

Spatial Query Broker in a Grid Environment

Wladimir S. Meyer
1
, Milton R. Ramirez

2
, Jano M. Souza

1

1 Computer Science Department of
Federal University of Rio de Janeiro (UFRJ)

PO Box 68.511 - ZIP code: 21945-970 – Rio de Janeiro, RJ - Brazil

2,3 Computer Science Department, Institute of Mathematics
Federal University of Rio de Janeiro - Brazil

{wsmeyer,jano}@cos.ufrj.br, milton@labma.ufrj.br

Abstract Grid computing can be seen nowadays as a promising distributed

environment to form federated GIS. As supposed, spatial query processing

within this distributed environment is a challenge. This paper presents Spatial

Query Broker (SQB), an architecture for spatial distributed query processing

in a grid computing context. This implementation aims at executing spatial

queries in a dynamic manner.

1. Introduction

Lately, the profusion of equipment related to spatial data generation has been
responsible for the production of a lot of spatial data to attend different purposes in
many domains. Government agencies, large private corporations and scientific centers
are the most common producers and consumers of this kind of data that are employed in
decision-making systems, analysis tools and experiments.

 Many efforts have been made to create standard architectures capable of offering
several levels of relationship among spatial data producers and consumers. The Open
Geospatial Consortium (OGC) is one of the most important organizations involved with
the standardization and its interfaces and services have been recommended as a solution
for interoperability problems over a distributed environment. Even though OGC
standards have been adopted by many systems, as a solution for uniform spatial data
access, there is a lack of mechanisms capable of leading them towards the high
performance direction, as in services related to data transfer and spatial data processing
among servers (Câmara and Queiroz 2002). A typical question is “how to dynamically
execute spatial operations involving features from different data providers?” In these
situations the client application is responsible for taking care of the entire process after
accessing the remote spatial data. So all complexities must be embedded in the client
application, which doesn’t necessarily lead to an efficient result.

 The grid computing paradigm gathers many capabilities that could be employed
in the aforementioned context. It has emerged with the purpose of sharing free
resources beyond organizations’ boundaries, aimed at a high performance infrastructure.

 This work aims to provide a strategy to execute spatial joins among large spatial
databases spread geographically and integrated by a grid environment. This strategy is
implemented as a spatial query broker being capable of receiving a spatial query and
selecting computer nodes dynamically to process parts of the original query in parallel
in order to reduce its overall execution time. The architecture was influenced by

previous ones presented in (Meyer et al. 2005), (Meyer and Souza 2006) and (Smith et
al. 2002).

 The structure of the paper consists of an explanation of problems related to
distributed spatial queries (section 2) and some solutions based on filter/refine strategy,
since they play an important role in the GIS domain, followed by an overview of Virtual
Organizations in a grid context (section 3) as a metaphor, emphasizing their aspects and
functionalities that could be applied to a distributed GIS context. A description of
resource brokers (section 4) means to depict important functionalities that could be used
in a spatial query broker. Some related works involving distributed spatial query
processing are presented in section 5 and the proposed architecture is detailed in section
6. Some preliminary results on the parallel execution of spatial queries are analyzed in
section 7 and some important remarks are taken into account in section 8.

2. Distributed Spatial Queries

A filter/refine technique has been adopted in many spatial database management
systems (SDBMS) to reduce the exact geometric tests in spatial queries (Hanssen 2005).
It consists of the execution of a preliminary query with approximations of the actual
features (usually Minimum Bounding Rectangle - MBR) to discard some of those that
don’t satisfy a specific. The next step consists of executing the exact processing of the
involved geometries to determine which of them definitely satisfy the predicates.

 An important characteristic of spatial queries is that they are much more
expensive than those involving conventional data. The size and number of vertices of
geometrics’ data are the main factors. The queries normally use large computing
resources when executing operations with geometrics and/or topologic predicates,
turning indispensable the use of spatial indexes.

 This technique was extended in (Brinkhoff et al. 1994) to process spatial joins,
including a geometric filter step after a MBR join. This new step introduces a more
accurate approximation of spatial objects, to reduce the size of inconclusive pairs.

 Some strategies were proposed in (Ramirez 2001), based on Brinkhoff’s model
to deal with spatial joins in a distributed environment trying to explore an additional
parallelism among SDBMS involved during the exact processing step.

 Trying to improve response time a proposal is presented in (Kang and Choy
2002) where the authors aim at executing the two steps of the filter/refine technique in
parallel, but details about preliminary considerations limit the scope of the proposal:
high bandwidth and thematic data partitioning.

 In spite of the good results presented by previous solutions, a small number of
servers is involved during the exact geometry processing, normally those storing the
themes, which can lead to inadequate response time when dealing with very large data
sets.

3. Virtual Organizations in a Grid context

When organizations, computational resources, services and people with similar interests
are put together and the sharing rules is defined, they originate a so called Virtual

Organization (VO) (Foster et al. 2001). The VO is an abstraction that can involve many
actual organizations interested in collaborative work, i.e., they can share services, data

and computational resources to reach some common goal. This abstraction could be
adopted, for example, by organizations interested in sharing spatial databases or making
up a distributed GIS.

 A VO often presents some basic functionality items that may be accessed by any
member nodes. Some of the most important are:

• File catalog – It consists of a service specialized in registering and
monitoring file replicas spread among nodes and that may have distinct
logic names;

• Job manager – Entity that receives jobs execution requests and verifies all
necessary resources for their execution;

• Resource broker – A service capable of checking all necessary resources
described in a job specification and invoke all those resources to perform its
execution;

• Information service – A suite of services that gathers information about
resources and are often used by applications and other services (like the
resource broker).

 The profile of a VO can change as a result of its purpose. Services, resources
and topology may assume different configurations depending on the nodes’ capabilities,
the nature of the tasks to be performed and the interests of the members.

 Despite the flexibility and the computing-on-demand offered by the VO
abstraction, some difficulties like heterogeneity and security, are great challenges for
the research carried out (Porto et al. 2005; Foster and Kesselman 1999).

 The adoption of standards like OGSI (Open Grid Service Infrastructure) and,
more recently, WSRF (Web Service Resource Framework) has brought a new
perspective to the VO environment since now it can deliver services with a high degree
of standardization for the use of Web services technology. Security problems related to
the data and binary transmission may be avoided with the use of binaries encapsulated
into services that offer only a standard interface, preserving code detail. In a similar
way, the heterogeneity problem inherent to a grid environment can benefit from these
standard interfaces since the details related to service implementation are omitted from
the consumers of the resources, improving both integration and scalability as a whole.

 So, as depicted above, a VO takes an important role in a grid environment and
should provide many high level services in order to permit the increase of collaboration
among its members. Resource brokers take an important place in this context,
especially when the application’s nature involves hundreds or thousands processors
nodes and resources.

4. Resource Brokers (RB)

In an environment, with thousands of resources dynamically changing, it is almost
impossible for a user to choose the best resource to execute a job without any previous
information. The RB acts as a middle tier between users and resources (Afgan 2004)
and assumes the responsibility of finding the best resources for them and,
complementarily, passing the job specification to the resources found (Figure 1).

Browser
Resource

Broker

MyProxy GRAM

GIS

LSF

GRAM

PBS

GRAM

Condor

user

1º 2º

3º 4º

Figure 1. Resource Broker acting as a middle tier in a grid - adapted from

(Afgan 2004)

In this figure, the GIS module means “Grid Information Service”, the component
responsible for advice on resources available. The resource broker - RB - uses this
information to locate the best resources without explicit users’ participation.

Resource brokers are not present natively in all grid middleware, but many
initiatives have generated products that turn the grid user’s life easy. GridBus
(Venegupal et al. 2004), Emperor (Adzigogov et al. 2005) and GridWay (GridWay
Team 2006) are some of these efforts. They can be thought as high level services that
locate resources that agree with a job specification.

The role of scheduler may also be taken up by the RB, who makes execution
plans and defines the order in which tasks are to be carried out based on complementary
information like resource capabilities, communication costs and other statistic metrics.
For this ability, RBs are also known in grid platforms as “meta-schedulers”.

 When assuming a scheduler’s role, problems concerning the multi-
organizational nature of the grid take place: difficulty to pre-allocate, load balancing
and different performance for communication channels, besides the natural resources’
heterogeneity (Foster and Kesselman 1999; Foster et al. 2001).

 There are two basic strategies adopted by resource brokers to create an execution
plan when acting as a scheduler: static and dynamic strategies. The first one defines the
execution plan before runtime and any context changes occurred during runtime are not
taken into account; an example of this class of RB is the WMS (Workload Management
System) (Andretto 2004) which integrates the gLite grid middleware. The second one
starts with a predefined plan that can change during runtime, in an adaptive manner,
chasing the best results as a whole. GridWay RB (GridWay Team 2006) lies in this
class.

 Scientific applications, the greatest users and motivators of the grid paradigm,
are strongly based on file as the lowest data unit (Di et al. 2003). This implies that most
of the RBs are tailored to this data approach.

 This paper proposes an similar service to deal with scheduling of spatial queries
among spatial databases systems in a grid, similar to the job/file approach of
conventional RB. The Spatial Query Broker (SQB) being proposed is presented in
section 6.

5. Related Works

During last years many efforts have been made to permit executions of spatial queries in
a distributed environment.

 An extension of Brinkhoff solution, for the distributed spatial query processing
was proposed by (Ramirez 2001) with the purpose of exploring the parallelism in the
most critical phase of a spatial join process: exact geometry processing. In that work,
after the elimination of the geometries that definitely don’t participate from the final
result, by means of approximate filtering, the inconclusive geometries are
simultaneously processed by the SDBMS that participate of the query. This strategy
was called MR2 and uses spatial indexes (R*-Tree), from themes involved in the
operation, during the filtering step. In this proposal only execution of a query is taken
into account. This adaptation of the three-step approach is followed by the present
proposal since the filtering phase may lead to a strong reduction of inconclusive pairs
and provide some true hits without the need of actual geometry processing.

 The use of Web services as seen in (Ilya et al. 2003) was a powerful solution the
authors found to reach scalability in an infrastructure designed to optimize query
processing in distributed spatial databases. The scenario presented consists of
independent organizations that produce data which may be overlapped geographically.
This data is not intentionally replicated over the member nodes. A global index, based
either on R-tree or Quadtree, is maintained in each node during all the time and if some
localized data modification causes a change in its minimum bounding rectangle (MBR),
all index replicas are updated. A query submitted to a node is then forwarded to other
nodes that have data involved with it. The main goal was to reduce the traffic among
nodes, improving queries response. The use of a global index distributed over the nodes
had an important role in this context. The Web service approach, to easily turn the
integration among nodes, and the involvement of several servers to deal with a query
are relevant to our proposal.

 The Grid Greedy Node Scheduling Algorithm (G2N) presented in (Porto et al.
2005) assigns sub-queries to grid nodes as a result of their throughputs expressed in
tuples/second. If during runtime the actual throughput of a node differs too much from
the previous known one, this new value is used to re-schedule the remaining subqueries.
A dynamic load balance, based on processors’ throughput, is used in a similar manner
on the SQB.

 In (Mondal et al. 2003) a dynamic load balancing strategy was adopted to
address queries to grid clusters, adopting either a migration or a replication policy for
the data, in order to explore the reliable nodes. The knowledge on the historical
behavior of the clusters is a good heuristic to be explored when planning the query in
the SQB.

 OGSA-DQP (UK Database Task Force 2006), a Distributed Query Processor
based on the OGSA architecture (a grid architecture based on services), has all the
functionalities of a query broker: a grid distributed query service is responsible for
compiling, optimizing, partitioning and scheduling distributed query execution plans
over multiple execution nodes. Its query evaluation service is used by the previous
service to execute a query plan. Some functional modules from the OGSA-DQP are

being hosted by the SQB. The adoption of the OGSA-DAI, to permit uniform access in
databases, is another common point between these architectures.

 As pointed above, the spatial query broker’s architecture proposed in this paper
adopts some guidelines that were present in the previous works and is a consequence of
our previous work (Meyer et al. 2005; Meyer and Souza 2006).

6. Proposed Spatial Query Broker (SQB)

In this work a Spatial Query Broker is being proposed to cover the needs of a
specialized mechanism to perform queries over SDBMS spread geographically and
belonging to member organizations of a VO. The inability of traditional brokers to deal
with databases as resources (Andretto 2004; GridWay Team 2006; Buyya and
Venegupal 2004), particularly spatial databases, led us to research this topic. There was
the need to incorporate in the SQB some functions that are specific of database
management systems, like those related with the query processor. On the other hand, as
a grid broker, it has to receive others skills from these specialized tools.

 The main idea is to explore the skills from SDBMS members of the VO to
perform some steps of spatial queries and, when necessary, divide the processing cost of
the expensive ones with several grids’ nodes, including those that are not specialized
(without SDBMS), as depicted in figure 2.

 The centralized approach seen in this figure: with central SQB, information
service and replica location service are typical in some environments like the OGSA-
DQP, Workload Management Service (WMS) and GridWay, these two last schedulers
from gLite and Globus projects respectively. However, backup structures could coexist
in virtual organizations in order to avoid a service break, in case of failure of the main
module.

 Following the gLite nomenclature conventions (EGEE 2006), each node capable
of processing jobs is named Computing Element (CE). CEs in a virtual organization
can have specific skills like high performance hardware or specialized services. The
proposed architecture was tailored to treat spatial queries in a similar way as happens
with common jobs: a query, after being typed by a user or passed by an application is
guided to a specialized broker (spatial query broker).

 The architecture (figure 3) can be presented based on a description of its
component’s modules as follows:

 The Coordinator module has the role of manage all data flow since a query is
received until it is finished. Additional tasks, such as checking an user’s credential and
starting a proxy session, are also performed by it.

 The Query Decomposition module has almost all the functionalities found in
traditional distributed query processing architectures (Özsu and Valduriez 2001). The
first of them is semantic analysis, based on a global schema, of the received query that
can be performed by means of graph derived from the query and its analysis: when a
node, representing a relation or a sub-graph is disconnected from the result, the query
should be refused, since in this case some join predicate is missing. Another
functionality is avoiding redundancy in the predicates, through simplifying both the
geometric and non-geometric predicates, using the idempotent rules (Özsu and
Valduriez 2001).

Information
Service

(MDS)

User

OGSA-DAI

OGSA-DAI

OGSA-DAI

Replica
Location

Service

Authentication

Proxy generation

Query

WEB Portal

API Information

Spatial

Query Broker
Resource

Broker

Virtual Organization

CE
1

CE
n

CE
6

CE
5

CE
4

CE
3

CE
2

Figure 2. VO composition with a Spatial Query Broker

Locator module acts as a match-maker in a conventional broker (EGEE 2006).
Specifically, it is responsible for locate all sources of the themes mentioned in the
received query, including their replicas and acquire statistical and metadata information
like spatial data quality, databases’ status, computing elements’ status and their
throughputs, besides of communication channels quality. The optimizer uses all this
information in order to propose a good query plan and must be periodically updated in a
grid information service (Globus MDS in this case). Replicas of databases are managed
by the Replica Location Service (RLS), a service that maintain an index of all local
replicas’ catalogs, hosted on each CE, and permits queries about location of replicas
related with a specific logical name.

 An Optimizer has the task of dealing with the most common kinds of queries in
a spatial database: window queries and spatial joins; based on this premise all its
functioning aims at following a good strategy to reach the solution. In both cases the
filter/refine strategy has proved to be a good one (Brinkhoff et al. 1994; Hanssen 2005;
Ramirez 2001).

SDBMS 1

Coordinator

Execution Monitor

Locator Optimizer SchedulerQuery Decomp.

CE
n

CE
mSDBMS n

MDS

Grid Resources

Spatial Query Broker

Figure 3. Spatial Query Broker architecture

The optimizer takes the simplified query received and, based on the fragments’
locations and status of replica-storing computing elements, chooses the best set of
servers to execute the filtering phase of a spatial join operation. This phase is part of
the multi-step filtering proposed in (Brinkhoff et al. 1994) and its main purpose is to
discard false hits based on a MBR join operation followed by a geometric filtering like
4CRS (Azevedo et al. 2004). The engine used to decide among the best servers makes
use of the information collected from each of them in the location module. When
dealing with either thematic or hybrid spatial data partitioning schema, the optimizer
must request the transmission of the MBR approximations for the missing themes (and
the 4CRS signature) to the specifics SDBMS, before proceeding with the filtering
(figure 4). This procedure is well defined in (Ramirez 2001).

 The Execution monitor is responsible for submitting, to a set of servers defined
in the previous module, the query plan received, and monitor its execution. After
finishing their approximate sub-queries (MBR filtering and geometric filtering), the
servers return two distinct sets of data to the execution monitor. The identifiers of the
pairs of objects that attend to the intersection’s predicate build the first set, and the pairs
of inconclusive identifiers compose the second set with their vertices’ numbers. It
should be noticed that after executing the geometric filter phase based, for example, on
4CRS (Zimbrão and Souza 1998), some true hits may be already detected.

MBR

IDs + #vertices

Inconclusive pairs

Execution
Monitor

SDBMS
CE

1

SDBMS
CE

2

Region W
Theme 1

Region W
Theme 2

MBRs + 4CRS

T
2

T
1

Geometric
filtering

+

SDBMS

CE
1

Figure 4. Sub-queries’ running sequence in CEs with SDBMS

A scheduler module was included to assign exact geometries’ tests to common
computing elements. These CEs receive inconclusive pairs to process as a result of their
status, capability (throughput) and communication channels characteristics. The
scheduler can adopt user’s directives, collected from a web portal or from a file, to
change the criteria used to sort the CEs, in order to receive the inconclusive pairs. The
scheduler builds two queues with the inconclusive pairs, one with the pairs that have a
total number of vertices above a threshold limit (supplied by the user) and the other with
the other pairs. To proceed with the scheduling, each CE receives a pair of geometries
to process (without alphanumeric data) as a result of its processing power (throughput)
and new pairs are distributed as fast as they complete processing. The powerful CEs are
fed with the pairs from the queue that stores those with greater number of vertices,
while the other CEs receive their pairs from the other queue (figure 5).

Finishing an exact test, a CE informs the execution monitor whether that specific
pair satisfies or not the intersection predicate. At the end, when all pairs have been
processed, the execution monitor eliminates all redundant information and the
coordinator orders the SDBMSs to transfer the tuples that satisfy the predicate to the
requestor machine.

 The dynamic behavior of the scheduling process permits the addressing of more
complex geometries to more powerful CEs. This granularity based on pairs may lead to
a fine adjustment when coupling geometries complexity with processor nodes.

 A simplified sequence diagram of the entire SQB functioning is presented in
figure 6, which can be described as follows:

• A user interacts with the coordinator, by means of a Web portal, submitting
a query that has its themes chosen from a list (according to a global schema).
This query should be constrained by a defined region;

Pair j+2

Pair 2

Pair 1

Pair j+1

Pair j#vertices >= threshold #vertices < threshold

Execution Monitor

Scheduler

CE
n

CE
n+1

CE
1

CE
2

Queue 2Queue 1

Throughput(CE
i
) >= t Throughput(CE

i
) < t

Figure 5. Queues in the scheduler

• The coordinator calls a decomposer instance to analyze and simplify the
query based on a global scheme and idempotent rules;

• If no problems occur the coordinator asks the locator to request the
information service (MDS) for a list with the SDBMS that can participate of
the query, based on the region covered by each one and the themes stored
within them. Replicas of the databases associated with these themes are also
requested to the RLS. The status of available unspecialized CEs,
periodically updated by the MDS, and the network bandwidth between all
these nodes and the SQB are also acquired;

• After all this information has been supplied the coordinator chooses the best
SDBMSs to participate in the query and, by means of the execution module,
determines the execution of the two initial steps of the Brinkhoff proposal
(Brinkhoff et al. 1994): the MBR join (filtering) and the geometric filtering.
These two steps occur in a master CE, the one with the largest theme stored
as suggested in (Ramirez 2001);

• After receiving the results, formed by a list of pairs that satisfy the predicate
and a list with inconclusive pairs, the coordinator generates the queues to
store the sorted inconclusive pairs (only their ids and location) in order to
send them to chosen CEs and proceed with the exact geometry tests;

• The results returned to the execution module are then combined.

Figure 6. Simplified sequence diagram of the SQB

 It is desirable that all interactions between broker and SDBMS should take place
under an OGSA-DAI interface, an implementation of data access and integration
interface proposed by the Global Grid Forum, which allows dealing with a possible
heterogeneity among these SDBMSs.

 Complementing the description of the SQB components, it is necessary to depict
some other premises considered in this proposal in order to clarify the reasons for the
strategies chosen. The next paragraphs cover these aspects.

 Queries being analyzed are restricted to spatial joins involving themes with
polygon geometries under a set of common spatial predicates, like those defined by
Egenhofer (Egenhofer and Herring 1994): touch, overlap, inside and so on.

 The family of spatial query joins covered by the present proposal can be seen in
equation (i).

σ
W
 (Τ

1111
)
P = intersection

σ
W
 (Τ

2222
)Query =

(i)

101

 Where:

 T1 and T2 are spatial themes,

 W is a rectangular window and

 P is the predicate used with the join operation.

 There is also the premise that the VO offers some services needed by the SQB to
interact with others VO’s components. In the table 1 these services and their
correspondent operations are listed.

Table 1: Other services needed in the VO

VO’s Component Service Operations

Information Service
MDS

RequestGlobalSchema
RequestCEStatus

RequestCandidatesSDBMS
RequestChannelsStatus
RequestAGlobalID

CE (SDBMS)

OGSA-DAI
WS-GRAM

WSRF

Many

Many

ExactGeometryTest

CE
WS-GRAM

WSRF

Many
ExactGeometryTest

 The ExactGeometryTest service, deployed in CE nodes, has the task of receiving
a pair of geometries with their IDs and execute the exact geometry processing to verify
if they satisfy a predicate (intersection in this case). Its result is true or false according
to the processing.

 The last premise is that there is a global identification structure where each
feature stored in the SDBMSs has been already registered. This mechanism makes
possible for the components to deal with any feature no matter where it is stored. This
structure is similar to a catalogue service.

 This global ID mechanism is used during all broker activities and all new created
features should be registered.

 Most of the work mentioned in the previous section cannot be considered query
brokers in a distributed environment: some just execute queries, without planning;
others emphasize data migration and replication when scheduling queries, and so on. In
table 2, the architecture proposed in this section is compared to some known brokers
with the purpose of consolidating some aspects.

102

Table 2: Brokers comparison

 SQB OGSA-DQP GridWay

(Globus)

WMS

(gLite)

semantic query query job job

Application domain databases databases Generic job Generic job

Job/query migration no no yes no
Dynamic scheduling yes no yes no
Support to spatial queries yes no - -
Nodes without database

involved with query
yes no - -

Follow GGF standards yes yes yes yes

7. Preliminary results
A prototype is being built to validate the proposed architecture and many of the
functionalities described are under construction. The Globus Toolkit is being adopted
as the grid middleware since its basic tools are already robust and used in several
projects around the world. Its job manager is responsible for receiving a job description
and taking the necessary steps for its execution. This component is named Globus
Resource and Allocation Manager (GRAM) and, in release 4, has the ability to deal
with 32,000 concurrent jobs against 300 in the previous release (Foster 2005).

 The implementation is being made with a Web service approach by means of the
Java WS-Core package provided by Globus. The SQB, accessed as a Web service in a
specific server, makes use of stubs to interact with the others services like MDS,
GRAM and the Replica Location Service (as depicted in figure 2) following a normal
Web service style.

 Secondo (Güting et al. 2004) was adopted as spatial database management
system in this first stage. Its flexibility and modularity are achieved with an architecture
based on algebras, which permit working with several data models. Spatial algebra is
supplied with the product and changes or adjustments in its implementation can be
easily done. The lack of an OGSA-DAI driver however, avoids its use in a
heterogeneous group of servers. To test OGSA-DAI interface features, the PostgreSQL
8 / PostGIS will be adopted in a future stage.

 Despite its being constructed, a few tests were done with synthetic spatial
datasets consisting of polygons in order to give us some relative parameters to guide our
work while dealing with spatial joins among polygons.

 The tests were executed involving up to nine computers that run subqueries in
parallel being the overall response time compared with that one obtained for a single
machine running the entire query. With the times acquired, a speedup (Gistafson 1990)
parameter was obtained for each configuration.

 The conditions adopted on tests are presented below:

• The spatial database servers were used to store regions of a regular grid,
each of them with only two themes;

103

• The themes had their geometric attributes represented by triangles, that
could vary in shape and size;

• Two datasets with 10,060 synthetic objects, each one, were partitioned in
four and nine regular areas;

• Communication costs were estimated, since all tests were executed in a
local area network in spite of using a remote network such as the Internet;

• Only nodes with SDBMS were involved in the query.

 The queries assumed during the tests had the form:

Select all pairs

from theme1, theme2

where theme1 overlaps theme2 and region = regionX

 The response time used to build the table 3 follows the equation (ii).

RT = TMSG * #messages + TTX * #bytes + TCPU + TI/O (ii)

 It was considered during the tests that the number of messages and the time
spent with a single message transmission were constant, so the first term from equation
(ii) was not considered. The communication cost term in equation (ii) depends on size
of data and on communication’s channel bandwidth that was estimated in 256 kbps.

 The final response time is limited by the node that computes the worst response
time, following equation (iii).

 RT FINAL = max{RT1, RT2, …RTi} i = number of servers working in parallel (iii)

 The results observed for the spatial joins are presented in table 3, where costs are
expressed in milliseconds and the resultset size in bytes.

Table 3: CPU, I/O and communication costs

CPU I/O Comm

1 SDBMS FULL 10912 2538685 2213416 735 77475 2291626 1,00

NW 2385 533445 133680 172 16279 150131

NE 2706 628885 147175 194 19192 166561

SW 3154 734406 169332 233 22412 191977

SE 2747 640873 148509 209 19558 168276

1 1065 246074 24794 65 7510 32369

2 922 212832 24820 64 6495 31379

3 1167 269244 29273 85 8217 37575

4 1140 266527 28396 81 8134 36611

5 1338 312329 34590 97 9532 44219

6 1252 292853 29057 90 8937 38084

7 1440 336147 35398 96 10258 45752

8 1547 360394 39730 113 10998 50841

9 1138 265508 27332 81 8103 35516

9
 S

D
B

M
S

45,07

Costs Total

Cost
Speedup

4
 S

D
B

M
S

11,94

of

SDBMS

Region

Name
obj

Resultset

size

104

 Figure 7 sketches the improvement achieved when executing the join operation
in a parallel manner.

Figure 7. Speedup

 The results observed give us a small, but important contribution in the sense that
we can perceive some aspects of the spatial fragmentation adopted with the proposed
architecture.

 When member organizations work like regional data producers, i.e., generating
all themes on a spatial region, a global query can take advantage of pre-existing spatial
indexes already created on each SDBMS and the original query can be easily broken
into sub-queries. The executed tests fall in this category and show that:

• Processing (CPU plus I/O) cost of the spatial join queries is normally
greater than communication costs when dealing with large window areas;

• Some objects are processed more than once because they cross the
boundaries as presented in table 2 (the number of objects, when summed, is
greater than the whole dataset);

• When subqueries are executed in parallel the ratio: available memory /
query complexity increase, leading to a superlinear speedup. Superlinear
speedup, as seen in table 2, means that the resources used to process the
whole query at once in a server were insufficient and the operation
consumed too much time.

 We can conclude that expensive operations, like spatial joins, normally spend
more time processing than transmitting data and, for this family of operations, we can
notice expressive improvement in their response time depending of the number of
machines involved in their execution, since the original query has the possibility to use
an extra amount of free resources not available in a single machine.

 However, an extra communication overhead can be expected when an excessive
number of servers is involved with an operation. In these situations communication

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10

servers

s
p

e
e

d
u

p

105

costs tend to be in the same order of magnitude or greater than processing costs,
dominating overall response time. The effort made during the combination of partial
results is another parameter that should be observed before a query subdivision, in order
to avoid poorer performance.

 Another point that should be emphasized in this structure is that the multi-
processing of the same object must be avoided in order to improve the final response
time. This problem causes great impact during the processing of exact geometries,
since the algorithms’ complexities, used to evaluate the queries’ predicates, are directly
dependent on their vertices’ number. Besides that the amount of data to be transferred
is increased, a post-processing stage to suppress redundant results being necessary.

8. Final remarks

The SQB architecture was conceived to explore the computational power of a virtual
organization by means of dynamic scheduling in the most critical phase of a spatial join
operation: the exact geometries processing. It is expected that queries over large spatial
databases made up by several spatial database management systems, belonging to
distinct organizations, can take advantage of this proposal, minimizing the effects of the
natural grid’s latency.

 Government agencies responsible for the production of basic spatial data from
large areas can benefit from it when offering query services over these huge amounts of
data dynamically to other agencies, without the need of expensive clusters or equivalent
equipment.

 To summarize it, the adoption of a SQB in a grid environment avoids the need of
a user knowing details of the locations of spatial data sources and gives him the
possibility to run a query using the best resources available at that time. We suppose
that the amount of computing elements running a query would have a strong impact on
the final response time, as shown by the preliminaries tests. Another desirable feature
of this architecture is that it explores the pre-existing spatial index of, at least, one of the
two themes involved in the operation, reducing the time spent with the filtering and
geometric filtering steps.

 For the next stages we can highlight the prototype conclusion and the execution
of several tests with actual and synthetic spatial datasets, with different parameter
configurations such as vertex threshold, and with different cost models, the latter having
a direct impact on the performance of the optimizer and of the scheduler.

Reference

Adzigogov, L., Soldatos, J., and Polymenakos, L. (2005). "EMPEROR: An OGSA Grid
Meta-Scheduler based on Dynamic Resource." Journal of Grid Computing, 3, 19-37.

Afgan, E. (2004). "Role of the Resource Broker in the Grid." ACM, Huntsville,
Alabama, USA.

106

Andretto, P. e. a. (2004). "Practical approaches to Grid workload and resource
management in the EGEE project.".

Azevedo, L. G., Monteiro, R. S., Zimbrão, G., and Souza, J. M. (2004). "Approximate
Spatial Query Processing Using Raster Signature.".

Brinkhoff, T., Kriegel, H., and Schneider, R. (1994). "Multi-Step Processing of Spatial
Joins." Washington,DC - USA, 237-246.

Buyya, R., and Venegupal, S. (2004). "The Gridbus Toolkit for Service Oriented Grid
and Utility Computing: An overview and Status Report.".

Câmara, G., and Queiroz, G. (2002). "GeoBR: Intercâmbio Sintático e Semântico de
Dados Espaciais.".

Di, L., Chen, A., Yang, W., and Zhao, P. (2003). "The Integration of Grid Technology
with OGC Web Services (OWS) in NWGISS for NASA EOS Data.".

EGEE .(2006) "GLite - Installation and Configuration Guide v 3.0 (rev 2)" , European
Union.

Egenhofer, M. J., and Herring, J. R. (1994) "Categorizing Binary Topological Relations
Between Regions, Lines and Point in Geographical Databases" , NCGIA.

"Globus Toolkit 4."(2005).
www.gridbus.org/escience/051205GlobusTutorialeScience.ppt, July/2006.

Foster, I., and Kesselman, C. (1999). "Computational grids." The Grid: Blueprint for a

New Computing Infrastructure, Morgan-Kaufman.

Foster, I., Kesselman, C., and Tuecke, S. (2001). "The Anatomy of the Grid Enabling
Scalable Virtual Organizations." Lecture Notes in Computer Science, 2150.

Gistafson, J. L. (1990). "Fixed Time, Tiered Memory, and Superlinear Speedup.".

GridWay Team .(2006) "GridWay 5 Documentation: User Guide" Madrid, Spain,
Universidad Complutense de Madrid.

Güting, R. H., Behr, T., Almeida, V., Ding, Z., Hoffmann, F., and Spiekermann, M.
(2004) "Secondo: An Extensible DBMS Architecture and Prototype" Hagen,
Germany, Fernuniversität Hagen.

Hanssen, G. (2005). "The Filter/Refine Strategy: A Study on the Land-Use Resource
Dataset in Norway.".

Ilya, Z., Memon, A., Petropoulos, M., and Baru, C. (2003). "Online Querying of
Heterogeneous Distributed Spatial Data on a Grid." Brno, Cz, 813-823.

Kang, M.-S., and Choy, Y.-C. (2002). "Deploying parallel spatial join algorithm for
network environment." IEEE, 177-181.

107

Meyer, W. S., and Souza, J. M. (2006). "Overlapped Regions with Distributed Spatial
Databases in a Grid Environment." Rio de Janeiro, Brazil.

Meyer, W. S., Souza, J. M., and Ramirez, M. R. (2005). "Secondo-grid:An
Infrastructure to Study Spatial Databases in Computational Grids." Campos do
Jordão, SP, Brazil.

Mondal, A., Goda, K., and Kitsuregawa, M. (2003). "Effective Load-Balancing via
Migration and Replication in Spatial Grids." Lecture Notes in Computer Science,
2736, 202-211.

Özsu, M. T., and Valduriez, P. (2001). "Principles of Distributed Database Systems."
Prentice-Hall.

Porto, F., Silva, V. F. V., Dutra, M. L., and Shulze, B. (2005). "An adaptive distributed
query processing grid service." Trondheim, Norway.

Ramirez, M. R. (2001) "Spatial Distributed Query Processing" Rio de Janeiro, RJ,
COPPE/UFRJ.

Smith, J., Gounaris, A., Watson, P., Paton, N. W., Fernandes, A. A. A., and Sakellariou,
R. (2002) "Distributed Query Processing on the Grid"

"OGSA-DQP 3.1 User's Documentation."(2006).
http://www.ogsadai.org.uk/documentation/ogsa-dqp_3.1/, July/2006.

Venegupal, S., Buyya, R., and Winton, L. (2004). "A Grid Service Broker for
Scheduling Distributed Data-Oriented Applications on Global Grids.".

Zimbrão, G., and Souza, J. M. (1998). "A Raster Approximation for the Processing of
Spatial Joins." New York - USA, 558-569.

108

	91: 91
	92: 92
	cb: VIII Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 19-22, 2006, INPE, p. 3-17.
	93: 93
	94: 94
	95: 95
	96: 96
	97: 97
	98: 98
	99: 99
	100: 100
	sumário:

