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ProblemsProblems
How a digital pyramid of morphological operators does
work?
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ProblemsProblems
How a digital pyramid of morphological operators does
work?

It involves notions or properties that are not defined, or 
false, for digital spaces, e.g.

- is the dilate of a segment by itself still a segment ?
- What is the digital homothetics of a set ? 



��� ��� � ��	� 
� � ��
 �� � � � � ��� ��� �� � � �� � � � �� ��� � � � � �

ProblemsProblems
How a digital pyramid of morphological operators does
work?

It involves notions or properties that are not defined, or 
false, for digital spaces, e.g.

- is the dilate of a segment by itself still a segment ?
- What is the digital homothetics of a set ? 

Or notions that admit several definitions,e.g. 
- Digital convexity is defined in five different manners in 

literature. Which one to take?
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ConvexityConvexity
• In maths, convexity is a notion defined for vector spaces.

• In R �, set X is convex when either 
⇒ X equals the intersection of the half spaces that contain it,
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ConvexityConvexity
• In maths, convexity is a notion defined for vector spaces.

• In R �, set X is convex when either 
⇒ X equals the intersection of the half spaces that contain it,
⇒ or {x,y}  ∈∈∈∈        X    ⇒                [x,y]  ∈∈∈∈        X
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ConvexityConvexity

• In maths, convexity is a notion defined for vector spaces.

• In R �, set X is convex when either 
⇒ X equals the intersection of the half spaces that contain it,
⇒ or {x,y}  ∈∈∈∈        X    ⇒                [x,y]  ∈∈∈∈        X
⇒ or the measure of X ⊕ B, both compact convex sets,  is a

linear function of their Minkowski functionals, e.g. in R �

A( X ⊕ B )  =  A( X )  + U( X ). U( B ) / 2 ππππ    ++++    A( B )
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Convexity and Scale-space 
Representation

Convexity and Scale-space 
Representation

• Still in space R �, denote by λB the set similar to B by factor 
λ. Then the semi-group law:

[(A ⊕⊕⊕⊕ λλλλB) ⊕⊕⊕⊕ µµµµB)]  =  A ⊕⊕⊕⊕ (λλλλ + µµµµ) B
holds if and only if B is compact convex (GM 1975).
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Convexity and Scale-space 
Representation

Convexity and Scale-space 
Representation

• Still in space R �, denote by λB the set similar to B by factor 
λ. Then the semi-group law:

[(A ⊕⊕⊕⊕ λλλλB) ⊕⊕⊕⊕ µµµµB)]  =  A ⊕⊕⊕⊕ (λλλλ + µµµµ) B
holds if and only if B is compact convex (GM 1975).

• W.r. to dilation, the similarity ratio is infinitely divisible. 
This property is the core of all scale-space representations
in mathematical morphology.
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Convexity and Scale-space 

Representation
Convexity and Scale-space 

Representation
• Still in space R �, denote by λB the set similar to B by factor 

λ. Then the semi-group law:
[(A ⊕⊕⊕⊕ λλλλB) ⊕⊕⊕⊕ µµµµB)]  =  A ⊕⊕⊕⊕ (λλλλ + µµµµ) B

holds if and only if B is compact convex (GM 1975).
• W.r. to dilation, the similarity ratio is infinitely divisible. 

This property is the core of all scale-space representations
in mathematical morphology.

• Note that set A is arbitrary. In particular we have that
λλλλB ⊕⊕⊕⊕ µµµµB  = (λλλλ + µµµµ) B
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• Unfortunately, when passing from R � to Z � all these nice 
equivalences vanish…

• e.g., the three segments belong to set X, which it is not convex,

Digital ConvexityDigital Convexity
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• When passing from R � to Z � all these nice equivalences 
vanish…

• e.g., the three segments belong to set X, which it is not convex,
• Also, a digital convex set may be non arcwise connected.

Digital ConvexityDigital Convexity
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• Unfortunately, morphological scale-space processing is
always digital …

Matheron Semi-groupsMatheron Semi-groups
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• Unfortunately, morphological scale-space processing is
always digital …

• Therefore we must analyse exactly how convexity appears, so
that to chose the most convenient digital convexity 

Matheron Semi-groupsMatheron Semi-groups
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• Unfortunately, morphological scale-space processing is
always digital …

• Therefore we must analyse exactly how convexity appears, so
that to chose the most convenient digital convexity 

• Indeed, the morph. scale-space pyramids are governed by 
Matheron semi-group law

 λλλλ ≥≥≥≥        µµµµ    >>>>        0000        ⇒ ψψψψµµµµ◦ ψψψψλλλλ ==== ψψψψλλλλ

 Where {ψλ, λ>0} is a family of morph. filters 
• The law applies for opening, ASF and levelling.

Matheron Semi-groupsMatheron Semi-groups
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GranulometriesGranulometries
• In case of opening,  Matheron semi-group is called a 

granulometry:
λλλλ ≥≥≥≥        µµµµ    >>>>        0000        ⇒ γγγγµµµµ◦ γγγγλλλλ ==== γγγγλλλλ (1)

i.e. the strongest opening imposes its law
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GranulometriesGranulometries

• In case of opening,  Matheron semi-group is called a 
granulometry:

λλλλ ≥≥≥≥        µµµµ    >>>>        0000        ⇒ γγγγµµµµ◦ γγγγλλλλ ==== γγγγλλλλ (1)

i.e. the strongest opening imposes its law
• For

⇒

��� � ��� � � ��	
 � � 
 � 
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⇒      and {δλ} a family of dilations 
Rel.(1)  is equivalent to    λλλλ ≥≥≥≥        µµµµ        ⇒        δδδδλλλλ    (x) =  γγγγµµµµ    δδδδλλλλ    (x) 
i.e. each structuring element is open by the smaller ones.
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• In the Euclidean  and translation invariant case
 λ ≥  µ  ⇒  δλ (x) =  γµ δλ (x)   becomes
 λ ≥  µ  ⇒  Βλ =  γµ Βλ    (structuring elements)
• Then magnification ≡≡≡≡ convexity

{λ ≥  µ  ⇒  Βλ =  γµ Βλ }    +  Homothetics Βλ
is equivalent to

{λ ≥  µ  ⇒  Βλ =  γµ Βλ }    +  convex Βλ

• For Matheron semi-groups, magnification and convexity 
are the same notion.

GranulometriesGranulometries
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• Conversely, we can drop convexity

• The B’s  are not convex, but also not homothetic, 
…. however the semi-group is satisfied.

GranulometriesGranulometries
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• Note also that Α = Α � Β is not an inclusion relation
When A is open by B, 

� �

A B

GranulometriesGranulometries
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• Note also that Α = Α � Β is not an inclusion relation
When A is open by B, it may be not open by smaller sets

� � � �

A B

GranulometriesGranulometries
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• Steiner class : In R �, the convex sets which are dilates of 
segments, and their limits (e.g. the disc) are Steiner

• In R �, they coincide with all convex sets with a centre of 
symmetry, but no longer in R �.

Euclidean Steiner classEuclidean Steiner class

⊕ ⊕ =
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• Directional measure: The Steiner set X  is equivalent to
the measure s � (dα), with

X = ⊕⊕⊕⊕    {{{{L[s � (dαααα)], αααα    ∈ ΩΩΩΩ    }}}}

Euclidean Steiner classEuclidean Steiner class
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• Directional measure: The Steiner set X  is equivalent to
the measure s � (dα), with

X = ⊕⊕⊕⊕    {{{{L[s � (dαααα)], αααα    ∈ ΩΩΩΩ    }}}}

• This directional measure exchanges dilation and addition
s �

⊕⊕⊕⊕

� = s � + s �
hence

s � ≤≤≤≤ s � ⇒            s �� � = s � – s � ⇒ Y is open by X

Euclidean Steiner classEuclidean Steiner class
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• Directional measure: The Steiner set X  is equivalent to
the measure s � (dα), with

X = ⊕⊕⊕⊕    {{{{L[s � (dαααα)], αααα    ∈ ΩΩΩΩ    }}}}

• This directional measure exchanges dilation and addition
s �

⊕⊕⊕⊕

� = s � + s �
hence

s � ≤≤≤≤ s � ⇒            s �� � = s � – s � ⇒ Y is open by X
• Every family of Steiner sets with increasing measures
generates a granulometry.

Euclidean Steiner classEuclidean Steiner class
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An exampleAn example

• This sequence of Steiner sets generates a granulometry
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From Rn to ZnFrom Rn to Zn

Several questions arise:
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From Rn to ZnFrom Rn to Zn

Several questions arise:

• Under which conditions can the dilate of two digital 
parallel segments be in turn a segment ?
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From Rn to ZnFrom Rn to Zn

Several questions arise:

• Under which conditions can the dilate of two digital 
parallel segments be in turn a segment ?

• What is a digital Steiner set ?
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From Rn to ZnFrom Rn to Zn

Several questions arise:

• Under which conditions can the dilate of two digital 
parallel segments be in turn a segment ?

• What is a digital Steiner set ?
• What is a digtal convex set ?
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From Rn to ZnFrom Rn to Zn

Several questions arise:

• Under which conditions can the dilate of two digital 
parallel segments be in turn a segment ?

• What is a digital Steiner set ?
• What is a digtal convex set ?
• Under which conditions is a digital convex set connected?
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Bezout planes in ZnBezout planes in Zn

• Bezout theorem: The equation 
a � u � + a � u � +… a � u � = 1 (1)

has solutions in Z � iff the a � are relatively prime.
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Bezout planes in ZnBezout planes in Zn

• Bezout theorem: The equation 
a � u � + a � u � +… a � u � = 1 (1)

has solutions in Z � iff the a � are relatively prime.
• General solution: One goes from the solutions of

a � x � + a � x � +… a � x � = c (2)
to those for c + 1 by replacing the x � by x � + u � , where the u �

are an arbitrary solution of (1).
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Bezout planes in ZnBezout planes in Zn

• Bezout theorem: The equation 
a � u � + a � u � +… a � u � = 1 (1)

has solutions in Z � iff the a � are relatively prime.
• General solution: One goes from the solutions of

a � x � + a � x � +… a � x � = c (2)
to those for c + 1 by replacing the x � by x � + u � , where the u �

are an arbitrary solution of (1).
• Spanning of the space Therefore the hyper-planes (2) span
the space Z � , so that each point is met once and only once.
N.B. in Z � this is also true for Bresenham lines (H.Talbot)
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• When a and b are relatively prime, then
∃∃∃∃ u,v ∈∈∈∈ Z     such that au + bv = 1

If (x �, y �) is solution of ax + by = c, then 
a (x �+ u) + b (y �+ v) = c + 1

Bezout lines in Z2Bezout lines in Z2
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• When a and b are relatively prime, then
∃∃∃∃ u,v ∈∈∈∈ Z     such that au + bv = 1

If (x �, y �) is solution of ax + by = c, then 
a (x �+ u) + b (y �+ v) = c + 1

• All solutions of the equation ax+by = c+1 derive from the
solutions of ax+by = c by translation of vector (u,v)
• An example : take the Bezout straight line 

2 x - 3 y  = 1
which has vector (2,1) for solution.  

Bezout lines in Z2Bezout lines in Z2
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Bezout lines in Z2Bezout lines in Z2
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Bezout directions 
and segments

Bezout directions 
and segments

• Bezout direction: every vector ωωωω of Z � whose coordinates 
ωωωω � , ωωωω � ,… ωωωω � are relatively prime.
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Bezout directions 
and segments

Bezout directions 
and segments

• Bezout direction: every vector ωωωω of Z � whose coordinates 
ωωωω � , ωωωω � ,… ωωωω � are relatively prime.

• Bezout line  going through the origin
D(ωωωω)  = { k ωωωω,  k ∈ Z }
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Bezout directions 
and segments

Bezout directions 
and segments

• Bezout direction: every vector ωωωω of Z � whose coordinates 
ωωωω � , ωωωω � ,… ωωωω � are relatively prime.

• Bezout line  going through the origin
D(ωωωω)  = { k ωωωω,  k ∈ Z }

• Bezout line going through point x and of direction ω :
D �(ωωωω)  = D(ωωωω) ⊕ x = { x + k ωωωω,  k ∈ Z }
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Bezout directions 
and segments

Bezout directions 
and segments

• Bezout direction: every vector ωωωω of Z � whose coordinates 
ωωωω � , ωωωω � ,… ωωωω � are relatively prime.

• Bezout line  going through the origin
D(ωωωω)  = { k ωωωω,  k ∈ Z }

• Bezout line going through point x and of direction ω :
D �(ωωωω)  = D(ωωωω) ⊕ x = { x + k ωωωω,  k ∈ Z }

• Bezout segment : the sequence of the (k+1) points
L �( k, ωωωω)  = { x + p ωωωω,  0 ≤p≤k }



��� ��� � ��	� 
� � ��
 �� � � � � ��� ��� �� � � �� � � � �� ��� � � � � � �

�

�

Bezout lines in Z2Bezout lines in Z2
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Dilation on Bezout
segments

Dilation on Bezout
segments

Theorem 1 : 
• 1/ The Minkowski sum of the segments L �( k, ω) and

L �( m, ω) is the segment 
L �( k, ωωωω) ⊕ L �( m, ωωωω) = L � � � ( k + m, ωωωω) 
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Dilation on Bezout
segments

Dilation on Bezout
segments

Theorem 1 : 
• 1/ The Minkowski sum of the segments L �( k, ω) and

L �( m, ω) is the segment 
L �( k, ωωωω) ⊕ L �( m, ωωωω) = L � � � ( k + m, ωωωω) 

• 2/ The opening of segment L �( k, ωωωω) by L �( m, ωωωω) is 
– the segment L �( k, ω)  itself when k ≥ m
– The empty set when not
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Dilation on Bezout
segments

Dilation on Bezout
segments

Theorem 1 : 
• 1/ The Minkowski sum of the segments L �( k, ω) and

L �( m, ω) is the segment 
L �( k, ωωωω) ⊕ L �( m, ωωωω) = L � � � ( k + m, ωωωω) 

• 2/ The opening of segment L �( k, ωωωω) by L �( m, ωωωω) is 
– the segment L �( k, ω)  itself when k ≥ m
– The empty set when not

• 3/ The only digital segments that satisfy these two
properties are the Bezout ones (because of their unit thickness).
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Digital Steiner setsDigital Steiner sets
• Steiner sets : A set in Z � is  Steiner when it can be 

decomposed into Minkowski sum of Bezout segments.
• A Steiner set is not always convex. 

⊕ =
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Digital Steiner setsDigital Steiner sets
• Steiner sets : A set in Z � is  Steiner when it can be 

decomposed into Minkowski sum of Bezout segments.
• A Steiner set is not always convex. In the figure, if we add 

the centre, the set becomes convex, but it is no longer 
Steiner (though it is symmetrical…)

⊕ =
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Digital ConvexityDigital Convexity
• Digital convexity: Set X ⊆Z � is convex when it is the 

intersection of all Bezout half-spaces that contain it
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Digital ConvexityDigital Convexity
• Digital convexity: Set X ⊆Z � is convex when it is the 

intersection of all Bezout half-spaces that contain it
• Theorem 2

– Every segment is convex ;
– When  points x and y belong to the convex set X, then 
all points of the Bezout segment [x,y] belong to X

• Hence, By using Bezout’ background, we can identify both
approaches of convexity, by convex hull, and by barycentre
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ργγ +<+≤ byax
affine shift

direction thickness

Reveillès Straight linesReveillès Straight lines

Where the directional parameters a,b, are relatively prime
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Reveillès Straight linesReveillès Straight lines



��� ��� � ��	� 
� � ��
 �� � � � � ��� ��� �� � � �� � � � �� ��� � � � � � �
Thickness of the 
Réveillès lines

Thickness of the 
Réveillès lines

),max( ba<ρ

),max( ba=ρ
Naive line
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Decomposition Decomposition 
Decomposition of Réveillès straight lines into Bezout ones

ργγ +<+≤ byaxD :

{ }U ργγ +<≤ =+c cbyaxD :

0 ≤≤≤≤ 3x - 5y < 5

3x - 5y = 0

3x - 5y = 1

3x - 5y = 2

3x - 5y = 3

3x - 5y = 4

(3,5)
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Convexity for 
Steiner sets

Convexity for 
Steiner sets

• Theorem 3 : In Z �, a Steiner set X of measure 
{ k � ωωωωιιιι, 1 ≤i≤p }

is convex iff for one direction, p say, the dilate of the Bezout
line D � by the other segments, i.e.

D � ⊕L � ⊕L � ⊕…. ⊕L ���
�

is  a Réveillès straight line

• Similar statement in Z � .
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Steiner convex setsSteiner convex sets
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2x – 3y = 0 ,    shifted by              gives 2x – 3y = 2 

-4    -3     -2    -1      0      1      2      3      4
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2x – 3y = 0 ,    shifted by              gives 2x – 3y = 2 
shifted by              gives  2x – 3y = – 3

-4    -3     -2    -1      0      1      2      3      4
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2x – 3y = 0 ,    shifted by              gives 2x – 3y = – 1 

-4    -3     -2    -1      0      1      2      3      4
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And with the previous shifts

-4    -3     -2    -1      0      1      2      3      4
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Steiner sets and 
connectivity

Steiner sets and 
connectivity

Theorem 4 
In Z �, the Steiner set X of measure { k �, 1 ≤i≤p } with
n≤p, is connected if and only if for each j such that  n<j≤p, 
the component ωι

� of direction ω � w.r.t. axis ωι satisfies the 
inequality  

k � ωωωωιιιι

�

≤ k �
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AnamorphosesAnamorphoses
• An anamorphosis between two lattices L and L’ is a
mapping α such that 

α is a bijection from L and L’
α and α−1 are both erosions and dilations.

• Semi-anamorphosisWhen α :L → L’ is a dilation, every
granulometry {γλ} on L induces a granulometry {ζλ} on L’
and we have 

α γλ(X) ≤ ζλ(α X) ,
with the equality when  is an anamorphosis.

• Example : α maps the plane R � on a torus.
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ConclusionsConclusions
• Did you noticed that the previous scale-space approach ignores 

digital magnification?
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ConclusionsConclusions
• Did you noticed that the previous scale-space approach ignores 

digital magnification?
• In fact we used equivalence 
 λλλλB ⊕⊕⊕⊕ µµµµB  = (λλλλ + µµµµ) B ⇔⇔⇔⇔                B is compact convex

for defining homothetics, and we extended this type of  
decomposition to that of B into dilations of segments.



��� ��� � ��	� 
� � ��
 �� � � � � ��� ��� �� � � �� � � � �� ��� � � � � � �

ConclusionsConclusions
• Did you noticed that the previous scale-space approach ignores 

digital magnification?
• In fact we used equivalence 
 λλλλB ⊕⊕⊕⊕ µµµµB  = (λλλλ + µµµµ) B ⇔⇔⇔⇔                B is compact convex

for defining homothetics, and we extended this type of  
decomposition to that of B into dilations of segments.

• Arcwise connectivity turns out to be a very specific requirement, 
that one can add, but which plays no role in the theory.
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ConclusionsConclusions
• Did you noticed that the previous scale-space approach ignores 

digital magnification?
• In fact we used equivalence 
 λλλλB ⊕⊕⊕⊕ µµµµB  = (λλλλ + µµµµ) B ⇔⇔⇔⇔                B is compact convex

for defining homothetics, and we extended this type of  
decomposition to that of B into dilations of segments.

• Arcwise connectivity turns out to be a very specific requirement, 
that one can add, but which plays no role in the theory.

• Though figures are 2-D, the whole approach works in Z �.
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