Leveling Cartoons, Texture Energy Markers and Image Decomposition

Petros Maragos and Georgios Evangelopoulos

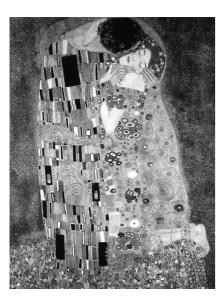
National Technical University of Athens

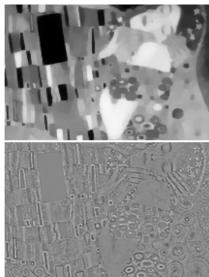
School of Electrical and Computer Engineering

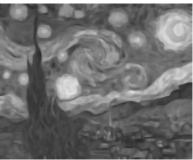
Computer Vision, Speech Communication and Signal Processing Group: http://cvsp.cs.ntua.gr

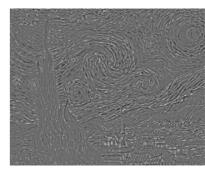
Image decomposition

- Image (u+v) model f = u + v, $f, u, v : \Omega \subset \Re^2 \to \Re$
 - «cartoon» u (edges, contours, objects, shapes)
 - □ texture v (oscillations, details, noise)
- Inverse problem: image decomposition
 - Energy minimization
 - Total variation, convex optimization, PDE's
 - Wavelets and projections in function bases, dictionaries
 - Applications: image restoration, inpainting, analysis









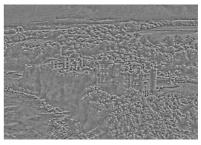
Variational schemes

- Mumford-Shah image simplification
- Total Variation minimization (*Rudin, Osher & Fatemi*): $\|u\|_{\mathrm{TV}} = \iint_{\Omega} \|\nabla u\| dxdy$ $E_{ROF}(u) = \|u\|_{\mathrm{TV}} + \lambda \|u f\|_{2}^{2}$
- Texture = Oscillatory functions (Y. Meyer): $v = \operatorname{div} \vec{g} = \partial_x g_1 + \partial_y g_2$
- u+v (Vese & Osher): $E_{VO}(u, \vec{g}) = \|u\|_{TV} + \lambda \|f (u + \operatorname{div}\vec{g})\|_{2}^{2} + \mu \|\vec{g}\|_{p}$

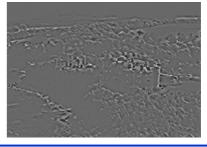
image

cartoon

texture



ROF



VO

A VARIATIONAL FORMULATION OF PDES FOR DILATION AND LEVELINGS

Petros Maragos

ISMM 2005 - Paris

Volume Extremization with Sup-Inf Constraints

Theorem: Maximizing the volume functional by keeping invariant the global supremum

$$\max \int \int u \, dx dy \quad \text{s.t.} \quad \mathsf{V} \, u = \mathsf{V} \, u_0$$

has a gradient flow governed by the PDE generating flat dilation by disks

$$u_t = \|\nabla u\|, \quad u(x, y, 0) = u_0(x, y)$$

The **dual problem** of minimizing the volume functional by keeping invariant the global infimum

$$\min \iint u \, dx dy \qquad \text{s.t.} \quad \wedge u = \wedge u_0$$

has a gradient vector flow governed by the **isotropic flat erosion PDE**:

$$u_t = -\|\nabla u\|, \qquad u(x, y, 0) = u_0(x, y)$$

Create a Cartoon Simplification of a reference image f(x, y) consisting of several parts by using a marker $u_0(x, y)$ that intersects some of these parts and evolves towards f in a monotone way such that all evolutions u(x, y, t) satisfy:

$$t_1 < t_2 \Rightarrow f(x, y) \leq_f u(x, y, t_2) \leq_f u(x, y, t_1) \leq_f u_0(x, y)$$

 \preceq_f is a **inf-semilattice order** w.r.t. a reference f

$$\Rightarrow |f(x,y) - u(x,y,t)| \le |f(x,y) - u_0(x,y)| \quad \forall t, x, y$$

Partition the regions R^- and R^+ formed by zero-crossings of $f - u_0$:

$$R^- = \{(x, y) : f(x, y) \ge u_0(x, y)\} = \sqcup_i R_i^-$$

$$R^+ = \{(x, y) : f(x, y) < u_0(x, y)\} = \sqcup_i R_i^+$$

Evolution of u is done by maintaining all local min/max of u_0 inside subregions R_i^-/R_i^+ :

$$\bigvee_{R_i^-} u = \bigvee_{R_i^-} u_0 \quad \text{and} \quad \bigwedge_{R_i^+} u = \bigwedge_{R_i^+} u_0,$$

Variational Formulation of Levelings

Theorem: The gradient flow for the optimization problem

$$\min \iint |u-f| dxdy \quad \text{s.t.} \quad \bigvee_{R_i^-} u = \bigvee_{R_i^-} u_0, \quad \bigwedge_{R_i^+} u = \bigwedge_{R_i^+} u_0$$

is given by:

$$\partial u(x, y, t) / \partial t = -\operatorname{sgn}(u - f) \|\nabla u\|$$

$$u(x, y, 0) = u_0(x, y)$$

$$R^{-} = \{(x, y) : u_{0}(x, y) \ge f(x, y)\} = \bigsqcup_{i} R_{i}^{-}$$

$$R^{+} = \{(x, y) : u_{0}(x, y) < f(x, y)\} = \bigsqcup_{i} R_{i}^{+}$$

Leveling Cartoons, Texture Energy Markers and Image Decomposition ...

Petros Maragos and Georgios Evangelopoulos

ISMM 2007

Leveling-based cartoons

- Leveling cartoon approximations $u = \Lambda(M \mid f)$
 - u: leveling of image f
 - M: marker (e.g. Gaussian, anisotropic)
- Residual r = f u
 - finer scales information
 - contains texture v
- Multi-scale levelings
 - hierarchy of cartoons/residuals

$$u_i = \Lambda(M_i | u_{i-1}), i = 1, 2, ..., n$$

$$u_0 = f \qquad \qquad |r_i = f - u_i|$$

- \square causality property: u_j is a leveling of u_i for j>i
- $lue{}$ markers are samples of a scale-space $M_i = f * G_{\sigma_i}$

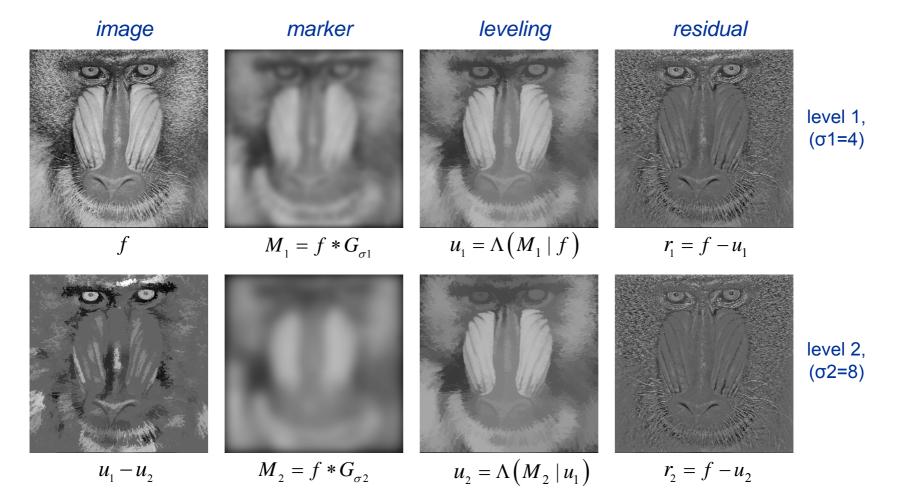
level 0 (image)

level 1 (σ1=4)

level 2 (σ2=16)

Multiscale leveling decomposition (example)

 2-level cartoons and residuals via levelings with markers-samples of an isotropic Gaussian scale-space



Comparisons with TV cartoons

- Levelings decrease the Total Variation norm
 - Creation of flat plateaus on which the gradient becomes zero

$$\iiint \|\nabla u_{i+1}\| \le \iiint \|\nabla u_i\| \le \iiint \|\nabla f\|$$

Leveling cartoons

- a. preserve regional maxima & minima and do not create new
- b. preserve the sense of variation between neighbour pixels
- c. TV norm decreases monotonically
- d. scale controlled by (the scale) of the marker image

TV cartoons

- a. preserve the global mean
- b. preserve the global variance
- c. scale controlled by the regularizing constant

AM-FM Texture Model

Locally narrowband image texture (Bovik, Havlicek)

$$f(x, y) = a(x, y) \cdot \cos[\phi(x, y)], \quad \nabla \phi(x, y) = \vec{\omega}(x, y)$$

- analogies between AM-FM and Y.Meyer's oscillating functions for texture
- Amplitude and frequency estimation
 - Multiband Gabor filtering
 - **2D** Energy Operator $\Psi(f) = \|\nabla f\|^2 f\nabla^2 f$
 - □ Demodulation via ESA (Maragos & Bovik 1995)

$$\frac{\Psi(f)}{\sqrt{\Psi(\partial f/\partial x) + \Psi(\partial f/\partial y)}} \approx |a(x,y)|$$

$$\sqrt{\Psi(\partial f/\partial x)/\Psi(f)} \approx |\omega_1(x,y)|, \qquad \sqrt{\Psi(\partial f/\partial y)/\Psi(f)} \approx |\omega_2(x,y)|$$

Multiband Texture Energy Tracking (I)

Texture modulation energy of a locally narrowband component

$$f(x,y) = a(x,y) \cdot \cos[\phi(x,y)], \qquad \Psi[a\cos(\phi)] \approx a^2 \|\nabla\phi\|^2$$

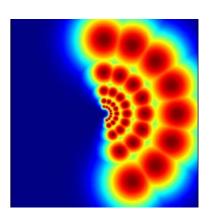
Bandpass filter the "texture image part" to isolate components

$$f_k(x,y) = (v * g_k)(x,y) \approx (v_k * g_k)(x,y),$$

Impulse Responses of a 2D Gabor filterbank

$$h_k(x, y) = \exp\{-a_k^2 x^2 - b_k^2 y^2\} \exp\{j\vec{\Omega}_k \cdot (x, y)\}$$

- k-filter:
 - \square Bandwidth parameters (a_k,b_k) ,
 - $lue{}$ central frequency vector $\vec{\Omega}_{k}$
- Filterbank design
 - polar arrangement in spectral domain
 - octave bandwidth, equal bandwidth params
 - □ typical design (40 filters, 5 scales, 8 orientations)



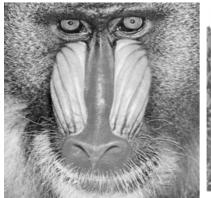
Multiband Texture Energy Tracking (II)

- Maximum Average Teager (MAT) energy
- Energy tracking from the set of filtered, narrowband texture components

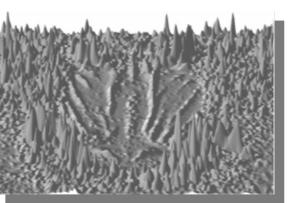
$$\Psi_{\text{mat}}(v(x,y)) = \arg\max_{k} \left\{ \left(\Psi(v * h_k) * h_a \right) (x,y) \right\}$$

- h_a : local averaging filter, h_k : the k-th Gabor filter-channel
- Indicates texture structure (analysis, detection, classification)
- Criterion for the extraction of the texture dominant component
- Dominant modulation features (amplitude, frequency, energy)

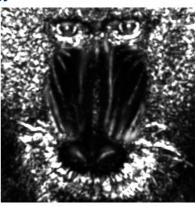
image



MAT energy

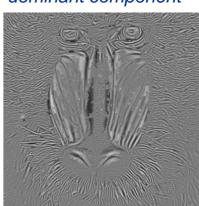


3D



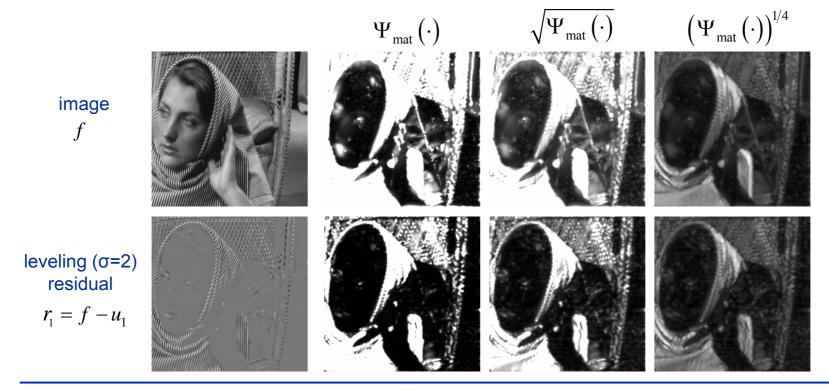
grayscale

dominant component



MAT energy for Texture detection

- Texture energy measurements for texture markers
 - indicate texture areas
 - quantify region 'texturdeness'
 - roots of the MAT energy
- Markers extracted from the texture image part (e.g. leveling residual)
 - absence of large scale, geometric structures and features (edges, contours, blobs, contrast)
 - \blacksquare f=u+v: texture + objects, v: texture, details, oscillations



Leveling-based decomposition (Gaussian Markers)

- Cartoon, second-order leveling by Gaussian markers $u_1 = \Lambda(M_1 \mid f)$, $M_1 = f * G_{\sigma 1}$ $r_1 = f u_1$

$$M_1 = f * G_{\sigma 1}$$

$$r_1 = f - u_1$$

2nd level
$$u=u_2=\Lambda \big(M_2\,|\,u_1\big), \qquad M_2=f*G_{\sigma 2}$$

$$M_2 = f * G_{\sigma 2}$$

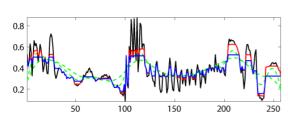
- Texture, residual from 'leveling on residual' $u_r = \Lambda(M_3 | r_1), \qquad M_3 = r_1 * G_{\sigma 3}, \quad \sigma^3 = \sigma^1/2$

$$M_3 = r_1 * G_{\sigma 3}, \quad \sigma 3 = \sigma 1/2$$

residual $v = r_1 - u_r$

1st level

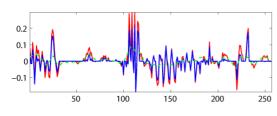
cartoon



residual

texture

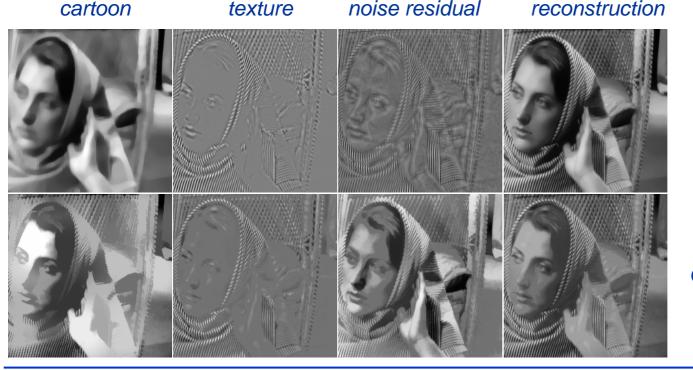
reconstruction



 \mathcal{U}_r

Comparisons of u+v models

- Comparisons of leveling $(u_{\Lambda}, v_{\Lambda})$ decomposition with Vese, Osher (u_{VO}, v_{VO}) model
 - decomposition (u, v) : Sharper object contours and small-scale features in u_{\wedge} , texture components seem similar
 - □ noise residuals (w=f-u-v): Leveling preserves structure while VO preserves texture. Does w_∧, model image 'noise'?
 - reconstruction from the model (u+v): Leveling quantizes intensity values.
- Parameters are chosen to enforce $||v_{VO}||_2 = ||v_{\Lambda}||_2$



Vese-Osher, u+v $(\lambda,\mu)=(5,0.1)$

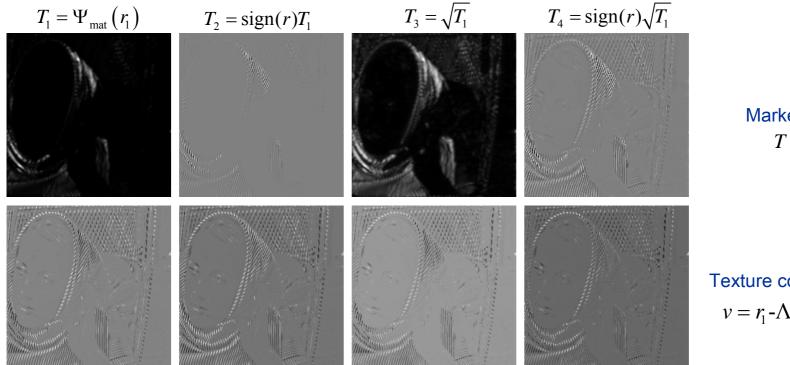
Leveling, Gaussian markers $(\sigma 1, \sigma 2) = (10, 16)$

Leveling-based decomposition (Energy markers)

- Texture component v is retrieved by
 - leveling the 'cartoon' residual $r_{\!\scriptscriptstyle \parallel} = f \Lambda ig(M_{\scriptscriptstyle \parallel} \mid f ig)$ using texture-based markers
 - keeping the 'new' residual
- Energy-based texture markers

$$v = r_1 - \Lambda \left(\operatorname{sign}(r_1) \left[\left(\Psi_{\text{mat}}(r_1) \right)^{1/k} \right] | r_1 \right), \quad k = 1, 2 \dots$$

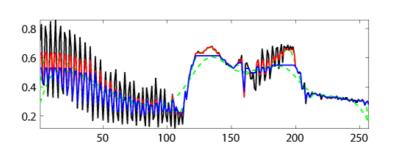
mappings/transforms of the texture MAT operator (e.g. signed roots)



Markers

Texture components $v = r_1 - \Lambda(T \mid r_1)$

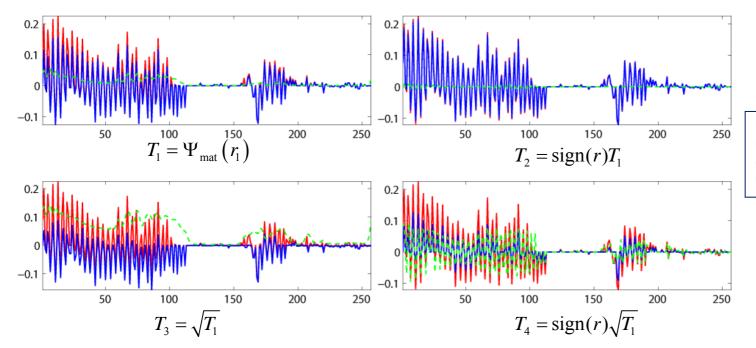
Decomposition process in 1D (profiles)



cartoon

Black: Image Red: 1st level

Blue: 2nd level (cartoon) Green: Marker (Gaussian)



texture

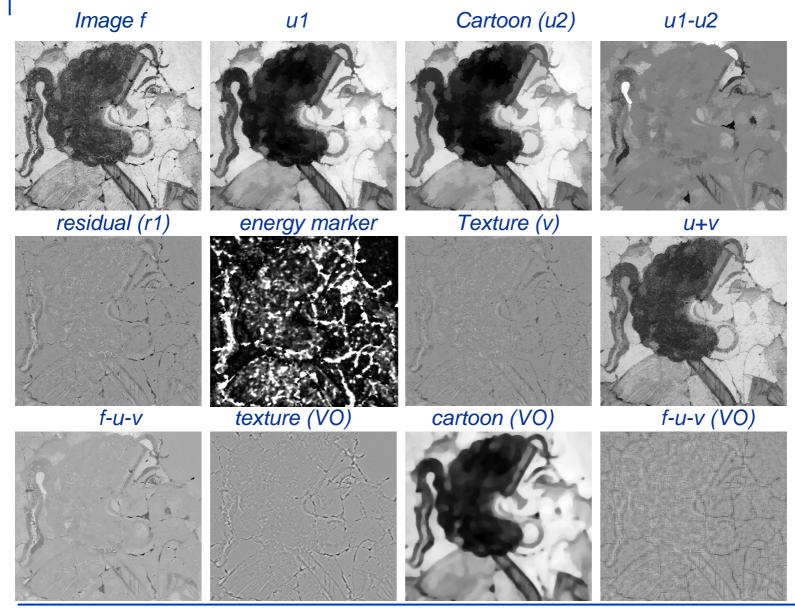
Red: Residual (r1)
Blue: Residual

(texture)

Green: Marker

(energy)

Application (Prehistoric Wall-Painting Restoration)



Section of 'Potnia' prehistoric wall painting in Thira, Acrotiri