

TerraHS: Integration of Functional Programming and
Spatial Databases for GIS Application Development

Sérgio Souza Costa1, Gilberto Câmara1, Danilo Palomo1

1Divisão de Processamento de Imagens (DPI) – Instituto Nacional de Pesquisas
Espaciais (INPE)

Av dos Astronautas, 1758 – 12227-001 – São José dos Campos – SP – Brasil
{scosta,gilberto, danilo}@dpi.inpe.br

Abstract. Recently, researchers in GIScience argued about the benefits on
using functional programming for geospatial application development and
prototyping of novel ideas. This paper presents an application that interfaces a
functional language with a spatial database. It enables developing GIS
applications development in a functional language, while handling data are in
a spatial database. We used this application develop a Map Algebra, that
shows the benefits on using this paradigm in GIScience. Our work shows there
are many gains in using a functional language, especially Haskell, to write
concise and expressive GIS applications. The TerraHS application allows a
good compromise between the expressive power of a functional language, and
the data handling facilities of an imperative language.

1 Introduction
Recent, research in GIScience proposes to use functional programming for geospatial
application development [Frank and Kuhn 1995; Frank 1997; Frank 1999; Medak 1999;
Winter and Nittel 2003]. Their main argument is that many of theoretical problems in
GIScience can be expressed as algebraic theories. For these problems, functional
languages enable fast development of rigorous and testable solutions [Frank and Kuhn
1995]. However, developing a GIS in a functional language is not feasible, since many
parts needed for a GIS are already avaliable in imperative languages such as C++ and
Java. This is especially true for spatial databases, where applications such as
PostGIS/PostgreSQL offer a basic support for spatial data management. It is unrealistic
to develop such support using functional programming.

 It is easier to benefit from functional programming for GIS application
development if we build an application on top of an existing spatial database
programming environment. This work presents TerraHS, an application that enables
developing geographical applications in a functional language, using the data handling
provided by TerraLib. TerraLib is a C++ library that supports different spatial database
management systems, and that includes many spatial algorithms. As a result, we get a
combination of the good features of both programming paradigms.

 This paper describes the TerraHS application. We briefly review the literature on
functional programming and its use for GIS application development in Section 2. We
describe how we built TerraHS in Section 3. In Section 4, we show the use of TerraHS
for developing a Map Algebra.

109

mailto:@dpi.inpe.br

2 Brief Review of the Literature

2.1 Functional Programming

Functional programming is a programming paradigm that considers that computing is
evaluating off mathematical functions. Functional programming stresses functions, in
contrast to imperative programming, which stresses changes in state and sequential
commands [Hudak 1989]. Recent functional languages include Scheme, ML, Miranda
and Haskell. TerraHS uses the Haskell programming language. The Haskell report
describes the language as:

“Haskell is a purely functional programming language incorporating many recent
innovations in programming language design. Haskell provides higher-order
functions, non-strict semantics, static polymorphic typing, user-defined algebraic
datatypes, pattern-matching, list comprehensions, a module system, a monadic
I/O system, and a rich set of primitive datatypes, including lists, arrays, arbitrary
and fixed precision integers, and floating-point numbers” [Jones 2002].

The next section provides a brief description of the Haskell syntax. This description will
help the reader to understand the essential arguments of this paper. For detailed
description of Haskell see [Jones 2002], [Peyton Jones, Hughes et al. 1999] and
[Thompson 1999].

2.2 A Brief Tour of the Haskell Syntax

Functions are the core of Haskell. A simple example is a function that which adds its two
arguments:

 add :: Integer → Integer → Integer
 add x y = x + y
 The first line defines the add function. It takes two Integer values as input
and produces a third one. Functions in Haskell can also have generic (or polymorphic)
types. For example, the following function calculates the length of a generic list, where
[a] is a list of elements of a generic type a, [] is the empty list, and (x:xs) is the list
composition operation:
 length :: [a] → Integer
 length [] = 0
 length (x:xs) = 1 + length xs
 This definition reads “length is a function that calculates an integer value from
a list of a generic type a. Its definition is recursive. The length of an empty list is zero.
The length of a nonempty list is one plus the length of the list without its first element”.

 The user can define new types in Haskell using a data declaration, which defines
a new type, or the type declaration, which redefines an existing type. For example, take
the following definitions:
 type Coord2D = (Double, Double)
 data Point = Point Coord2D
 data Line2D = Line2D [Coord2D]
 In these definitions, a Coord2D type is a shorthand for a pair of Double values.
A Point is a new type that contains one Coord2D. A Line2D is a new type that

110

contains a list of Coord2D. One important feature of Haskell lists is that they can be
defined by a mathematical expression similar to a set notation. For example, take the
expression:
 [elem | elem <- (domain map) , (predicate elem obj)]
 It reads “the list contains the elements of a map that satisfy a predicate that
compares each element to a reference object”. This expression could be used to select all
objects that satisfy a topological operator (“all roads that cross a city”). Haskell includes
higher-order functions. These are functions that have other functions as arguments. For
example, the map higher-order function applies a function to a list, as follows:

 map :: (a→b) → [a] → [b]
 map f [] = []
 map f (x:xs) = f x : map f xs
 This definition can reads as “take a function of type a→b and apply it recursively
to a list of a, getting a list of b”. Haskell supports overloading using type classes. A
definition of a type class uses the keyword class. For example, the type class Eq
provides a generic definition of all types that have an equality operator:
 class Eq a where
 (==) :: a → a → Bool

 This declaration reads "a type a is an instance of the class Eq if it defines is an
overloaded equality (==) function." We can then specify instances of type class Eq using
the keyword instance. For example:

 instance Eq Coord2D where
 ((x1,x2) == (y1,y2)) = (x1 == x2 && y1 == y2)

 Haskell also supports a notion of class extension. For example, we may wish to
define a class Ord which inherits all the operations in Eq, but in addition includes
comparison, minimum and maximum functions:

 class (Eq a) => Ord a where
 (<), (<=), (>=), (>) :: a → a → Bool
 max, min :: a → a → a

2.3 Functional Programming and GIS

Many recent papers propose using functional languages for GIS application develepment
[Frank and Kuhn 1995; Frank 1997; Frank 1999; Winter and Nittel 2003]. Frank and
Kuhn [1995] show the use of functional programming languages as tools for
specification and prototyping of Open GIS specifications. Winter and Nittel [2003] apply
a formal tool to writing specifications for the Open GIS proposal for coverages. Medak
[1999] develops an ontology for life and evolution of spatial objects in an urban cadastre.
To these authors, functional programming languages satisfy the key requirements for
specification languages, having expressive semantics and allowing rapid prototyping.
Translating formal semantics is direct, and the resulting algebraic structure is extendible.
However, these works do not deal with issues related to I/O and to database
management. Thus, they do not provide solutions applicable to real-life problems. To

111

apply these ideas in practice, we need to integrate functional and imperative
programming.

2.4 Integration of Functional and Imperative Languages

The integration functional and imperative languages is discussed in Chakravarty [2003],
who presents the Haskell 98 Foreign Function Interface (FFI), which supports calling
functions written in C from Haskell and vice versa. However, functions written in
imperative languages can contain side effects. To allow functional languages to deal with
side effects, Wadler [1990] proposed monads for structuring programs written in
functional language. The use of monads enables a functional language to simulate an
imperative behavior with state control and side effects [Thompson 1999]. Jones [2005]
presents many crucial issues about interaction of functional languages with the external
world, such as I/O, concurrency, exceptions and interfaces to libraries written in other
languages. In this work, the author describes a Haskell web server as a case study. These
works show of the integration between these two programming styles. However, none of
these works deals with geoinformation systems. On the next section we present an
application that integrates programs written in Haskell with spatial databases and allows
fast and reliable GIS application development.

3 TerraHS
This section presents TerraHS, a software application which enables developing
geographical applications using in functional programming using data stored in a spatial
database. TerraHS links the Haskell language to in the TerraLib GIS library. TerraLib is a
class library written in C++, whose functions provide spatial database management and
spatial algorithms. TerraLib is free software [Vinhas and Ferreira 2005]. TerraHS links to
the TerraLib functions through the Foreign Function Interface [Chakravarty 2003] and a
function set written in C language, which performs the TerraLib functions. The Figure 1
shows its architecture.

Figure 1 TerraHS Architecture

 TerraHS includes three basic resources for geographical applications: spatial
representations, spatial operations and database access. The next sections present them.

112

3.1 Spatial Representations

3.1.1 Vector data structures

Identifiable entities on the geographical space, or geo-objects, such as cities, highways or
states are usually represented in vector data structures, as point, line and polygon. These
data structures represent an object by one or more pairs of Cartesian coordinates.
TerraLib represents coordinate pairs through the Coord2D data type. In TerraHS, this
type is a tuple of real values.
 type Coord2D = (Double, Double)
 The type Coord2D is the basis for all the geometric types in TerraHS, namely:
 data Point = Point Coord2D
 data Line2D = Line2D [Coord2D]
 type LinearRing = Line2D
 data Polygon = Polygon [LinearRing]
 The Point data type represents a point in TerraHS, and is a single instance of a
Coord2D. The Line2D data type represents a line, composed of one or more segments
and it is a vector of Coord2Ds [Vinhas and Ferreira 2005]. The LinearRing data type
represents a closed polygonal line. This type is a single instance of a Line2D, where the
last coordinate is equal to the first [Vinhas and Ferreira 2005]. The Polygon data type
represents a polygon in TerraLib, and it is a list of LinearRing. Other data types include:
 data PointSet = PointSet [Point]
 data LineSet = LineSet [Line2D]
 data PolygonSet = PolygonSet [Polygon]

3.1.2 Cell-Spaces

TerraLib supports cell spaces. Cell spaces are a generalized raster structure where each
cell stores a more than one attribute value or as a set of polygons that do not intercept
one another. A cell space enables joint storage of the entire set of information needed to
describe a complex spatial phenomenon. This brings benefits to visualization, algorithms
and user interface [Vinhas and Ferreira 2005]. A cell contains a bounding box and a
position given by a pair of integer numbers.
 data Cell = Cell Box Integer Integer
 data Box = Box Double Double Double Double
 The Box data type represents a bounding box and the Cell data type represents
one cell in the cellular space. The CellSet data type represents a cell space.
 data CellSet = CellSet [Cell]

3.1.3 Spatial Operations

TerraLib provides a set of spatial operations over geographic data. TerraHS provides
function that use those algorithms. We used Haskell type classes [Shields and Jones
2001; Chakravarty 2004] to define the spatial operations using polymorphism. These
topologic operations can be applied for any combination of types, such as point, line and
polygon.

class TopologyOps a b where

113

 disjoint :: a → b → Bool
 intersects :: a → b → Bool
 touches :: a → b → Bool
 …

 The TopologyOps class defines a set of generic operations, which can be
instantiated to several combinations of types:

 instance TopologyOps Polygon Polygon
 instance TopologyOps Point Polygon
 instance TopologyOps Point Line2D
 …

3.2 Database Access

One of the main features of TerraLib is its use of different object-relational database
management systems (OR-DBMS) to store and retrieve the geometric and descriptive
parts of spatial data [Vinhas and Ferreira 2005]. TerraLib follows a layered model of
architecture, where it plays the role of the middleware between the database and the final
application. Integrating Haskell with TerraLib enables an application developed in
Haskell to share the same data with applications written in C++ that use TerraLib, as
shown in Figure 2.

Figure 2 - Using the TerraLib to share a geographical database, adapted from

Vinhas e Ferreira (2005).

 A TerraLib database access does not depends on a specific DBMS and uses an
abstract class called TeDatabase [Vinhas and Ferreira 2005]. In TerraHS, the database
classes are algebraic data types, where each constructor represents a subclass.

data Database = MySQL String String String String
 | PostgreSQL String String String String

 A TerraLib layer aggregates spatial information located over a geographical
region and that share the same attributes. A layer is identifier in a TerraLib database by its
name [Vinhas and Ferreira 2005].
 type LayerName = String

 In TerraLib, a geo-object is an individual entity that has geometric and descriptive
parts, composed by:

• Identifier: identifies a geo-object.

114

 data ObjectId = ObjectId String

• Attributes: this is the descriptive part of a geo-object. An attribute has a
name (AttrName) and a value (Value).
type AttrName = String
data Value = StValue String| DbValue Double
 |InValue Int | Undefined
data Atribute = Atr (AttrName, Value)

• Geometries: this is the spatial part, which can have different
representations.
data Geometry = GPt Point | GLn Line2D | GPg Polygon

 |GCl Cell | GPtS PointSet (…)
 A geo-object in TerraHS is a triple:
 data GeObject = GeoObject (ObjectId, [Atribute], Geometry)

 The GeoDatabases type class provides generic functions for storage, retrieval of
geo-objects from a spatial database.
 class GeoDatabases a where
 open :: a → IO (Ptr a)
 close :: (Ptr a) → IO ()
 retrieve :: (Ptr a) → LayerName → IO [GeObject]
 store ::(Ptr a) → LayerName → [GeObject] → IO Bool
 errorMessage :: (Ptr a) → IO String
 These operations will then be instantiated to a specific database, such as mySQL
or PostgreSQ L. Figure 3 shows an example of a TerraLib database access program.

host = “sputnik”
user = “Sergio”
password = “terrahs”
dbname = “Amazonia”
main:: IO()
main = do
 -- accessing TerraLib database
 db <- open (MySQL host user password dbname)
 -- retrieving a geo-object set

geos <- retrieve db “cells”
 geos2 <- op geos – op is a manipulation operation
 -- storing a geo-object set

store db “newlayer” geos2
close db

Figure 3 - Acessing a TerraLib database using TerraHS

4 A generalized map algebra
One of the important uses of functional language for GIS is to enable fast and sound
development of new applications. As an example, this section presents a map algebra in a
functional language. In GIS, maps are a continuous variable or to a categorical
classification of space (for example, soil maps). Map Algebra is a set of procedures for

115

handling maps. They allow the user to model different problems and to get new
information from the existing data set. The main contribution to map algebra comes
from the work of Tomlin [1983]. Tomlin’s model uses a single data type (a map), and
defines three types of functions. Local functions involve matching locations in different
map layers, as in “classify as high risk all areas without vegetation with slope greater
than 15%”. Focal functions involve proximal locations in the same layer, as in the
expression “calculate the local mean of the map values”. Zonal functions summarize
values at locations in a layer contained in zones defined in another layer. An example is
“given a map of city and a digital terrain model, calculate the mean altitude for each
city.”

 For this experiment, we use the map algebra proposed in Câmara et al. [Câmara
2005]. The authors describe the design of a map algebra that generalizes Tomlin’s map
algebra by incorporating topological and directional spatial predicates. In the next
section, we describe and implement this algebra.

4.1 The map abstract data type

Our map algebra has two main data types: object set and field. An object set is a set of
objects represented by points, lines or regions associated with nonspatial attribute. Fields
are functions that map a location in a spatial partition to a nonspatial attribute. The map
data type combines both the object set data type and the field data type. A map is a
function m:: E → A, where:

• The domain is finite collection, either a set of cells or a set of objects.

• The range is a set of attribute values.

 For each geographic element e ∈ E, a map returns a value m (e) = a, where a ∈
A. A geographical element can represent a location, area, line or point. This definition
matches the definition of a coverage in Open GIS [OGC 2000]. A coverage in a planar-
enforced spatial representation that covers a geographical area completely and divides it
in spatial partitions that may be either regular or irregular. For retrieving data from a
coverage, the Open GIS specification propose describes a discrete function
(DiscreteC_Function), as shown in Figure 4 below.

116

Figure 4 The Open GIS discrete coverage function – source: [OGC 2000].

 The DiscreteCFunction data type describes a function whose spatial domain and
whose range are finite. The domain consists of a finite collection of geometries, where a
DiscreteCFunction maps each geometry for a value [OGC 2000]. Based on the Open
GIS specification, we defined the type class Maps. The type class Maps generalizes and
extends the DiscreteCFunction class. Its functions are parameterized on the input type a
and the output type b. It provides the support for the operations proposed by the
DiscreteCFunction:

 class Maps map where
 evaluate :: (Eq a, Eq b) => map a b → a → Maybe b
 domain :: map a b → [a]
 num :: map a b → Int
 values :: map a b → [b]
 new_map :: [a] → (a → b) → (map a b)
 fun :: (map a b) → (a → b)

 The functions is the Maps type class work as follows: (a) evaluate is a
function that takes a map and an input value a and produces an output value (“give me
the value of the map at location a”); (b) domain is a function that takes a map and
returns the values of its domain; (c) num returns the number of elements of the map’s
domain; (d) values returns the values of the map’s range. We propose two extra
functions: new_map and fun, as described below.

• new_map, a function that returns a new map m, given a domain and a coverage
function.

• fun: given a map, returns its coverage function.

 We defined the Map data type to use the functions of the generic type class
Maps. The Map data type is also parameterized.

117

 data Map a b = Map ((a → b), [a])

 The data type Map has two parts:

• A coverage function that maps an object of generic type a to generic type b.

• A domain of objects of the polymorphic type a.

 The instance of the type class Maps to the Map data type is shown below:
 instance Maps Map where

 new_map a f = (Map (f, a))
 evaluate f o
 | (elem o (domain f)) = Just ((fun f) o)

 | otherwise = Nothing
 domain (Map (f, a)) = a
 num f = length (domain f)
 values f = map (fun f) (domain f)
 fun (Map (f,_)) = f

 Figure 5 show an example of the Map data type.
m1 :: (Map String Integer)
m1 = new_map [”ab”,”abc”,”a”] length
values m1
= [2,3,1]
evaluate m1 “ab”
= Just 2
evaluate m1 “ad” -- m1 not contain “ad”
= Nothing

Figure 5 Example of use of the Map data type.

4.2 Operations

Câmara et al [2005] define two classes of the map algebra operations: nonspatial and
spatial. For nonspatial operations, the value of a location in the output map is obtained
from the values of the same location in one or more input maps. They include logical
expressions such as “classify as high risk all areas without vegetation with slope greater
than 15%”, “Select areas higher than 500 meters”, “Find the average of deforestation
in the last two years”, and “Select areas higher than 500 meters with temperatures
lower than 10 degrees”. Spatial functions are those where the value of a location in the
output map is computed from the values of the neighborhood of the same location in the
input map. They include expressions such as “calculate the local mean of the map
values” and “given a map of cities and a digital terrain model, calculate the mean
altitude for each city”. In what follows, we show these operations in TerraHS, using
polymorphic data types.

118

4.2.1 Nonspatial operations

Nonspatial operations are higher-order functions that take one value for each input map
and produce one value in the output map, using a first-order function as argument.
These include single argument functions and multiple argument functions [Câmara,
Palomo et al. 2005].

 class (Maps m) => NonSpatialOperations m where
 map_single :: (b → c) → (m a b) → (m a c)

 map_multiple:: ([b] → c) → [(m a b)] → (m a b)→(m a c)
 The map_single function has two arguments: a map m and a first-order function
g. It returns a new map, whose domain contains the same elements of the input map
domain. The coverage function of the output map is the composition of the coverage
function of the input map m and the first-order function g.

 map_single g m = new_map (domain m) (g . (fun m))
defines a new map
with the same domain defines the mapping

function of the new map

 Figure 6 shows an example of a single argument function.
values m1
= [2, 4, 12]
m2 = map_single square m1
values m2
= [4, 16, 144]

Figure 6 Example of use of the single argument function

 The map_multiple function has three arguments: a map list, a multivalued
function and a reference map. Given a reference map, it applies a multivalued function in
map list.

 map_multiple fn mlist mref =
 new_map (domain mref) (\x → fn (map_r mlist x))

defines a new map
with the same domain defines the mapping function of the

new map using an auxiliary function

 The map_multiple function returns a new map with a same domain of the
reference map and a new coverage function. This function uses the auxiliary function
map_r. For each element x of the reference map, map_r applies the multiargument
function in the input list of maps to get the output value. It also handles cases where
there are multiargument function fails to returns an output value.

 map_r :: (Maps m) => [(m a b)] → a → [b]
 map_r [] _ = []
 map_r (m:ms) e = map_r’ (evaluate m x)
 where
 map_r’ (Just v) = v : (map_r ms e)
 map_r’ (Nothing) = (map_r ms e)

 Figure 7 shows an example of map_multiple. In this example, the m3 map is the
result of the sum of the maps m1 and m2.

values m1

119

= [2, 4, 8]
values m2
= [4, 5, 10]
m3 = map_multiple sum [m1, m2] m1
values m3
= [6, 9, 18]

Figure 7 - Example of use of map_multiple

4.2.2 Spatial Operations

Spatial operations are higher-order functions that use a spatial predicate. These functions
combine a selection function and a multivalued function, with two input maps (the
reference map and the value map) and an output map [Câmara, Palomo et al. 2005].
Spatial functions generalize Tomlin’s focal and zonal operations and have two parts:
selection and composition. For each location in the output map, the selection function
finds the matching region on the reference map. Then it applies the spatial predicate
between the reference map and the value map and creates a set of values. The
composition function uses the selected values to produce the result (Figure 8). Take the
expression “given a map of cities and a digital terrain model, calculate the mean
altitude for each city”. In this expression, the value map is the digital terrain model and
the reference map is the map of cities. The evaluation has two parts. First, it selects the
terrain values inside each city. Then, it calculates the average of these values.

Figure 8. Spatial operations (selection + composition). Adapted from Tomlin [1990].

The implicit assumption is that the geographical area of the output map is the same as
reference map. The type signature of the spatial functions in TerraHS is:.
class (Maps m) => SpatialOperations m where

 map_select :: (m a b) → (a → c→ Bool) → c → (m a b)
map_compose :: ([b] → b) → (m a b) → b

 map_spatial :: ([b] → b) → (m a b) → (a → c → Bool)
→ (m c b) → (m c b)

 The spatial selection function selects all elements that satisfy a predicate on a
reference object (“select all deforested areas inside the state of Amazonas”). It has three
arguments: an input map, a predicate and a reference element.
 map_select m pred obj = new_map sel_dom (fun m)

120

where
 sel_dom = [elem | elem ← (domain m) , (pred elem obj)]

 This function takes a reference element and an input map. It creates a map that
contains all elements of the input map that satisfy the predicate over the reference
element. Figure 9 shows an example, where the map consists of a set of points. Then, we
select those points that intersect a given line.

line= Line2d [Point(1,2),Point(2,2),Point (1,3),Point (0,4)]
domain m1
= [Point(4,5),Point (1,2),Point (2,3),Point (1,3)]
m2 = map_select m1 intersects line
domain m2
= [Point (1,2), Point (1,3)]

Figure 9 Example of map_select.

 The composition function combines selected values using a multivalued function.
In Figure 10, the map_compose function is applied to map m1 and to the multivalued
function sum.

 map_compose f m = (f (values m))
values m1
= [2, 6, 8]
map_compose sum m1
= 16

Figure 10 Example of map_compose.

 The map_spatial function combines spatial selection and spatial composition:
 map_spatial fn m pred mref = new_map (domain mref)

 (\x → map_compose (map_select m pred x) fn)
 Map_spatial creates a map whose domain contains the elements of the reference
map. To get its coverage function, we apply map_compose to the result of the
map_selection. Figure 12 shows an example.

domain m1
= [Point(4,5),Point (1,2),Point (2,3),Point (1,3)]
values m1
= [2,4,5,10]
domain m2
= [(Line2d[Point(1,2),Point (2,2),Point (1,3),Point (0,4)])]
m3 = map_spatial sum m1 intersects m2
values m3 -- 4 + 10
= [14]

Figure 12 Example of map_spatial

 The spatial operation selects all points of m1 that intersect m2 (which is a single
line). Then, it sums its values. In this case, points (1,2) and (1,3) intersect the line. The
sum of their values is 14.

121

4.3 Application Examples

In the previous section we described how to express the map algebra proposed in
Câmara et al. [2005] in TerraHS. In this section we show the application of this algebra
to actual geographical data.

4.3.1 Storage and Retrieval

Since a Map is generic data type, it can be applied to different concrete types. In this
section we apply it to the Geometry and Value data types available in the TerraHS, which
represent, respectively, a region and a descriptive value. TerraHS enables storage and
retrieval of a geo-object set. To perform a map algebra, we need to convert from a geo-
object set to a map and vice versa.

 toMap :: [GeObject] → AttrName → (Map Geometry Value)
 toGeObject::(Map Geometry Value)→ AttrName → [GeObject]

 Given a geo-object set and the name of one its attributes, the toMap function
returns a map. Remember that a Map type has one value for each region. Thus, a layer
with three attributes it produce three Maps. The toGeObject function inverts the
toMap function. Details of these two functions are outside the scope of this paper. Given
these functions, we can store and retrieve a map, given a spatial database.
 retrieveMap::
 Database → LayerAttr → IO (Map Geometry Value)
 retrieveMap db (layername, attrname) = do
 db <- open db
 geoset <- retrieve db layername
 let map = toMap geoset attrname
 close db
 return map
 The LayerAttr type is a tuple that represents the layer name and attribute
name. The retrieveMap function connects to the database, loads a geo-object set,
converts these geo-objects into a map, and return this map as its output.
 storeMap::
 Database→ LayerAttr → (Map Geometry Value)→ IO Bool
 storeMap db (layername, attrname) m = do
 let geos = toGeObject map attrname
 db <- open db
 close db
 let status = store db layername geos
 return status
 The storeMap function coverts a map to a geo-object set that will be saved in
the database. We can now write a program that reads and writes a map in a TerraLib
database.

122

host = “sputnik”
user = “Sergio”
password = “terrahs”
dbname = “Amazonia”
main:: IO ()
main = do
 db <- open (MySQL host user pass dbname)

def_map <- retrieveMap db (“amazonia”,“deforest")
-- apply a nonspatial operation

 let defclass = map_single classify def_map
 storeMap db (“amazonia”, “defclass”) defclass

Figure 13 Retrieving and storing a Map from TerraLib Database

4.3.2 Examples of Map Algebra in TerraHS

Since 1989, the Brazilian National Institute for Space Research has been monitoring the
deforestation of the Brazilian Amazon, using remote sensing images. We use some of this
data as a basis for our examples. We selected a data set from the central area of Pará,
composed by a group of highways and two protection areas. This area is divided in cells
of 25 x 25 km2, where each cell describes the percentage of deforestation and deforested
area (Figure 14).

Figure 14 – Deforestation, Protection Areas and Roads Maps (Pará State)

 Our first example considers the expression: “Given a map of deforestation and
classification function, return the classified map”. The classification function defines
four classes: (1) dense forest; (2) mixed forest with agriculture; (3) agriculture with
forest fragments; (4) agricultural area. This function is:

classify :: Value → Value
classify (DbValue v)
 | v < 0.2 = (StValue "1")
 | ((v > 0.2) && (v < 0.5)) = (StValue "2")
 | (v > 0.5) && (v < 0.8) = (StValue "3")
 | v > 0.8 = (StValue "4")

 We obtain the classified map using the map_single operation together with the
classify function:

123

 def_class = map_single classify def_map

Figure 15 – The classified map

 As a second example, we take the expression: “Calculate the mean deforestation
for each protection area”. The inputs are: the deforestation map (def_map), a spatial
predicate (within), a multivalued function (mean) and the map of protected areas
(prot_areas). The output is a deforestation map of the protected areas (def_prot)
with the same objects as the reference map (prot_areas). We use the map_spatial
higher-order operation to produce the output:

def_prot = map_spatial mean def_map within prot_areas

Figure 16 – Deforest mean by protection area

 In our third example, we consider the expression: “Given a map containing roads
and a deforestation map, calculate the mean of the deforestation along the roads”. We
have as inputs: the deforestation map (def_map), a spatial predicate (intersect), a

124

multivalued function (mean) and a road map (roads). The product is a map with one
value for each road. This value is the mean of the cells that intercept this road.

road_def = map_spatial mean def_map intersect road_map

Figure 17 – Deforestation mean along the roads

5 Conclusions
This paper presents the TerraHS application for integrating functional programming and
spatial databases. We use TerraHS to develop and validate a map algebra in a functional
language. The resulting map algebra is compact, generic and extensible. The example
shows the benefits on using functional programming, since it enables a fast prototyping
and testing cycle. Table 1 presents the total number of Haskell lines used to develop the
map algebra.

Table 1 – Map Algebra in Haskell

Number of source lines

 operations axioms total

Data types 6 9 15

Map Algebra 6 10 16

Auxiliary 1 5 6

Total 13 24 37

 For comparison purposes, the SPRING GIS [Câmara, Souza et al. 1996] includes
a map algebra in the C++ language that uses about 8,000 lines of code. The SPRING

125

map algebra provides a strict implementation of Tomlin’s algebra. Our map algebra
allows a more generic set of functions than Tomlin’s at less than 1% of the code lines.
This large difference comes from the use of the parameterized types, overloading and
higher order functions, which are features of the Haskell language. Our work points out
that integrating functional languages with spatial database is an efficient alternative in for
developing and prototyping novel ideas in GIScience.

References
Câmara, G. (2005). Representação computacional de dados geográficos. Bancos de

Dados Geográficos. M. Casanova, G. Câmara, C. Davis, L. Vinhas and G.
Ribeiro. Curitiba, MundoGeo Editora: 11-52.

Câmara, G., D. Palomo, R. C. M. d. Souza, et al. (2005). Towards a generalized map
algebra: principles and data types. VII Workshop Brasileiro de Geoinformática,
Campos do Jordão, SBC.

Câmara, G., R. Souza, U. Freitas, et al. (1996). "SPRING: Integrating Remote Sensing
and GIS with Object-Oriented Data Modelling." Computers and Graphics 15(6):
13-22.

Casanova, M., G. Camara, C. Davis, et al., Eds. (2005). Bancos de Dados Geograficos
(Spatial Databases). Curitiba, Editora MundoGEO.

Chakravarty, A. P. a. M. (2004). Interfacing Haskell with Object-Oriented Languages.
15th International Workshop on the Implementation of Functional Languages,
Lübeck, Germany, Springer-Verlag.

Chakravarty, M. (2003). "The Haskell 98 foreign function interface 1.0: An addendum to
the Haskell 98 report."

Frank, A. (1997). Higher order functions necessary for spatial theory development. Auto-
Carto 13, Seattle, WA, ACSM/ASPRS.

Frank, A. (1999). One Step up the Abstraction Ladder: Combining Algebras - From
Functional Pieces to a Whole. COSIT - Conference on Spatial Information
Theory, Springer-Verlag.

Frank, A. and W. Kuhn (1995). Specifying Open GIS with Functional Languages.
Advances in Spatial Databases—4th International Symposium, SSD ‘95,
Portland, ME. M. Egenhofer and J. Herring. Berlin, Springer-Verlag. 951: 184-
195.

Hudak, P. (1989). "Conception, evolution, and application of functional programming
languages." ACM Comput. Surv. 21(3): 359-411.

Jones, S. P. (2002). "Haskell 98 Language and Libraries The Revised Report."

Jones, S. P. (2005). "Tackling the Awkward Squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell."

Medak, D. (1999). Lifestyles - a new Paradigm in Spatio-Temporal Databases.
Department for Geoinformation. Vienna, Technical University of Vienna.

126

OGC. (2000). "Open GIS Consortium. Topic 6: the coverage type and its subtypes."
Retrieved 10/05/2006, 2006, from
http://portal.opengeospatial.org/files/?artifact_id=7198.

Peyton Jones, S., J. Hughes and L. Augustsson. (1999). "Haskell 98: A Non-strict,
Purely Functional Language." from http://www.haskell.org/onlinereport/.

Shields, M. and S. L. P. Jones (2001). "Object-Oriented Style Overloading for Haskell."
Electronic Notes in Theoretical Computer Science 59(1).

Thompson, S. (1999). Haskell:The Craft of Functional Programming. Harlow, England,
Pearson Education.

Tomlin, C. D. (1983). A Map Algebra. Harvard Computer Graphics Conference.
Cambridge, MA.

Vinhas, L. and K. R. Ferreira (2005). Descrição da TerraLib. Bancos de Dados
Geográficos. M. Casanova, G. Câmara, C. Davis, L. Vinhas and G. Ribeiro.
Curitiba, MundoGeo Editora: 397-439.

Wadler, P. (1990). Comprehending monads. Proceedings of the 1990 ACM conference
on LISP and functional programming %@ 0-89791-368-X. Nice, France, ACM
Press: 61-78.

Winter, S. and S. Nittel (2003). "Formal information modelling for standardisation in the
spatial domain." International Journal of Geographical Information Science 17:
721--741.

127

http://portal.opengeospatial.org/files/?artifact_id=7198
http://www.haskell.org/onlinereport/

	cb239: VIII Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 19-22, 2006, INPE, p. 109-128.
	sumário:

