor1 observing an earth scenef, and the function1 given by Expres-
sion (1) that transformsf into g1. In other words, for each calibrated digital image (g1, y1),
together with g1, we know the geometrical function t1 and the adaptive point spread func-
tion hl that participate in the definition of y1. In the digital simulation process, the cali-
brated digital images collection {(g1;, 1;)} is used by the DSA in place of the blurred

image f1°
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Let us denote by E1 and E2 the domains of the images produced by
Sensorl and Sensor2, respectively. The DSA for Sensor?2 is then given by, for any cali-

brated digital images collection {(g1;, y1;)}7T, anyy(E2andany j = 1,... n,

[ > > anwh ;)
i€l(y) veEl .
ifl.(y) =0
220=1 5 S h0y (43)
i€l(y) veEl

0 otherwise,
where |; (y) are the sets of indices given by
) ={i0{1 .. m:t2(y) OB}, (44)
where
B; = t1; (bounding rectangle in R? that contains E1); (45)

whereh;; are functions from E2 to rEL.

In other words, for any pixel positiony in E2, the digital simulation

algorithm produces the pixel valueg2; (y) of the simulated digital image from (if any) the

calibrated digital images (g1;, y1; ) that cover t2(y) in the sensethat t2(y) [l B; . Figure 16

showsapair i, j in such situation .

In Expression (43), thefunctionsh;; can be seen asadaptivediscrete
point spread functions of batteries of adaptive discretelinear filtersthat transform the digi-

REl

tal images g1; in into a digital image g2; in RE2 | For agiven y[JE2, any

j=1 ..nandanyill;(y), such functions are given by

hyj (V) =h, (v —v) (vOED, (46)
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(0, 0)

(0,0) M0
. o

bounding rectangle

Fig. 16. Geometrical datainvolved in the digita simulation agorithm.

wherey; ; are elements of E1 such that t1, (y; ;) is the nearest neighbor of t2; (y) among

t1; (E1) (the set of all the projections of pixel positions of g1;) as shown in Figure 16;
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where hy are functions from 72 to R that we call the local point spread functions,

Here, the use of the nearest neighbor ruleisconvenient becauseit cor-
respondsto an implicit use of azero order interpolator for the f2° reconstruction. Sincethe

most significant frequencies of f2° lie below half the sampling frequency of Sensor1, this

zero order interpolator would behave as an ideal interpolator and would lead to an almost

perfect reconstruction of f2°.

Let M be the support of hy ,that is,

M={z0O 7% h,(2) # 0}. (47)

Figure 17 shows atypical graph of hy restricted to M.

along track

across track
Fig. 17. Graph of hy restricted to M (the grid nodes).

In Figure 16, we have represented the set M; ; (y; ;) defined by
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Mi,j(yi,j):(Mt)yi’j n E1 )

where (M") Vi represents the translate by ; ; of the transpose of M, that is,

(Mt)yi,,- ={y;; —zzOM}. (49)

Actually, M; ; (y; ;) is the support of by ; (*)(y), therefore, from Ex-

pressions (46) — (49), Expression (43) becomes

(> > auwhyy - V)

IENY) VEM, ;)

ZAVER > > hy -
iIENY) VEM, ;)

0 otherwise,

if1(y) = 0 50

g

In the next subsection, we investigate atechnique to design the adap-

tive discrete linear filters represented by the h;

; ;» and ultimately by the local point spread

function h_ .
y

4 DIGITAL FILTER DESIGN

Let hbeafunctionfrom Z to R. Asin the continuous case (see Sub-

section 2.4), the variance of the function h denoted by var(h) is the positive real number

given by

var(h) = ( > (k=w)*h(K)/( > h(k), (51)
ke Z ke Z

where

w=( > kR D> h(k). (52)

ke Z ke Z
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We denote by sd(h) the standard deviation of h, that isthe square root
of var(h).

In order to simulate properly the large—field—of—view Sensor2 from
the smaller field of view Sensorl, we will use the previous assumptions made on passive

sensor model and we will consider some other ones.

We will assume that Sensorl field of view is sufficiently small

compared to the earth surfacein order to admit that, around apoint y in E1, the geometrical
transformation tlisalinear transformation from > tothetangent planeintl(y) at theearth

surface S that is, for any a [0 R, we have

tl(ay) = atl(y) (y O R?). (53)
We will assume that the distance between two consecutive sample
positionsis o in both directions. With this assumption the geometrical transformationstl,

are completely characterized by

t1((1, 1)) = (3, ). (54)
Wewill assumethat thelocal point spread functions hy of Subsection

3.3 are separable. We will denote simply by h any of both corresponding 1-D functions

from Z to R, aswe did in Subsection 2.4. We will refer to h as a point spread function.

The Gaussian assumption on the 1-D functions h1(v) and h2(v), and

ultimately 7, of Subsection 3.1 suggests (see Banon 1990 and Santos 1992) to write the

point spread function h in the following form

1 -1
h=t % . " "w (55)

@ . .
where * denote the it convolution product;
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wherenisapositiveinteger that indicatesthe number minusone of convol ution productsin

Expression (55), n = 1 meaning no convolution product and simply h = h'’;
with h' given by, for any k [0 Z,

K2 ifk O
wag={ " R (56)

0 otherwise,

where Ky, the support of K, is given by

Ky={kOZ: k< (N-1)/2} withthesupportsizeN=2l+1and| O N;

wherew [J (0, 1) O R;

where a 0 R*isagain value such that

> =1 (57)

kEKy

The representation of the point spread function h as a convolution
product extended to n identical function h' is a valuable feature for designing h. In most
image processing computational platform, the number N of coefficientsthat can beentered
isbounded above(e.g., N < 7) and thevariance specificationfor h canthenbeachieved by

repeating n — 1 times the filtering operation characterized by h'.

The value of athat satisfies Expression (57) is given by

a=1/ > w¢ (58)

kEKy

From Expression (51) and Bienaymé equality, the variance of the

above function h is given by

2n( > kawk

Ry=z —~—~___ "~
var(h) s Z(Zwkz)’

(59)
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where the sum is over the set Ky« = {k ( Ky: k> 0}.

The correct ssmulation condition for h2(y) is obtained when the ex-

pression below is satisfied

ti(sd(h)) ="o(t2(y)). (60)
In other words, the standard deviation projection of h on the earth surface is equal to the

standard deviation of 7i,, of Section 3 (with v = t2(y)).

In Expression (60), t1(sd(h)) should be written t1((sd(h), 0)) or
t1((0, sd(h))) depending on the chosen direction.

From Expressions (53) and (54), an equivalent simulation condition

can be obtained from

o2 2n( > kawk 6D
82 1+20> we)

where o stands for T(t2(y)).

Given o, 0, N and n, we areinterested in finding the parameter w that

satisfies Expression (61). We observe that Expression (61) can be written as a polynomial
equation in w (of degree (N — 1)/2)?),
@*2)+ > (0> -’k )W =0 (62)
KEK, s

Solving Equation (62) inwwith therestriction that w ( (0, 1) leadsto
the determination of h (and therefore of hy andh; j ) through the Expressions (55), (56) and
(58). For N = 3 the above equation is of degree one and corresponds exactly to the ssmula-
tion condition presentedin Banon (1990). In thiscase, the sol ution of Equation (62) isgiven

by
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2/52
- 0°0r (63)
2(n — 02/6%)
and the non zero values of function h’ are
h'(0) =1/1+ 2w)and h'(—1) = h'(1) = w/(1 + 2w). (64)
Let f be the polynomial function defined by
fw)=co+ > Gwe (65)
KEK,+
with
cy =—0%/2, (66)
and
¢, = &K — 0. (67)
An equivalent simulation condition is then given by the polynomial
equation
f(w) = 0. (68)

The polynomial equation (68) has (N — 1)/2)* roots. The Descartes
Rule (Marins, 1985) says that the number of real positive roots of a polynomial equation,
withreal coefficients, isnever greater than the number of signal changesin the sequence of
itsnon zero coefficients, and if itisless, thenitiseven. Therefore, theequationf(w) = 0 has
no more than one real positive root, since by Expressions (66) and (67) ¢, is negative and

Cry s Cv- 12 isanincreasing sequenceof real numbers, indicating that if thereexistsone

signal change, then it is unique.



29

The polynomial function f is continuous in the (0, 1) interval and
f(0) = ¢y< O, then, by Bolzano Theorem (Claudio e Marins, 1988), asufficient condition to

have at least one root in thisinterval is

f(1) > 0. (69)

Therefore, under the above condition, by Descartes Ruleand Bolzano
Theorem, we guarantee the existence of one and only one real positive root in the (0, 1)

interval for the equation f(w) = 0.

Figure 18 showsthegraphof fforo =96.24, 6 =30, N=13andn=1.

RA
_____________________ —
(1, f(1))
|
|
|
(0,0) : (1,0)
-
/ R

(0, £(0))

Fig. 18. Graph of f.

To solve Equation (68), we can use the Newton—Raphson method

(McCracken and Dorn, 1964; Cléaudio e Marins, 1988)

W, =w —(f(w)/f'(w;)) =0, .. (70)
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Heref' (w) = Z kKeg w1,
kEK+

Figure 18indicatesthat chosingw, = 1 we should get agood precision

in afew iterations.

Returning to the condition expressedin (69), we seethat o, 6, Nand n

must satisfy

g <K(N, n), (71)
where

K(N.m) = (N)( > k)2, (72)

KEK,,

Table 2 gives sometypical valuesfor K(N, n) and N + (N - 1)(n—1)

which represents the size, in the chosen direction, of the support M.

In order to find thefilter design parameters N and n from the parame-
ter o and §, wejust havetoread in Table 2 the values of N and n such that K(N, n) isgreater

than o/6 and among the possible solutions we choose the more convenient ones.
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TABLE 2-FILTER DESIGN PARAMETERS.

N+ (N—1)(n—1) —

K(N, n)

l——e
l——e

N 1 2 3 4 5 6 7 8 9 10
082 | 1.15 | 1.41 | 1.63 | 1.83 | 2.00 | 2.16 | 2.31 | 2.45 | 258
3 3 5 7 9 1| 13 |15 | 17 | 19 | 21
141 | 2.00 | 245 | 283 | 3.16 | 3.46 | 3.74 | 4.00 | 424 | 4.47
5 5 9 13 |17 | 21| 25 | 29 | 33 | 37 | 41
200 | 2.83 | 3.46 | 400 | 447 | 490 | 529 | 5.66 | 6.00 | 6.32
7 7 13 119 | 25 | 31 | 37 | 43 | 499 | 55 | 61
258 | 365 | 447 | 516 | 577 | 632 | 683 | 730 | 7.75 | 8.16
9 9 17 | 25 | 33 | 41 | 49 | 57 | 65 | 73 | 81
316 | 447 | 548 [ 632 | 7.07 | 7.75 | 8.37 | 8.94 | 9.49 {10.00
11 1 | 21 | 31 | 41 | 51 | 61 | 71 | 8 | 91 | 101
374 | 529 | 6.48 | 748 | 837 | 9.17 | 9.90 [10.58 [ 11.22 | 11.83
30 13 | 25 | 37 | 49 | 61 | 73 | 8 | 97 | 109 | 121
432 | 611 | 7.48 | 864 | 9.66 | 10.58 | 11.44 | 12.22 | 12.96 | 13.66
IS0 15 | 29 | 43 | 57 | 71 | 8 | 99 | 113 | 127 | 141
490 | 6.93 | 849 | 9.80 [10.95 | 12.00 | 12.96 | 13.86 | 14.70 | 15.49
17 0 17 | 33 | 49 | 65 | 81 | 97 | 113 | 129 | 145 | 161

(continued).
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TABLE 2
(conclusion).
n
Nl 1mn 12 B3]1w4]15]16]17]18] 19 ]2
271 | 2.83 [ 294 | 3.06 | 3.16 | 327 | 337 | 346 | 356 | 3.65
3 23 | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41
469 | 490 [ 510 | 529 [ 5.48 | 566 | 5.83 [ 6.00 | 6.16 | 6.32
5 45 | 49 | 53 | 57 | 61 | 65 | 69 | 73 | 77 | 81
6.63 | 693 | 721 | 748 [ 7.70 | 8.00 | 825 | 849 | 8.72 | 8.94
7 67 | 73 | 79 | 8 | 91 | 97 | 103 | 109 | 115 | 121
8.56 | 894 | 931 | 9.66 | 10.00 [ 10.33 | 10.65 | 10.95 | 11.25 | 11.55
9 89 | 97 | 105 | 113 | 121 | 129 | 137 | 145 | 153 | 161
10.49 [ 10.95 | 11.40 | 11.83 [ 12.25 [ 12.65 | 13.04 [ 13.42 | 13.78 | 14.14
IT b 11 | 121 | 131 | 141 | 151 | 161 | 171 | 181 | 191 | 201
12.41 [ 12.96 | 13.49 [ 14.00 | 14.49 | 14.97 [ 1543 | 15.87 | 16.31 | 16.73
131 133 | 145 | 157 | 169 | 181 | 193 | 205 | 217 | 229 | 241
1433 [ 14.97 | 1558 [ 16.17 [ 16.73 [ 17.28 | 17.81 | 18.33 | 18.83 | 19.32
15 | 155 | 169 | 183 | 197 | 211 | 225 | 239 | 253 | 267 | 281
16.25 [ 16.97 | 17.66 | 18.33 | 18.97 | 19.60 | 20.20 | 20.78 | 21.35 | 21.91
17 | 177 | 193 | 209 | 225 | 241 | 257 | 273 | 289 | 305 | 321

For example, in order to find thefilter design parameters N and n for

0 =96.24and 8 = 30, that is, for 6/0 = 3.20, we may choose among thefollowing solutions

(which are the best ones in terms of computer time in each line and column of Table 2):

N=3andn=16 (K(N, n) = 3.27, N°n =144, N+ (N-1)(n—1) = 33) or
N=5andn=6 (K(N, n) =3.46, N°n =150, N + (N—1)(n—1) = 25) or
N=7andn=3(K(N, n) =346, N°n=147, N+ (N-1)(n—1) = 19) or

N=9andn=2(K(N, n)=3.65 N>n=162, N+ (N-1)(n—1) = 17) or

N=7andn=3(K(N,n) =374, N2n =169, N + (N—1)(n - 1) = 13).
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Implementation and performance considerations may orient the final

choice between these five solutions.

Hence, to compute the pixel valueg2; (y) at position y we haveto go

through the following steps:

1) determination of the projectiont2; (y) of the pixel positiony on earth (thisprojec-
tion can be obtained from ageometrical model for the earth, the satellite orbit, the satellite

movement equation, the cameraorientation and the detectors array geometrical character-

istics (Santos, 1992));

2) determination of the set |; (), that isthe set of calibrated digital images (g1, y1)

from Sensor1 that cover the point t2; (y);

3) for suchimages, determination of thepixel positiony; ; inElsuchthatt; (y; ;)is

the nearest neighbor of t2; (y) among the set of all the projections of pixel positions of g1; ;
4) determination of IFOV, and IFOV, from Expressions (22) and (23);
5) determination of 02, and 02, from Expressions (27) and (28);

6) determination of o for both directions, say o, and ,, from Expression (41), that

IS,
02=022-01> and 0,%=02,%-0l,>%;

7) determination of N and n such that (max(o;, 0,)/0) < K(N, n) by using, for ex-

ample, Table 2;

8) determination of w from the Newton—Raphson method (70);
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9) determination of h from Expressions (55), (56) and (58) for both directions, say
h, and h,;

10) determination of hy by
(ki ko) =hy(k)ha (ko) (ki ko) O Ky,

11) determination of -g2; (y) from Expressions (43) and (46), or (50).

In order toillustratethe abovedesigntechnique, let usconsider amore
simple example. Let the distance between two consecutive sample positionsbe 6 = 1 and
thestandard deviationbe o1 = 0.46124 for Sensorl (i.e.,y = 0.35for Sensorl, see Table1).
L et usassumethat Sensor?2 to be simulated has aresol ution twice lower than Sensor1 reso-

lution, that iso2 = 0.92248. From Expression (41), the standard deviation o of the digital

filteriso = 01,3 = 0.79889 and, finally, o/8 = 0.79889. From Table2, N=3andn=1
satisfy Expression (71). In thissimple case, in both directions, from Expressions (63) and

(64), the non zero values of h', that is, of h are, using matrix notation,

h = [0.3191 (0.3618) 0.3191], (73)

where the element inside parenthesis corresponds to the value of h at the origin.

Figure 19 shows the graphs of the following three functions H1, H2

and H2:

H1(y) = exp(— 27%01%?) (y O R), (74)

with 01 = 0.46124;

H2(y) = exp(— 2t%02%?) (y O R), (75)

with 02 = 0.46124;
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""" p—
0.35
0 0.25 0,9 1
Fig. 19. Sensorl, Sensor2 and simulated Sensor2 MTF.
H2(y) = H1(y) > h(K)cos(2ky) (y O ), (76)

kEK,

with h given by Expression (73).

The functions H1, H2 and H2 represent the M TFs of, respectively,
Sensorl, Sensor2 and the simulated Sensor2 through the composition of the design filter

with Sensorl. They are the Fourier Transform of the respective point spread functions.

Finally, the 2-D digital filter point spread function is given by, using

matrix notation,

0.1154 (0.1309) 0.1154/.

0.1018 0.1154 0.1018
hth =
0.1018 0.1154 0.1018

5 APPLICATION TO THE BRAZILIAN REMOTE SENSING SATELLITE

The digital smulation process of Subsection 3.3 has been imple-
mented to simulate the Remote Sensing Satellite (SSR) of the Brazilian Complete Spatial
Mission (MECB) fromaLANDSAT Thematic Mapper (TM) scene. Inthisway, band 1 and

band 2 small patches have been produced.
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5.1 - SSR SPECIFICATIONS

The SSR specifications that have been used (most of them can be
found in Santana et al., 1988, 1989) are shown in Table 3.

TABLE 3 -SSR SPECIFICATIONS.

Parameter Value
atitude 639.73 km

orbit inclination 82.00°
IFOV 3.314 x 10%rad
(scene element approximate size at nadir) (212 x 212 m?)
distance between two consecutive samples (9) 3.314 x 104 rad
(approximate distance at nadir) (212 x 212 m?)

attenuation factor (y) 0.35

number of detectors per line 3456

number of lines 3456

5.2 -SSR PATCHES SPECIFICATIONS

The SSR patches specifications that have been used are shown in
Table 4. These specifications correspond to an off nadir simulation condition, asshownin
Figure 20. Actually, with these specifications, the SSR patches fall entirely inside the B
guadrant of the TM5 17662 image (orbit 222, point 75) of June 27, 1987.

TABLE 4 -SSR PATCHES SPECIFICATIONS.

Parameter Value
SSR scene center latitude — 24.69°
SSR scene center longitude —47.88°
patch first line SSR sceneline 1
patch first column SSR scene column 31

patch number of lines 420

(patch projection approximate vertical dimension) (89.0 km)
patch number of columns 400

(patch projection approximate horizontal dimension) (84.8 km)




37

Thespectral characteristicsof bands1 and 2 of the SSR areassumed to

be, respectively, those of bands 3 and 4 of the TM sensor.

nadir line
1 3456

L —— scene center
—
] (~24.69°, ~47.88°)

3456

Fig. 20. Patch localization in the scene (hatch area).

5.3-TM RESOLUTION SPECIFICATIONS

The TM resolution specifications that have been used are shown in
Table5. The EIFOV specifications can befoundin Fonseca, 1988, p. 43, and Fonsecaet al.,
1993. The values of o1l are obtained from the EIFOV values through Expression (15) or

Table 1.
TABLE 5-—TM RESOLUTION SPECIFICATIONS.
Row Column
) 30m 30m
EIFOV 41.6m 454 m
ol (actualy used) 17m 17m
(o1 obtained from EIFOV) (15.59 m) (17.02 m)
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54 —-SIMULATION FILTER SPECIFICATIONS AND PERFORMANCES

Thefilter design parametersnand N that havebeenusedaren =1 and
N = 15. Thevalue n = 1 has been chosen because it corresponds to the most efficient solu-
tionintermsof computer time and in our implementation wedid not have any upper bound
for the possible valuesof N. Thevalue N = 15 has been obtained from the eval uation of 6/6
and consulting Table 2. To compute 6/8, we go through the foll owing steps with respect to
thepoint u (seeFigure 12) that correspondsto the upper | eft corner pixel position of the SSR
scene defined in Table 4:

1) the curvature radius r,. is 6381.35 km and a view angle 6 = IFOV X (num-
ber of detectors) /2is0.57266 rad (with IFOV = 3.314 x 104 rad and number of detec-
tors = 3456);

2) the length of up r is 777.74 km (from Expression (24), with h = 639.73 km);
3) the angle ucq 0,. is 0.06609 rad (from Expression (25));

4) the IFOV is 216.62 m (from Expression (22));

5) the IFOV, is226.77 m (from Expression (23));

6) the standard deviation o2 (i.e., 0,(u)) is 104.59 m (from Expression (28));

7) the standard deviation o (i.e.,52) is 103.20 m (from Expression (41), with

0l =17 m);
8) the ratio 0/0 is 3.44 (with 6 = 30 m).

Actualy, from Table 2 (with n = 1), N = 13 is acceptable
(K(13, 1) = 3.74). Wechose N = 15 to get abetter MTF Gaussian approximation aswe see

on Figure 21.
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Fig. 21. MTFS comparison.
Figure 21 shows the graphs of the following three functions H, H3
and Hyg:
H(y) = exp(— 2t%0%%) (y O R), (77)
with o = 103.20;
Hisy) = > awcos(2dky) (v O R), (78)

KEKys

with w = 0.9851566098 (from Expression (62), with o = 103.20, = 30, N = 13 and
n=1), a=0.09328127732 (from Expression (58), with N = 13) and 6 = 30;

Hisy) = > awcos(2tdky) (v O R), (79)

KEKys

with w = 0.9704356817 (from Expression (62) with o = 103.20, 6 = 30, N=15 and
n = 1), a = 0.10458408803 (from Expression (58), with N = 15) and 6 = 30.

The functions H, H,; and H 5 represent the MTFs of, respectively,
theideal continuousfilter and the digital filters with two different support sizes. They are

the Fourier Transform of the respective point spread functions.
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For both solutions, N = 13 and N = 15, the variances of the digital fil-

ter point spread functions h are the same by construction (var(h) = 103.202), but with a
larger impul se response support, we reduce the effects of the Gibbs phenomenon resulting
from truncation. With N = 15 instead of N = 13, we better fill the original specification of
thecontinuousfilter, that is, the value 0.3599 of the attenuation factor y at half the sampling
frequency v = 1/226.77 = 0.0044 m . From Expressions (78) and (79) (withy = v/2) we

have y,5 = 0.2692 and y,5 = 0.3029.

From Figure 21, we see that the proposed digital filter behaves prop-
erly for low frequency signalsand isconservativefor frequenciesaround half the sampling
frequency (v/2). In other words, theimage obtai ned from sensor simulation will betheoreti-

cally slightly moreblurred that it should be, neverthelesswithout practically any visual dif-
ference. Furthermore, thevalue o = 103.20 correspondsto theupper |eft pixel ssmulation,

for the other pixels the value of o is smaller and the discrepancy between y and y 5

decreases monotonically.

Figures 22 and 23 show, respectively, the two small patches of the
band 1 and band 2 specified in Subsection 5.2 and obtained by SSR simulation from TM5
Band 3 and Band 4 (orbit 222, point 75, quadrant B, June 27, 1987). They show Buritama
reservoir and Aracatuba, Birigui and Pengpolis cities of So Paulo state.



Fig. 22. Buritama reservoir and Aracatuba, Birigui e Penapolis cities (Sdo Paulo State).
SSR Band 1 patch obtained by SSR simulation from TM5 Band 3,
orbit 222, point 75, quadrant B, June 27, 1987.
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Fig. 23. Buritama reservoir and Aracatuba, Birigui e Penapoalis cities (So Paulo State).
SSR Band 2 patch obtained by SSR simulation from TM5 Band 4,
orbit 222, point 75, quadrant B, June 27, 1987.

6 CONCLUSION

Inthispaper we have presented anew techniqueto design alinear dig-
ital filtersfor sensor simulation. The design technique is based on the assumption that the
point spread function of the ideal continuous filter should be Gaussian and that the point
spread function of thedigital approximation filter should havethe samevariance. A numer-
ical table has been given that is useful to determine the minimum size of the impulse

response support of thefilter. The study of the performance of the designed digital filter has
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shown that good properties can be achieved. For any support size above the lower accept-
able value the digital filter properly attenuates the low frequency components and for the
frequency components around half the sampling frequency we can reach the desired preci-

sion level for the attenuation factor just by increasing the support size.

Finally, bands 1 and 2 patches of the Remote Sensing Satellite (SSR)
of the Brazilian Complete Spatial Mission (MECB) have been obtained fromaLANDSAT
Thematic Mapper scene. The chosen orbit for the SSR is such that the patches are in off

nadir acquisition conditions.

Withthedigital simulation processat hands, itisnow possibleto eval-
uate the future images that would be produced by the SSR (Remote Sensing Satellite) of
MECB (Brazilian Complete Spatial Mission) and to test the programsthat will processthe

raw imagein order to reconstruct the original scene along agiven cartographic projection.
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