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Image decomposition

® Image (u+v)model f =u+v, f,uv:QcR® >N
 «cartoon» u (edges, contours, objects, shapes)
 texture v (oscillations, details, noise)

B Inverse problem: image decomposition

[ Energy minimization
B Total variation, convex optimization, PDE’s
B Wavelets and projections in function bases, dictionaries

1 Applications: image restoration, inpainting, analysis
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Variational schemes

Mumford-Shah image simplification

Total Variation minimization (Rudin, Osher & Fatemi): ||U||TV = H”Vu”dxdy
Eror (W) = Jul, +Afu— 1 Hi ’

Texture = Oscillatory functions (Y. Meyer): v=divj =00, +8yg2

u+v (Vese & Osher): Evo (u, Q) :HUHTV +1H f —(u +dng)H2 +’quHp

cartoon texture
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Volume Extremization with Sup-Inf Constraints

Theorem : Maximizing the volume functional by keeping invariant the
global supremum

max”u dxdy s.t. Vu=Vu,

has a gradient flow governed by the PDE generating flat dilation by disks
U=VU, UG y,00=U,(x,Y)

The dual problem of minimizing the volume functional by keeping invariant
the global infimum

min“udxdy s.t.  Au=Au,

has a gradient vector flow governed by the isotropic flat erosion PDE:

u, =—|[vu

,  UXY,0)=Uy(X, )




Create a Cartoon Simplification of a reference image f(x,y) consisting of
several parts by using a marker U, (X, Y) that intersects some of these parts and
evolves towards f in a monotone way such that all evolutions U(X, Y,1) satisfy:

tl <t2 — f(X, Y)ﬁf U(X, y:tz)jf U(X, yatl)jf UO(X, y)

= ¢ isainf-semilattice order w.r.t. a reference f

= y)—u(x Y, 0| <[ (X Y)—Uuy (X, y)| VEXy
Partition the regions R~ and R* formed by zero-crossings of f —U, :
RT={(%Y): f(y) 22U, (X, ¥)}= L R
R ={(xy): f(Xy)<uy(x,y)} = L; RY

Evolution of U is done by maintaining all local min/max of U, inside

subregions R/ R":

Vu=Vu, and Au=Au,,
R R R

R'




Variational Formulation of Levelings

Theorem: The gradient flow for the optimization problem

min | [u—flddy s, Vu=Vy, Au=Au,

1s given by:

AU(X, Y, 1)/ &t =—sgn(u— )|Vl
(X, y,0)=U,(X, Y)

RO ={(%y):u,(xy) = f(xy);=1 R
R*={(XY):u,(x )< f(Xy)} =4 R’
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Leveling-based cartoons

B Leveling cartoon approximations U = A(I\/l | f )
O u: leveling of image f level 0 (image)
O M: marker (e.g. Gaussian, anisotropic)

® Residual r=f —u
1 finer scales information
] contains texture v

B Multi-scale levelings
L hierarchy of cartoons/residuals

U =A(M;|u,_),i=12,..,n

u, = f r="F-u

[ causality property: u; is a leveling of u; for j>i

O markers are samples of a scale-space M, = f *G_
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Multiscale leveling decomposition (example)

L 2-level cartoons and residuals via levelings with markers-samples of an isotropic
Gaussian scale-space

image marker leveling residual

| level 1,
(01=4)
f M, =f*G_ u=A(M,|f) r="f-u
i | | level 2,
4 (02=8)

u

=A(M,|u,) r,=f-u,

2
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Comparisons with TV cartoons

B Levelings decrease the Total Variation norm
1 Creation of flat plateaus on which the gradient becomes zero

JTIvuef< [fIvul = JfIvf|

Leveling cartoons TV cartoons

a. preserve regional maxima & a. preserve the global mean
minima and do not create new

o b. preserve the global variance
b. preserve the sense of variation

between neighbour pixels
c. scale controlled by the

_ regularizing constant
c. TV norm decreases monotonically

d. scale controlled by (the scale) of
the marker image
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AM-FM Texture Model

Locally narrowband image texture (Bovik, Havlicek)

f(xy)=a(xy)cos[g(xy)]. V(xy)=a(xy)

analogies between AM-FM and Y .Meyer’s oscillating functions for texture

Amplitude and frequency estimation
d Multiband Gabor filtering

O 2D Energy Operator LP( f ) = | vf ||2 —-fv'f

Demodulation via ESA (Maragos & Bovik 1995)

v (f) s
\/\P(éf /ox)+ ¥ (of /oy) “" ( aY)‘

JE (0 [ax)/(F) =|o, 06 y)|, W (0f /y)/¥(F) ~|a,(x.y)
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Multiband Texture Energy Tracking (1)

Texture modulation energy of a locally narrowband component

f(y)=a(xy)-cos[g(xy)].  ¥[acos@)]~a’ Vo[

Bandpass filter the “texture image part” to isolate components

1:k (Xa y) :(V* gk)(xa y) z(Vk * gk)(xa y),

Impulse Responses of a 2D Gabor filterbank
h (x.y)=exp{-aix* by’ }exp{ jQ, -(x.Y)]

k-filter:
O Bandwidth parameters (2,,0,),
O central frequency vector Q,

Filterbank design

L polar arrangement in spectral domain

U octave bandwidth, equal bandwidth params

U typical design (40 filters, 5 scales, 8 orientations)
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Multiband Texture Energy Tracking (Il)

B Maximum Average Teager (MAT) energy
Q Energy tracking from the set of filtered, narrowband texture components

¥, (vt y)) =argmax (W (v )+, ) ()}

d  h,: local averaging filter, h,: the k-th Gabor filter-channel

B Indicates texture structure (analysis, detection, classification)
a Criterion for the extraction of the texture dominant component
U Dominant modulation features (amplitude, frequency, energy)

image MAT energy dominant component

3D grayscale
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MAT energy for Texture detection

B Texture energy measurements for texture markers
d indicate texture areas
 quantify region ‘texturdeness’
O roots of the MAT energy

B Markers extracted from the texture image part (e.g. leveling residual)

1 absence of large scale, geometric structures and features (edges, contours, blobs, contrast)
O f=u + v: texture + objects, v: texture, details, oscillations

(\Pmat (.))1/4

image

leveling (0=2)
residual =

rlzf_ul
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Leveling-based decomposition (Gaussian Markers)

® Cartoon, second-order leveling by Gaussian markers
O 1stlevel Y —A(M1|f) = 1=*G,, h="f-uy

Q 2mlevel lu=u,=A(M,|u,), 2=f>x<GC,2

B Texture, residual from ‘I?veling on residual’
O 1stlevel U, =A(M;1), M;=rx*G_,, o3=0l/2
O residual |[V=1I—U

1st level cartoon

residual texture

‘ . . ‘ -
50 100 150 200 250 4 - A "
) i, frtk\:‘\n\

i,
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Comparisons of u+v models

B Comparisons of leveling (u,, v,) decomposition with Vese, Osher (uy, Vyo) model

L decomposition (u, v) : Sharper object contours and small-scale features in u,, texture
components seem similar

L noise residuals (w=f-u-v): Leveling preserves structure while VO preserves texture. Does w,,,
model image ‘noise’ ?

L reconstruction from the model (u+v): Leveling quantizes intensity values.
m  Parameters are chosen to enforce |v,o||, =|v, |,

cartoon texture noise residual reconstruction

Vese-Osher, u+v
(A,p)=(5,0.1)

Leveling,
Gaussian markers
(01,02)=(10,16)
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Leveling-based decomposition (Energy markers)

B Texture component v is retrieved by

a. leveling the ‘cartoon’ residual I, = f —A (M| f) using texture-based markers
b. keeping the ‘new’ residual

: 1/k
Vv=r —-A (WY (F r|, k=12...
B Energy-based texture markers : (Slgn( 1)[( ar ( 1)) }' 1)’ ’
L mappings/transforms of the texture MAT operator (e.g. signed roots)

T =%..(r) T, =sign(n)T, T,=4T, T, =sign(r)|T,

W

iy

Markers
T

Texture components

v=r-A(T|r)
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Decomposition process in 1D (profiles)

cartoon

Black: Image

Red: 1stlevel

Blue: 2nd level (cartoon)
Green: Marker (Gaussian)
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0 Ui || ! ” 1 0! ll h|”||‘|'lll|ll it .Ilnll.u texture
-0.1 , , , 1 =01+ . . . ] . -
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T, =sign(r)T, (texture)
; Green: Marker
{energy)
i
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Application (Prehistoric Wall-Painting Restoration)

Image f ul Cartoon (u2) ul-u2

Section of ‘Potnia’ prehistoric wall painting in Thira, Acrotiri 20
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