
Efficient binary erosion algorithm based on a

string-matching-like technique

Anderson Fraiha Machado,
Ronaldo Fumio Hashimoto and
Alair Pereira do Lago

Universidade de São Paulo (USP), Brazil
{dandy,ronaldo,alair}@ime.usp.br

1. Introduction

Let E be a nonempty subset of Zd and let P(E)
denote the power set of E. Let h ∈ Zd and X ⊆ E.
The set Xh = {x+h : x ∈ X} is the translation of X
by h. Let B ∈ P(E). We define εB : P(E) → P(E)
the erosion by B, also called structuring element,
εB(A) = {h ∈ Zd : Bh ⊆ A} for all A ∈ P(E). More
details can be found in [4].

This work presents a new algorithm for binary
morphological erosions inspired by a preprocessing
technique which is quite similar to those presented
in many fast string matching algorithms [1]. A time
complexity analysis shows that this algorithm has
clear advantages over the traditional and quite naive
implementations which consist of passing a structur-
ing element over the input image. Experimental re-
sults confirm this analysis and shows that this algo-
rithm has a good performance and is a better option
for erosions computations.

2. The new algorithm for erosion

This section introduces the proposed algorithm for
binary morphological erosions.

2.1 Preprocessing

Let x ∈ E. We denote by [x]k the kth dimension of
the point x. Thus x = ([x]1, [x]2, . . . , [x]d).

The first preprocessing step

Let X ∈ P(E) and k ∈ {1, 2, . . . , d}. The first pre-
processing step consists of using the kth dimension
of the space E to find a partition {P1, P2, . . . , P`} of
X, that has the following property: x, y ∈ X are in
the same subset of partition if, and only if, for all
j 6= k, [x]j = [y]j . There exists an algorithm to find
this partition in O(|X|).

Let x, y ∈ Pi. The point x is adjacent by di-
mension k, or simply adjacent, to y if and only

if |[x]k − [y]k| = 1. A nonempty subset I =
{x0, x1, . . . , xn} ⊆ Pi is an interval of X if, and only
if, ∀xj ∈ I with j < n, xj+1 is adjacent by dimen-
sion k to xj . An interval I ⊆ Pi is maximal if, and
only if, ∀I ′ ⊆ Pi, I ′ 6= I, we have that I 6⊆ I ′. The
set of all maximal intervals of Pi is denoted by Ii.
The set of all maximal intervals of X is defined as
I(X) = {I ∈ Ii : i = 1, 2, . . . , `}.

The second preprocessing step

Let X ∈ P(E). The second preprocessing step con-
sists of finding the set I(X). If we use a data struc-
ture (e.g., multidimensional array) that allows us to
verify if an element x ∈ E is an element of Pi in
time O(1), there exists an algorithm that builds Ii

in time O(|Pi|). Thus, since {P1, . . . , P`} is a par-
tition of X, there exists an algorithm to find I(X)
with complexity time O(|X|).

For each interval I ∈ I(X), its extremities are
the points pmin(I) ∈ I and pmax(I) ∈ I such that
[pmin(I)]k ≤ [x]k ≤ [pmax(I)]k for all x ∈ I. Notice
that for each point x ∈ X, there exists only one inter-
val I ∈ I(X) that contains x. Let X ∈ P(E). The
density of x with respect to X, denoted by ∆X(x),
is defined as (see Figure 1):

∆X(x) =

{
[x]k − [pmin(I)]k if x ∈ X

−1 otherwise

where I ∈ I(X) is the only interval that contains x.

The third preprocessing step

Let X ∈ P(E). The third preprocessing step consists
of computing the densities of all x ∈ X. Given I ∈

Figure 1. (a) A structuring element B with its respective
densities. (b) An input image A; the darker gray color
indicates points x ∈ A such that ∆A(x) ≥ ∆B(bmax).

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 2, p. 49–50.

http://urlib.net/dpi.inpe.br/ismm@80/2007/06.16.00.48

49

I(X), it is possible to implement an algorithm for
computing the densities of all x ∈ I in time O(|I|).
Thus, since I(X) is a partition set of X, there exists
an algorithm for finding the density for all points of
X in O(|X|).

We will denote by xmax the point in X such that
its density is maximum. It is obvious that we can
find this point in time O(|X|).

For each interval I ∈ I(X), the shell of I, denoted
by ζ(I), is the point ζ(I) = pmax(I) (see Figure 1).

Let A,B ∈ P(E). If ∆B(ζ(I)) ≤ ∆A(ζ(I)), ∀I ∈
I(B), then B ⊆ A. Let X ∈ P(E) and h ∈ Zd.
For each I ∈ I(Xh) there exists I ′ ∈ I(X) such that
ζ(I) = ζ(I ′) + h and ∆Xh

(ζ(I)) = ∆X(ζ(I ′)).

2.2 The erosion algorithm

Based on the previous definitions and properties, we
present the proposed erosion algorithm.
1: Erosion (A, B, k)
2: Input: A, B ∈ P(E) and k ∈ {1, 2, . . . , d}.
3: Output: εB(A).
4: εB(A)← ∅;
5: Let bmax ∈ B /* that is, ∆B(bmax) is maximum*/
6: for all a ∈ A : ∆A(a) ≥ ∆B(bmax) do
7: h = a− bmax;
8: if ∆Bh(ζ(I)) ≤ ∆A(ζ(I)), ∀I ∈ I(Bh) then
9: εB(A)← εB(A) ∪ {h};

10: end if
11: end for

12: return εB(A);

3. Complexity analysis

Let us denote ϕ(A, bmax) the number of points a ∈ A
such that ∆A(a) ≥ ∆B(bmax) (see Figure 1). Ba-
sically, ϕ(A, bmax) is the number of times the con-
dition at Line 6 is satisfied. Thus, the number of
points of A that does not satisfy the condition at
Line 6 is |A| − ϕ(A, bmax). On the other hand,
the complexity time for verifying the condition at
Line 8 is O(|I(B)|) and, since this line is executed
ϕ(A, bmax) times, the complexity time of the algo-
rithm is O(|I(B)| · ϕ(A, bmax)). Since the running
time for preprocessing A and B in order to com-
pute the initial partition set, the maximal interval
sets and the densities for all points of these sets is
O(|A| + |B|), the overall complexity time for com-
puting εB(A) is O(|B|+ |A|+ |I(B)| · ϕ(A, bmax)).

This analysis shows that the proposed algorithm
has clear advantages over the quite näıve implemen-
tations which have complexity time O(|A| · |B|) and
consist of passing a structuring element over the in-
put image.

Figure 2. Average execution time among all algorithms
using a PC with 3.0 GHz CPU and 1 Gbyte RAM.

4. Results and discussion

In this section, we present some experimental results
of the proposed algorithm for dimension d = 2 and
k = 2. To show its performance, we compared the
execution time among the CLASSICAL (näıve im-
plementation) and the BDD (based on Binary De-
cision Diagram [3]) algorithms. All algorithms for
binary erosion have been executed on a pentium IV
workstation running Linux operating system.

In our experiments we have used squares, dia-
monds and disks of dimension n ranging from 3 to
300 as structuring elements. As input images, we
have used binary images1 taken from a digital image
processing database2 used in [2].

The execution time of all algorithms is presented
in Figure 2. These experimental results confirm the
complexity analysis and shows that this algorithm
has a good performance and is a better option for
erosions computations.

This is still an ongoing research and as a future
work, we plan to compare our algorithm with other
erosion implementations known in the literature.

References

[1] D. Knuth, J. H. Morris Jr, and V. Pratt, Fast Pat-
tern Matching in Strings, SIAM Journal on Computing
6 (1977), no. 2, 323–350.

[2] L. J. Latecki and R. Lakämper and U. Eckhardt, Shape
Descriptors for Non-rigid Shapes with a Single Closed
Contour, IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2000, pp. 424–429.

[3] L. Robert and G. Malandain, Fast Binary Image Process-
ing Using Binary Decision Diagrams, Computer Vision
and Image Understanding 72 (1998), no. 1, 1–9.

[4] J. Serra., Image Analysis and Mathematical Morphology,
Academic Press, New York (1982).

1MPEG7 CE Shape-1 Part B
2http://www.imageprocessingplace.com/

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 2, p. 49–50.

http://urlib.net/dpi.inpe.br/ismm@80/2007/06.16.00.48

50

