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1. Introduction

Let F be a nonempty subset of Z¢ and let P(E)
denote the power set of E. Let h € Z% and X C E.
The set X, = {x+h : 2 € X} is the translation of X
by h. Let B € P(E). We define e : P(E) — P(E)
the erosion by B, also called structuring element,
ep(A) ={h € Z: By, C A} for all A€ P(E). More
details can be found in [4].

This work presents a new algorithm for binary
morphological erosions inspired by a preprocessing
technique which is quite similar to those presented
in many fast string matching algorithms [1]. A time
complexity analysis shows that this algorithm has
clear advantages over the traditional and quite naive
implementations which consist of passing a structur-
ing element over the input image. Experimental re-
sults confirm this analysis and shows that this algo-
rithm has a good performance and is a better option
for erosions computations.

2. The new algorithm for erosion

This section introduces the proposed algorithm for
binary morphological erosions.

2.1 Preprocessing

Let € E. We denote by [z]; the k*" dimension of
the point . Thus z = ([z]1, [z]2, . .., [z]a)-

The first preprocessing step

Let X € P(E) and k € {1,2,...,d}. The first pre-
processing step consists of using the k™" dimension
of the space F to find a partition {P;, Pa, ..., P} of
X, that has the following property: x,y € X are in
the same subset of partition if, and only if, for all
j # k. [x]; = [y]; . There exists an algorithm to find
this partition in O(|X]).

Let z,y € P;. The point z is adjacent by di-
mension k, or simply adjacent, to y if and only
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if |[z]x — [yle] = 1. A nonempty subset I =
{zo,71,...,x,} C P; is an interval of X if, and only
if, Va; € I with j < n, ;41 is adjacent by dimen-
sion k to ;. An interval I C P; is mazimal if, and
only if, VI’ C P;, I' # I, we have that I € I'. The
set of all maximal intervals of P; is denoted by Z;.
The set of all mazimal intervals of X is defined as
IX)={I€eZ;: i=1,2,...,0}.

The second preprocessing step

Let X € P(E). The second preprocessing step con-
sists of finding the set Z(X). If we use a data struc-
ture (e.g., multidimensional array) that allows us to
verify if an element z € E is an element of P; in
time O(1), there exists an algorithm that builds Z;
in time O(|P;]). Thus, since {Py,..., P} is a par-
tition of X, there exists an algorithm to find Z(X)
with complexity time O(|X]).

For each interval I € I(X), its extremities are
the points pmin(I) € I and pmax(I) € I such that
[prnin(l)]k < [Z’]k < [pnmx(l)]k for all z € I. Notice
that for each point z € X, there exists only one inter-
val I € Z(X) that contains z. Let X € P(E). The
density of x with respect to X, denoted by Ax(z),
is defined as (see Figure 1):

Ax(x) = {mk = [Pmin (Dl

-1
where I € Z(X) is the only interval that contains z.

ifxeX

otherwise

The third preprocessing step

Let X € P(E). The third preprocessing step consists
of computing the densities of all z € X. Given I €
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Figure 1. (a) A structuring element B with its respective
densities. (b) An input image A; the darker gray color
indicates points x € A such that Aa(z) > Ap(bmax)-
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Z(X), it is possible to implement an algorithm for
computing the densities of all z € I in time O(|I]).
Thus, since Z(X) is a partition set of X, there exists
an algorithm for finding the density for all points of
X in O(| X|).

We will denote by xyax the point in X such that
its density is maximum. It is obvious that we can
find this point in time O(]X]).

For each interval I € Z(X), the shell of I, denoted
by ¢(I), is the point ((I) = pmax([) (see Figure 1).

Let A,B € P(E). If Ap(¢(1)) < Aa(¢(1)), VI €
I(B), then B C A. Let X € P(FE) and h € Z%.
For each I € T(X},) there exists I’ € Z(X) such that
¢(I) = ¢(I') + h and Ax, (C(I)) = Ax (¢(I)).

2.2 The erosion algorithm

Based on the previous definitions and properties, we
present the proposed erosion algorithm.

1: Erosion (A, B, k)

2: Input: A,B € P(E) and k € {1,2,...,d}.

3: Output: e5(A).

4: ep(A) — o;

5: Let bmax € B /* that is, Ap(bmax) is mazimum*/
6: for all a € A: Aa(a) > Ap(bmax) do

70 h=a— bmax;

8 if Ap, (C(1)) < Aa(¢()), VI € Z(By,) then
9: eB(A) —ep(A)U{h};

10:  end if

11: end for

12: return eg(A);

3. Complexity analysis

Let us denote ¢(A, byax) the number of points a € A
such that Aj(a) > Ap(bmax) (see Figure 1). Ba-
sically, ¢(A,bmax) is the number of times the con-
dition at Line 6 is satisfied. Thus, the number of
points of A that does not satisfy the condition at
Line 6 is |A| — ¢(A,bmax). On the other hand,
the complexity time for verifying the condition at
Line 8 is O(]Z(B)|) and, since this line is executed
©(A, bmax) times, the complexity time of the algo-
rithm is O(|Z(B)| - ¢(A, bmax)). Since the running
time for preprocessing A and B in order to com-
pute the initial partition set, the maximal interval
sets and the densities for all points of these sets is
O(JA] + |B|), the overall complexity time for com-
puting £(A) is O(1B| + || + [Z(B)| - ¢(A, bma))-

This analysis shows that the proposed algorithm
has clear advantages over the quite naive implemen-
tations which have complexity time O(|A| - |B|) and
consist of passing a structuring element over the in-
put image.
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Figure 2. Average execution time among all algorithms
using a PC with 3.0 GHz CPU and 1 Gbyte RAM.

4. Results and discussion

In this section, we present some experimental results
of the proposed algorithm for dimension d = 2 and
k = 2. To show its performance, we compared the
execution time among the CLASSICAL (naive im-
plementation) and the BDD (based on Binary De-
cision Diagram [3]) algorithms. All algorithms for
binary erosion have been executed on a pentium IV
workstation running Linux operating system.

In our experiments we have used squares, dia-
monds and disks of dimension n ranging from 3 to
300 as structuring elements. As input images, we
have used binary images® taken from a digital image
processing database? used in [2].

The execution time of all algorithms is presented
in Figure 2. These experimental results confirm the
complexity analysis and shows that this algorithm
has a good performance and is a better option for
erosions computations.

This is still an ongoing research and as a future
work, we plan to compare our algorithm with other
erosion implementations known in the literature.
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