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Problems I

How a digital pyramid of morphological operators does
work?
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Problems I

How a digital pyramid of morphological operators does
work?

It involves notions or properties that are not defined, or
false, for digital spaces, e.g.

- IS the dilate of a segment by itself still a segment ?
- What is the digital homothetics of a set ?
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Problems I

How a digital pyramid of morphological operators does
work?

It involves notions or properties that are not defined, or
false, for digital spaces, e.g.

- IS the dilate of a segment by itself still a segment ?
- What is the digital homothetics of a set ?

Or notions that admit several definitions,e.g.

- Digital convexity is defined in five different manners in
literature. Which one to take?
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Convexity

* In maths, convexity is a notion defined for vector spaces.

 In R", set X 1s convex when either

— X equals the intersection of the half spaces that contain it,
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Convexity

* In maths, convexity is a notion defined for vector spaces.

* In R" set X is convex when either
— X equals the intersection of the half spaces that contain it,

—> or xy} 00X = [xy] OX
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Convexity

* In maths, convexity is a notion defined for vector spaces.

* In R" set X is convex when either
— X equals the intersection of the half spaces that contain it,

—> or xy} 00X = [xy] OX

— or the measure of X @ B, both compact convex sets, 1s a

linear function of their Minkowski functionals, e.g. in R?

AX®B) = A(X) +U(X). U(B)/2T+A(B)
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Convexity and Scale-space
Representation

 Still in space R", denote by AB the set similar to B by factor
A. Then the semi-group law:

(AOAB)OUB) = AOMA+W)B

holds if and only if B 1s compact convex (GM 1975).
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Convexity and Scale-space
Representation

 Still in space R", denote by AB the set similar to B by factor
A. Then the semi-group law:

[(AOAB)OuB)] = AOA+WB
holds if and only if B 1s compact convex (GM 1975).
 W.r. to dilation, the similarity ratio is infinitely divisible.

This property is the core of all scale-space representations
in mathematical morphology.
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Convexity and Scale-space
Representation

 Still in space R", denote by AB the set similar to B by factor
A. Then the semi-group law:

[(AOAB)OuB)] = AOA+WB
holds if and only if B 1s compact convex (GM 1975).

 W.r. to dilation, the similarity ratio is infinitely divisible.
This property is the core of all scale-space representations
in mathematical morphology.

* Note that set A 1s arbitrary. In particular we have that
ABOuUB =(A+wB
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Digital Convexity |

e Unfortunately, when passing from R" to Z ™ all these nice
equivalences vanish...

* e.g., the three segments belong to set X, which it is not convex,
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Digital Convexity |

* When passing from R" to Z ™ all these nice equivalences
vanish...

* e.g., the three segments belong to set X, which it is not convex,

* Also, a digital convex set may be non arcwise connected.
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Matheron Semi-groups

« Unfortunately, morphological scale-space processing is
always digital ...
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Matheron Semi-groups

« Unfortunately, morphological scale-space processing is
always digital ...

* Therefore we must analyse exactly how convexity appears, so
that to chose the most convenient digital convexity
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Matheron Semi-groups

Unfortunately, morphological scale-space processing is
always digital ...

Therefore we must analyse exactly how convexity appears, so
that to chose the most convenient digital convexity

Indeed, the morph. scale-space pyramids are governed by
Matheron semi-group law

Az p> 0= Qe =4,
Where {U,, A>0} is a family of morph. filters

The law applies for opening, ASF and levelling.
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Granulometries

* In case of opening, Matheron semi-group is called a
granulometry:.

A2 pU> 0 = yeyu=y, (1)

1.e. the strongest opening imposes its law
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Granulometries

* In case of opening, Matheron semi-group is called a
granulometry:.

A2 PU>0 = yey=y, (1)

1.e. the strongest opening imposes its law
* For

—  P(E) lattices (e.g. E=R" or Z")

= and {0,} a family of dilations

Rel.(1) isequivalentto A2 P = 0 (x) = Y, 0, (x)
1.e. each structuring element is open by the smaller ones.
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Granulometries

e In the Euclidean and translation invariant case
Az U = 0,(X)= VY,0,(X) becomes

A2 U = B,= Y. B, (structuring elements)

e Then magnification = convexity
{A\z2 4 = B,=y,B,} + Homothetics B,
1s equivalent to
{Az2 u = B,=y,B,} + convexB,

* For Matheron semi-groups, magnification and convexity
are the same notion.
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Granulometries

e Conversely, we can drop convexity

 The B’s are not convex, but also not homothetic,

.... however the semi-group i1s satisfied.
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Granulometries

 Note also that A = A ©B 1is not an inclusion relation

When A is open by B,

®
A B

@ ? @ ®
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a)
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Granulometries

 Note also that A = A ©B 1is not an inclusion relation

When A is open by B, it may be not open by smaller sets

® ®
A B
%’. ® 1’. ®
® 0O ® O
—.‘. ® —.‘. ®
B 4 -@
a) b)
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Euclidean Steiner class

o Steiner class : In R", the convex sets which are dilates of
segments, and their limits (e.g. the disc) are Steiner

\@/@— =

« In R?, they coincide with all convex sets with a centre of
symmetry, but no longer in R’.
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Euclidean Steiner class

e Directional measure: The Steiner set X 1s equivalent to
the measure sy (da), with

X=0{L[sx (da)],a € Q }
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Euclidean Steiner class

e Directional measure: The Steiner set X 1s equivalent to
the measure sy (da), with

X=0{L[sx (da)],a € Q }
e This directional measure exchanges dilation and addition

SxOy = Sx T Sy
hence

I.Serra, Paris-FEst ISMM 07 Octobre, Rio de Janeiro 24



Euclidean Steiner class

e Directional measure: The Steiner set X 1s equivalent to
the measure sy (da), with

X=0{L[sx (da)],a € Q }
e This directional measure exchanges dilation and addition

SxOy = Sx T Sy
hence

* Every family of Steiner sets with increasing measures
generates a granulometry.
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An example

CEEE

* This sequence of Steiner sets generates a granulometry
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From R" to Z"

Several questions arise:
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From R" to Z™

Several questions arise:

e Under which conditions can the dilate of two digital
parallel segments be in turn a segment ?
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From R" to Z™

Several questions arise:

e Under which conditions can the dilate of two digital
parallel segments be in turn a segment ?

e What is a digital Steiner set ?
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From R" to Z™

Several questions arise:

e Under which conditions can the dilate of two digital
parallel segments be in turn a segment ?

e What is a digital Steiner set ?

 What is a digtal convex set ?
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From R" to Z™

Several questions arise:

Under which conditions can the dilate of two digital
parallel segments be 1n turn a segment ?

What 1s a digital Steiner set ?

What 1s a digtal convex set ?

e Under which conditions is a digital convex set connected?
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Bezout planes in Z"

e Bezout theorem: The equation
a,u,+au,+t...au =1 (1)
has solutions in Z" iff the a, are relatively prime.
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Bezout planes in Z"

* Bezout theorem: The equation
a,u+tau,+...au =1 (1)
has solutions in Z" iff the a, are relatively prime.

* General solution: One goes from the solutions of
axyta,x,+...ax =c (2)

to those for ¢ + 1 by replacing the x; by x; + u,, where the u,

are an arbitrary solution of (1).
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Bezout planes in Z"

* Bezout theorem: The equation
a,u+tau,+...au =1 (1)
has solutions in Z" iff the a, are relatively prime.

* General solution: One goes from the solutions of
axyta,x,+...ax =c (2)

to those for ¢ + 1 by replacing the x; by x; + u,, where the u,

are an arbitrary solution of (1).

* Spanning of the space Therefore the hyper-planes (2) span
the space Z" , so that each point is met once and only once.

N.B. in Z* this is also true for Bresenham lines (H.Talbot)
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Bezout lines in Z*

* When a and b are relatively prime, then
Hu,v 0 Z  such that au+bv=1

If (x,, y,) 1s solution of ax + by = ¢, then
a (xg+u)+b (y+v)=c+1
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Bezout lines in Z*

* When a and b are relatively prime, then
Lu,v 0Z  such that au+bv=1

If (x4, ) 1s solution of ax + by = ¢, then
a (xg+ u)+ b (yy+v)=c+1

* All solutions of the equation ax+by = c+1 derive from the
solutions of ax+by = ¢ by translation of vector (u,v)

* An example : take the Bezout straight line
2x-3y =1

which has vector (2,1) for solution.
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Bezout lines in Z*

The translates of the line by the Bezout vector span the digital plane

7

Y

N
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Bezout directions
and segments

* Bezout direction: every vector w of Z" whose coordinates
W, W,,... W, are relatively prime.
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Bezout directions
and segments

* Bezout direction: every vector w of Z" whose coordinates
W, Wy,... W, are relatively prime.

* Bezout line going through the origin
D(w) ={kw k€ Z}
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Bezout directions
and segments

* Bezout direction: every vector w of Z" whose coordinates
W, Wy,... W, are relatively prime.

e Bezout line going through the origin
D(w) ={kw k€ Z}

* Bezout line going through point x and of direction w:
D(w) =Dw) & x={x+kw k€ Z}
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Bezout directions
and segments

* Bezout direction: every vector w of Z" whose coordinates
W, Wy,... W, are relatively prime.

e Bezout line going through the origin
D(w) ={kw k€ Z}

* Bezout line going through point x and of direction w:
D(w) =Dw) & x={x+kw k€ Z}

* Bezout segment : the sequence of the (k+1) points
L(k o) ={x+pw 0 <p=<k}
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Bezout lines in Z*

Examples of Bezout vector, lines, and segment in the digital plane
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Dilation on Bezout
segments

Theorem 1 :

* 1/ The Minkowski sum of the segments L, ( k, ) and
Ly(m, ) is the segment
L,(k, ) & L(m,w) =L, (k+m,w)
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Dilation on Bezout
segments

Theorem 1 :

* 1/ The Minkowski sum of the segments L, ( k, ) and
Ly(m, ) is the segment

Ly(k, @) & Ly(m, 0) =Ly, (k+m, w)

X+y

* 2/ The opening of segment L, ( k, w) by Ly(m, w) is
— the segment L ( k, w) itself when k > m
— The empty set when not
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Dilation on Bezout
segments

Theorem 1 :

* 1/ The Minkowski sum of the segments L, ( k, w) and
L ( m, w) 1s the segment

Ly(k, @) & Ly(m, 0) =Ly, (k+m, w)

X+y

* 2/ The opening of segment L, ( k, w) by L,( m, ) 1s
— the segment L, ( k, w) itself when k > m
— The empty set when not

* 3/ The only digital segments that satisfy these two
properties are the Bezout ones (because of their unit thickness).
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Digital Steiner sets

o Steiner sets : A setin Z" is Steiner when it can be
decomposed into Minkowski sum of Bezout segments.

e A Steiner set 1s not always convex.

I.Serra, Paris-FEst ISMM 07 Octobre, Rio de Janeiro 46



Digital Steiner sets

o Steiner sets : A setin Z" is Steiner when it can be
decomposed into Minkowski sum of Bezout segments.

* A Steiner set 1s not always convex. In the figure, 1f we add
the centre, the set becomes convex, but it 1s no longer
Steiner (though 1t 1s symmetrical...)
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Digital Convexity

* Digital convexity: Set X 7" is convex when it is the
intersection of all Bezout half-spaces that contain it
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Digital Convexity

* Digital convexity: Set X 7" is convex when it is the
intersection of all Bezout half-spaces that contain it

e Theorem 2
— Every segment is convex ;

— When points x and y belong to the convex set X, then
all points of the Bezout segment [x,y] belong to X

* Hence, By using Bezout’ background, we can identify both

approaches of convexity, by convex hull, and by barycentre
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Reveillés Straight lines

affine shift
direction thickness

Where the directional parameters a, b, are relatively prime
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Reveillés Straight lines
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Thickness of the
Réveilles lines
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Decomposition

Decomposition of Réveilles straight lines into Bezout ones
D: y<ax+by<y+p
D: Uygc<y+p{ax +by = C}

0<3x-5y<5
3x-5y=0 ®-0—
_ L
3x -5y =1
R *
3x-5y=2 (3,5) ]
3x -5y =4 T
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Convexity for
Steiner sets

e Theorem 3 : In Z*, a Steiner set X of measure

{ki OF 1 SiSp}

is convex 1iff for one direction, p say, the dilate of the Bezout

line D, by the other segments, i.e.
D, oL, oL, ®.... 8L

1s a Réveilles straight line

e Similar statement in 7" .
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Steiner convex sets |

P 1rst directional /.‘ 2nd directional

# // measure # / measure

o o o
oo © ooo?
oo © ® © o o ©
® © o o0 0 ¢
e P—o—o

b
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Steiner convex sets |

P 1rst directional /.‘ 2nd directional

# // measure # / measure

2x —3y=0, shifted by e—e gives 2x -3y =2

s
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Steiner convex sets |

P 1rst directional /.‘ 2nd directional
# /| measure # pd

measure
/

= -

2x —3y=0, shifted by e—e gives 2x -3y =2

shifted by I gives 2x —3y=-3

ey
T

4 3 -2 -1 0 1 2 3 4
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Steiner convex sets |

P 1rst directional /“ 2nd directional
¥ S

# // measure measure

2x —3y =0, shifted by / gives 2x —3y=-1

PP e
L

4 3 -2 -1 0 1 2 3 4
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Steiner convex sets

P 1rst directional /.‘ 2nd directional
i W

# // measure measure

And with the previous shifts

o
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Steiner convex sets |

P 1rst directional /.‘ 2nd directional

# // measure # / measure

o o o
oo © ooo?
oo © ® © o o ©
® © o o0 0 ¢
e P—o—o

b
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Steiner sets and
connectivity

Theorem 4

In Z", the Steiner set X of measure { ki, 1 <i<p } with

n=<p, is connected if and only if for each j such that n<j<p,
the component w/ of direction @, w.r.t. axis () satisfies the
inequality

k. wi<k
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Anamorphoses |

* An anamorphosis between two lattices £ and £L’is a

mapping O such that

o is a bijection from £ and £’

o and a1 are both erosions and dilations.

o Semi-anamorphosis When o :£ — L’is a dilation, every
granulometry {y;} on £ induces a granulometry {{,} on L’

and we have

a ) (X) = ((a X),
with the equality when 1s an anamorphosis.

« Example : o maps the plane R" on a torus.
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Conclusions

* Did you noticed that the previous scale-space approach ignores
digital magnification?

I.Serra, Paris-Fst ISMM 07 Octobre, Rio de Janeiro 63



Conclusions

* Did you noticed that the previous scale-space approach 1ignores
digital magnification?

* In fact we used equivalence

ABOUB =(A+WB < Biscompact convex

for defining homothetics, and we extended this type of

decomposition to that of B into dilations of segments.
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Conclusions

* Did you noticed that the previous scale-space approach 1ignores
digital magnification?

* In fact we used equivalence
ABOUB =(A+WB < Biscompact convex

for defining homothetics, and we extended this type of
decomposition to that of B into dilations of segments.

* Arcwise connectivity turns out to be a very specific requirement,
that one can add, but which plays no role in the theory.

I.Serra, Paris-FEst ISMM 07 Octobre, Rio de Janeiro 65



Conclusions

* Did you noticed that the previous scale-space approach 1ignores
digital magnification?

* In fact we used equivalence
ABOUB =(A+WB < Biscompact convex

for defining homothetics, and we extended this type of

decomposition to that of B into dilations of segments.

* Arcwise connectivity turns out to be a very specific requirement,
that one can add, but which plays no role in the theory.

* Though figures are 2-D, the whole approach works in Z*.
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