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Abstract This paper presents a concurrent implementation of a previously
developed Dual-Input Max-Tree algorithm that implements anti-
extensive attribute filters based on second-generation connectivity.
The paralellization strategy has been recently introduced for ordi-
nary Max-Trees and involves the concurrent generation and filter-
ing of several Max-Trees, one for each thread, that correspond to
different segments of the input image. The algorithm uses a Union-
Find type of labelling which allows for efficient merging of the trees.
Tests on several 3D datasets using multi-core computers showed a
speed-up of 4.14 to 4.21 on 4 threads running on the same num-
ber of cores. Maximum performance of 5.12 to 5.99 was achieved
between 32 and 64 threads on 4 cores.
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1. Introduction

Attribute filters [2, 9] are a class of shape preserving operators. Their key
property is that they operate on image regions rather than individual pix-
els. This allows image operations without distorting objects, i.e., they either
remove or preserve objects intact, based on some pre-specified property. At-
tribute filters can be efficiently implemented using the Max-Tree algorithm
[9], or similar tree structures [3, 12]

Image regions in mathematical morphology are characterized by some
notion of connectivity, most commonly 4- and 8-connectivity. This yields
an association between connectivity and connected operators which is ex-
tensively discussed in [1, 8, 10]. These papers also provide extensions to
these basic connectivities known as second-generation connectivity. A gen-
eral framework and algorithm is presented in [7]. The algorithm referred to
as the Dual-Input Max-Tree supports the mask-based connectivity scheme,
for which we give a concurrent implementation in this paper. It is based on
the parallel Max-Tree algorithm in [14], which builds individual Max-Trees
for image regions concurrently, and merges these trees efficiently.
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2. Attribute filters

Attribute filters are based on connectivity openings. In essence, a con-
nectivity opening Γx(X) yields the connected component containing the
point x ∈ X and ∅ otherwise. A connectivity opening is characterized by
the following properties; for any two sets X, Y it is anti-extensive i.e.,
Γx(X) ⊆ X, increasing i.e., if X ⊆ Y ⇒ Γx(X) ⊆ Γx(Y ), and idempotent
i.e., Γx(Γx(X)) = Γx(X). Furthermore, for all X ⊆ E, x, y ∈ E,Γx(X) and
Γy(X) are equal or disjoint.

A general approach in deriving second-generation connectivity openings
using arbitrary image operators is given in [7]. A mask-based connectivity
opening is defined as:

ΓM
x (X) =


Γx(M) ∩X if x ∈ X ∩M , (1a)
{x} if x ∈ X \M , (1b)
∅ otherwise. (1c)

where M is an arbitrary, binary mask image.
We can define a number of other connected filters based on a connectivity

opening that work by imposing constraints on the connected components it
returns. In the case of attribute openings such constraints are commonly
expressed in the form of binary criteria which decide to accept or to reject
components based on some attribute measure.

Attribute criteria Λ are put in place by means of a trivial opening ΓΛ.
The latter yields C if Λ(C) is true, and ∅ otherwise. Furthermore, ΓΛ(∅) = ∅.
Attribute criteria are typically expressed as:

Λ(C) = Attr(C) ≥ λ, (2)

with Attr(C) some real-value attribute of C, and λ an attribute threshold.

Definition 1. The binary attribute opening ΓΛ of a set X with an increas-
ing criterion Λ is given by:

ΓΛ(X) =
⋃

x∈X

ΓΛ(Γx(X)). (3)

Many examples are given in [2, 9]. Note that if Λ is non-increasing we
have an attribute thinning ΦΛ [2] instead. An example is the scale-invariant
non-compactness criterion of the form of (2), in which

Attr(C) = I(C)/V 5/3(C), where I(C) =
V (C)

4
+

∑
x∈C

(x− x)2, (4)
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Figure 1. Isosurface projections of a confocal laser scanning micrograph of a
pyramidal neuron and the output of the non-compactness filter (4) based on the
26-connectivity, both at isolevel 1. The first image in the bottom row illustrates
the filter’s performance using closing-based connectivity and the second shows the
difference volumes between two attribute filter results. Various details within the
neuron are lost using the 26-connectivity which are preserved by using a second-
generation connectivity instead. See [7] for details.

with I the trace of the moment of inertia tensor in 3D and V (C) the vol-
ume of a component C [15]. Attribute filters can be operated on sets char-
acterized by second-generation connectivity by replacing Γx with ΓM

x in-
stead. The proof of this and a more detailed analysis can be found in [7].
Furthermore, an investigation in optimizing the parameters affecting the
performance of these filters is discussed in [6] An example of attribute thin-
nings using closing-based second-generation connectivity is shown in Fig-
ure 1.

3. The Max-Tree algorithm

The Max-Tree was introduced by Salembier [9] as a versatile structure for
computing anti-extensive attribute filters on images and video sequences. It
is a rooted, unidirected tree in which the node hierarchy corresponds to the
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Figure 2. Example of input signal, peak components, Max-Tree and its encoding
in a par array, in which ⊥ denotes the overall root node, and boldface numbers
denote the level roots, i.e., they point to positions in the input with grey level
other than their own.

nesting of peak components given a gray-scale image. A peak component Ph

at level h is a connected component of the thresholded image Th(f). Each
tree node Ck

h (k is the node index) contains only those pixels of a given peak
component which have gray-level h. In addition each node except for the
root, points towards its parent Ck′

h′ with h′ < h. The root node is defined
at the minimum level hmin and contains the set of pixels belonging to the
background.

The algorithm is a three-stage process in which the construction of
the tree and the computation of node attributes is independent of filter-
ing and image restitution. During the construction stage every pixel vis-
ited contributes to the auxiliary data buffer associated to the node it be-
longs to. Once a node is finalized, its parent inherits these data and re-
computes its attribute. Inheritance in the case of increasing attributes such
as area/volume is a simple addition while for non-increasing attributes such
as the non-compactness measure of (4) the accumulation relies on more
delicate attribute handling functions described in [7].

4. Including union-find in the Max-Tree

The hierarchical queue-based algorithm given by Salembier [9] cannot be
trivially parallellized. In our approach we choose to partition the image
into Np connected disjoint regions the union of which is the entire image
domain. Each region is assigned to one of the Np processors for which a
separate tree is constructed. The non-trivial part of this approach is the
merging of the resulting trees. It is a process that requires (i) the merging of
the peak components P i

h, (ii) the updating of the parent relationships, and
(iii) the merging of the attributes of the peak components. Parallellizing
the filtering stage is trivial.

Previously, Najman et al. provided an algorithm to compute the Max-
Tree using union-find [5]. Wilkinson et al. [14] use a different approach, using
Salembier et al.’s original algorithm [9] and changing the way the labels
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indicating node-membership of each pixel were chosen. Instead of using
arbitrary numbers, Wilkinson et al. use the index of the first pixel of a node
as the label. This means that each pixel of a node points to this “canonical
element”, which is referred to as a level root. The level root of a node itself is
given the level root of its parent node as its index. These labels (or actually
parent pointers in union-find terms) are stored in an array denoted par.
Thus, if f(par[x]) 6= f(x), x is a level root. In the algorithm in [14], after
building a tree using a single thread, each par[x] points directly to a level
root: its own if x is not a level root, or to the level root of the parent node.
An example is shown in Figure 2. Once the results of multiple threads are
merged, this is no longer true. Therefore, we implement a function levroot
to find the level root of any pixel. If levroot(x) = levroot(y) x and y
belong to the same node. The implementation of levroot also includes
path compression as in [11].

5. The dual-input mode

As in the sequential case, the structure of the Max-Tree is dictated by the
peak components of the mask volume m rather than the original volume f .
An example is given in Figure 3. The dual-input version of the algorithm
in [14] requires a number dummy nodes which assist in the merging of the
different trees once all the threads return. To do this we double the size of
the par array, and place the volumes f and m side by side in a single block
of memory. In this way f(p+ volsize) = m(p) for all voxels p in the volume
domain. For all p for which f(p) 6= m(p) par(p + volsize) will contain a
valid reference to a level root.

The flooding function proceeds as described in [14] only we modify the
way auxiliary data are handled and add a number of intensity mismatch
checks to conform with the dual-input algorithm. After reaching a given
level lev(=current level in mask m) and before retrieving any of the pixels
available in the queue for that level, we first initialize the auxiliary data
variable attr. It is set to the attribute count of the node corresponding to
the lero[lev]. If an attribute count from a node at higher level is inherited
through parameter thisattr, we update attr. A while loop then retrieves
sequentially the members of the queue and for each one performs the mis-
match check. If f(p) 6= m(p) for a pixel p this signals the case in which p
belongs to the current active node at f(p) through the connected component
at level m(p), i.e., it defines a peak component at level f(p) to which p in the
mask volume is connected. In terms of our parallelizing strategy this means
that it already defines a dummy node at m(p) offset by volsize. We must
then set par(p + volsize) to lero[lev]. We must also create a new node at
level f(p) if none exists, and add p to the node at level f(p). If f(p) > m(p)
p is a singleton (according to (1)). This requires finalizing the node which
is done by setting its parent to lero[lev], setting its auxiliary data to the
unit measure and clearing lero[f(p)]. Details are given in Algorithm 1.
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Algorithm 1 The flooding function of the concurrent Dual-Input Max-Tree
algorithm.
procedure LocalTreeFlood(threadno, lero, lev, thisattr) =

Initialize auxilliary attribute data attr and merge with thisattr
while (QueueNotEmpty(set, lev)) do

retrieve p from queue at level lev
if f(p) 6= lev then

par[p + volsize] := lero[lev];
if node at level f(p) exists then

add p to it; par[p] := lero[f(p)];
else

create node at level f(p); lero[f(p)] := p;
end;
if f(p) > lev then (* singleton with parent at lev *)

finalize node; add p to attr; par[p] := lero[lev];
end;

else (* No mismatch *)
if lero[lev] ≥ volsize then (* First pixel at level lev *)

par[lero[lev]] := p; lero[lev] := p;
end;
add p to attr;

end; (* No mismatch *)
end; (* while *)
for all neighbours q of p do

if not processed[q] then
processed[q] := true; mq := m(q);
initialize childattr to empty;
if m(q) 6= f(q) then newnode := q + volsize;
else newnode := q; end;
if lero[m(q)] does not exist then lero[m(q)] := newnode;
else par[newnode] := lero[m(q)]; end;
while mq > lev do

mq := LocalTreeFlood(threadno, lero,mq, childattr);
end;
add any data in childattr to attr;

end;
end; (* for *)
detect parent of lero[lev]
add auxilliary data in attr to auxilliary data of lero[lev]
set thisattr to attribute data of lero[lev]
return level of parent of lero[lev]

end LocalTreeFlood.
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Figure 3. Dual-Input Max-Tree of 1D signal f using mask m: The attributes of
C0

2 and C1
2 are merged to C0

2 since all pixels at level h = 2 are clustered to a single
peak component. Furthermore C1

1 breaks up to a number of singleton nodes equal
to the number of pixels in P 1

f1. Bottom row: partial Max-Trees of segments of
signal indicated by the dashed lines; merger of partial Max-Trees at level of f at
the boundaries yields standard Max-Tree in this case; merging at level of m at
the boundary yields correct result.

Otherwise, if f(p) = m(p), it is necessary to check if the lero[lev] ≥
volsize, i.e., if it is a dummy node. If this is the case, we update par[lero[lev]]
to p, and then set lero[lev] to p, effectively setting the level root to a non-
dummy node. The auxiliary data stored in attr are then updated.

For every unprocessed neighbour q of p we determine where to create
a new node. If f(q) = m(q) the new node is q, otherwise q + volsize. If
lero[m(q)] exists, we set par[newnode] to lero[m(q)], otherwise lero[m(q)]
is set to par[newnode]. If m(q) ≥ lev we then enter into the recursion as in
[9, 14].

6. Concurrent merging of Max-Trees

As in regular connectivities, we must now connect the Np Max-Trees. In
[14], this is done by inspecting the pixels along the boundary between the
parts, and performing the connect function on adjacent pixels on either
side of the boundary. This function is shown in Algorithm 3. A proof of the
correctness and a detailed discussion are given in [14]. The key reason why
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Algorithm 2 Concurrent construction and filtering of the Max-Trees,
thread p.
process ccaf(p)

build dual input Max-Tree Tree(p) for segment belonging to p
var i := 1 , q := p ;
while p + i < K ∧ q mod 2 = 0 do

wait to glue with right-hand neighbor ;
for all edges (x, y) between Tree(p) and Tree(p + i) do

if f(x) 6= m(x) then x := x + volsize;
if f(y) 6= m(y) then y := y + volsize;
connect(x, y) ;

end ;
i := 2 ∗ i ; q := q/2 ;

end ;
if p = 0 then

release the waiting threads
else

signal left-hand neighbor ;
wait for thread 0

end ;
filter(p, lambda) ;

end ccaf.

this works efficiently, is that merging two nodes containing x and y, with
f(x) = f(y) reduces to the assignment:

par[levroot(y)] := levroot(x). (5)

This is easily verified as follows: par[levroot(y)] now points to a pixel with
the same grey level because f(x) = f(y), and levroot(x) = levroot(y)
after assignment (5), so that x and y belong to the same node.

Function connect is called by the process concurrent construction and
filter or ccaf(see Algorithm 2), which corresponds to one of the threads of
the concurrent merging algorithm. Each thread p first builds a Max-Tree
for its own sub-domain Vp.

Process ccaf is called after initializing par, the auxiliary data functions
and preparing the thread data. It starts off by first initializing the level root
array lero and hierarchical queue for all gray-levels and finding the minimum
voxel values in f and m. Having got the starting voxel of minimum grey
value in m it calls LocalTreeFlood. If the minimum values in f and m
differ, some post-processing as explained in [7] is required.

After this, the sub-domains are merged by means of a binary tree in
which thread p accepts all sub-domains Vp+i with p+i < Np and 0 ≤ i < 2a,
where 2a is the largest power of 2 that divides p. An example of a binary
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Algorithm 3 Merging two Max-Trees.

procedure connect(x, y) =
Initialize auxilliary attribute data temp1 to empty
x := levroot(x) ; y := levroot(y) ;
if f(y) > f(x) then swap(x, y) end
while x 6= y ∧ y 6= ⊥ do

z := levroot(par[x])
if z 6= ⊥ ∧ f(z) ≥ f(y) then

Add data in temp1 to attribute data of x ;
x := z ;

else
temp2 := sum of attribute data of x and temp1 ;
temp1 := attribute data of x ;
attribute data of x := temp2 ;
par[x] := y ; x := y ; y := z ;

end
end
if y = ⊥ then (* root of one tree reached *)

while x 6= ⊥ do (* process remaining ancestors of x *)
Add data in temp1 to attribute data of x ;
x := levroot(par[x]) ;

end
end

end connect.

tree for Np = 8 is shown in Figure 4. Note that odd-numbered threads
accept no sub-domains. A thread that needs to accept the domain of its
right-hand neighbor, has to wait until the neighbor has completed its Max-
Tree computation. Because the final combination is computed by thread
0, all other threads must wait for thread 0 before they can resume their
computation for the filtering phase. This synchronization is realized by
means of two arrays of Np − 1 binary semaphores. The filtering phase is
also fully concurrent, and is identical to that described in [14].

For second-generation connectivity, the difference lies not in the imple-
mentation of connect, but in which pixels need to be merged. Suppose x
and y are adjacent voxels which lie on different sides of the boundary in-
spected by ccaf. If f(x) = m(x) the node in the Max-Tree at level f(x) is
the correct one, as before, otherwise we should start merging at level m(x),
as shown in Figure 3. At the left-hand segment boundary in this figure,
merging at level f(x) ignores the fact that P 0

f2 and P 1
f2 are clustered to-

gether in node C0
2 using connectivity based on mask m. By contrast, at the

right-hand segment boundary, merging from level f(x) would merge nodes
C2

1 and C3
1 , which are considered singletons in the mask-based connectivity.
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Figure 5. Speed-up for volume openings (solid) and non-compactness thinnings
(dashed) as a function of number of threads. The left graph shows the initial,
slightly better than linear (dotted-line) speed-up as we move from 1 to 4 threads.
The right-hand graph also shows the behaviour up to 64 threads.

In the scheme outlined above, this means that we start the merger from x
if f(x) = m(x), and from x + volsize, otherwise. The same holds for y.
Thus the only changes to the ccaf function when compared to [14] lies in
the statements immediately preceding the call to connect.

7. Performance testing and complexity

The above algorithm was implemented in C for the general class of anti-
extensive attribute filters. Wall-clock run times for numbers of threads equal
to 1, 2, 4, 8, 16, 32, and 64 for for two different attributes were determined.
The attributes chosen were volume (yielding an attribute opening) and the
non-compactness measure (4) [15] yielding an attribute thinning.

Timings were performed on an AMD dual-core, Opteron-based machine.
This machine has two dual-core Opteron 280 processors at 2.4 GHz, giving
a total of 4 processor cores, and 8 GB of memory (4 GB per processor
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socket). Each timing was repeated 10 times, and the minimum was used
as the most representative of the algorithm’s performance. Five volume
data sets publicly available from http://www.volvis.org were used. All
volumes were 8 bit/voxel sets, comprising 4 CT-scans and 1 MRI scan. Test
were done using volume openings with λ = 100 and ϕ1 with λ = 2.0 and the
subtractive rule. The volume sizes ranged from 22.7 to 128 MB. The speed-
up achieved is shown in Figure 5. As can be seen, the speed-up is slightly
better than linear, as we move from 1 to 4 threads (4.21 ±0.15 for volume
openings and 4.14 ± 0.15 for non-compactness thinning at 4 threads). This
may be due to the fact that more than 4 GB of memory is required when
processing the larger volumes in the set, and therefore the processor doing
the work requires access to the memory bank of the other socket, resulting
in higher latency. As the number of threads exceeds the number of cores,
we still obtain more speed-up, up to 5.99 ± 0.2 at 64 threads for volume
openings, and 5.12 ± 0.27 at 32 threads for non-compactness thinning. In
absolute terms, computing time went from between 20.8 and 128 s down to
between 4.66 and 23.4 s.

The complexity of the algorithm is governed by two main parts: the
building phase and the merging phase. Assuming a volume of X ×Y ×Z =
N , in the building phase the time complexity is O(GN/Np), with G the
number of grey levels, and Np the number of processors. This complexity
arises from the O(GN) complexity of Salembier et al.’s Max-Tree algorithm
[4]. If the number of grey levels is large, it may be better to replace this
by Najman and Courpie’s method [5]. The merging phase has complexity
O(GXY log N log Np) if the volume is split up into slices orthogonal to the
Z direction. The log N is due to the fact that we only use path compression,
not union-by-rank. Memory requirements are O(N + G).

8. Conclusions

The speed-up of the algorithm presented is similar to that of the parallel
Max-Tree algorithm in [14]. However, it is about 50% slower in absolute
terms. The speed-up if the number of threads exceeds the number of physical
processors is due to reduced cache thrashing, as is confirmed by profiling. It
also indicates that on machines with more processing cores, a (near) linear
speed up beyond 4 CPUs is expected.

Apart from use in 3D data, the algorithm could be of use in the efficient
implementation of attribute-space connected filters [13], in which the 2D
input image is embedded into a higher-dimensional attribute space, followed
by application of a connected filter in that space.

Given the ready availability of multi-core processors, this algorithm is
not restricted to supercomputers anymore, but will be of use to many, and
in the near future most desktop machines.
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