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This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced 
Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state 
of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear 
Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spec-
troradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis 
and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction 
image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that 
there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative corre-
lation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and 
the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute 
for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schisto-
somiasis in MG, which can be used to improve the allocation of resources for disease control.
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Schistosomiasis mansoni is an endemic disease 
present in approximately 54 American and African coun-
tries (WHO 1985, Chitsulo et al. 2000). The etiological 
agent is the trematode Schistosoma mansoni (Sambon), 
which causes a variety of symptoms ranging from acute 
to chronic forms with predominantly intestinal manifes-
tations. Severe forms of the disease may occur, such as 
splenomegaly, impairment of the central nervous system, 
fibro-obstruction in the liver and portal hypertension. 
Schistosomiasis treatment is simple due to readily avail-
able drugs that can be administered in a single oral dose 
(Katz et al. 1989). The disease has been primarily spread-
ing from the outskirts of cities to urban centres and other 
regions of the country (Graeff-Teixeira et al. 1999). ������Schis-
tosomiasis is primarily caused by a lack of basic sanita-
tion in the peripheries of large urban centres where in 
natura sewage is directly released into drainage.
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The intermediate hosts are molluscs of the Biompha-
laria genus. Among the three intermediate hosts species 
of S. mansoni present in Brazil (Biomphalaria glabrata, 
Biomphalaria tenagophila and Biomphalaria straminea), 
B. glabrata is of the greatest significance due to its exten-
sive geographic distribution, higher infection rates and 
higher effectiveness in the transmission of schistosomia-
sis. Indeed, the occurrence of B. glabrata has always 
been associated with the disease in endemic areas.

The extensive distribution of these intermediate hosts 
in Minas Gerais (MG), Brazil, results in the wide-ranging 
distribution of schistosomiasis, which is now commonly 
found in non-endemic areas (Katz & Carvalho 1983, 
Carvalho et al. 1988, 1989). The disease is known to be 
endemic in the regions north (zone of Médio São Fran-
cisco and Itacambira), oriental and central (zone of Alto 
Jequitinhonha, Oeste, Alto São Francisco and Metalúr-
gica). The highest infection rates are found in the north-
eastern and eastern parts of MG, including Mucuri, Rio 
Doce and Zona da Mata (Pellon & Teixeira 1950, Katz et 
al. 1978, Carvalho et al. 1987, Lambertucci et al. 1987). 
In the endemic areas, high host concentrations cause a 
high prevalence of schistosomiasis, where high host con-
centrations are associated with other risk factors.

Environmental factors, such as vegetation, tempera-
ture, land use and drainage net, can affect the spread and 
prevalence of schistosomiasis. Here, environmental fac-
tors were characterised using satellite imagery and spatial 
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analysis. Increasingly, research into the link between the 
disease, environmental conditions, geographical informa-
tion systems and remote sensing data is being conducted 
and this paper may play an important role in schistosomia-
sis studies (Beck et al. 1997, 2000, Bavia et al. 2001). 

Recently, Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellites with sensors of high 
temporal resolution and moderated space resolution 
became operational.

Two vegetation indices (VI) based on MODIS data 
provide robust spectral measures of the amount of 
vegetation covering the land. The two indices provide 
spatial and temporal comparisons of global vegetation 
conditions that can be used to monitor changes in the 
Earth’s terrestrial photosynthetic vegetation activity and 
to detect changes in phenology. Additionally, they allow 
a biophysical derivation of radiometric and structural 
vegetation parameters (Huete et al. 1999).

A drawback of the MODIS sensor data is the rela-
tively low spatial resolution. The Linear Spectral Mix-
ture Model (LSMM) can be used (Cross et al. 1991) to 
overcome this restriction. This model estimates propor-
tions of determined objects of interest inside a pixel. The 
“pure” terrestrial coverage for the set of classes of inter-
est is identified and their spectra are used to define the 
“endmember signatures”. All other pixels are assigned 
proportions of these endmembers (Cross et al. 1991, 
Quarmby et al. 1992). Each pixel spectral response is 
considered a linear mixture of the pure pixel (endmem-
ber) spectral signatures.

Efforts to predict the prevalence of schistosomia-
sis using Geographic Information System (GIS) were 
first attempted in the Philippines and the Caribbean by 
Cross et al. (1984). In Brazil, the first studies were per-
formed in the state of Bahia and attempted to correlate 
the disease distribution with Normalized Difference 
Vegetation Index (NDVI), diurnal temperature differ-
ence and the length of the annual dry period (Bavia et 
al. 2001). Other studies in Brazil using GIS were con-
ducted in Pernambuco (Barbosa et al. 2004) and MG 
(Carvalho et al. 2005, Freitas et al. 2006, Guimarães et 
al. 2006, 2008, 2009, Martins 2008).

The aim of this paper is to use images created us-
ing LSMM from MODIS radiometric data to analyse 
the correlation with schistosomiasis prevalence and B. 
glabrata presence in MG and compare these results to 
analyses using NDVI and Enhanced Vegetation Index 
(EVI) channels.

MATERIALS AND METHODS

MODIS - The MODIS instrument is operating on 
both the Terra and Aqua spacecraft. It has a viewing 
swath width of 2,330 km and views the entire surface of 
the Earth every 1-2 days. Its detectors measure 36 spec-
tral bands between 0.405-14.385 µm and it acquires data 
at three spatial resolutions - 250 m, 500 m and 1,000 m.  
Data products derived from MODIS observations de-
scribe features of the land, oceans and the atmosphere 
that can be used for studies of processes and trends on 
local to global scales (Justice et al. 1998).

The MODIS MOD13 product, which was used in this 
study, comprises the blue, red, near infrared (NIR) and 
the middle infrared bands (the radiometric set of chan-
nels), as well as the VIs. The VI products contain two 
indices, the NDVI and a new EVI, which has improved 
sensitivity to differences in vegetation from sparse to 
dense vegetation conditions (Justice et al. 1998). The 
MOD13 product is delivered as a set of image composi-
tions produced globally with 1 km, 500 m and 250 m 
resolution in a 16-day period (Huete et al. 1999).

The NDVI reduces noise and some uncertainty as-
sociated with instrument characteristics and cloud shade 
effects, but the disadvantages include nonlinearity and 
scaling problems, signal saturation at high leaf biomass 
and sensitivity to exposed soil backgrounds (Running et 
al. 1994, Justice et al. 1998). The NDVI can be calculated 
using the formula:

NDVI =
ρNIR – ρR
ρNIR +ρR

where ρNIR = reflectance from NIR and ρR = reflectance 
from red.

The EVI offers improved sensitivity in high biomass 
regions and improved vegetation monitoring (Justice et 
al. 1998, Weier & Herring 2004). The EVI is defined:

EVI = G*
ρNIR – ρR

ρNIR + C1 * ρR – C2 * ρB + L

where ρNIR = reflectance from NIR, ρR = reflectance 
from red, ρB = reflectance from blue, G is the gain factor, 
L is a canopy background adjustment term and C1 and C2 
weigh the use of the blue channel in aerosol correction of 
the red channel. The coefficients used have been usually 
applied to Landsat TM: L = 1, C1 = 6, C2 = 7.5 and G = 
2.5 (Justice et al. 1998).

LSMM - The LSMM is an image processing algo-
rithm that generates images with the proportion of each 
endmember (vegetation, soil and shade) inside a pixel. 
The proportion values must be nonnegative and they 
also must add to unity (Shimabukuro & Smith 1991). In 
this case, the pixel response in any given spectral band 
is assumed to be a linear combination of the responses of 
each individual component. For any individual pixel, the 
linear model can be written as:

ri = Σ (aijxj) + ei i = 1, ..., p
n

j = 1

where ri represents the pixel’s mean spectral reflectance 
in the ith spectral band, aij is the spectral reflectance of 
the jth component in the ith spectral band, xj is the pro-
portion of the jth component within the pixel, n is the 
number of components, ei is the residual for the ith spec-
tral band and p is the number of spectral bands. The pro-
portions xj are subjected to two constraints:

Σ xj = 1 and xj ≥ 0 for all components
The least squares technique can then be applied to 

estimate the component proportions xj (Shimabukuro 
& Smith 1991).
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Application of the LSMM to the MODIS radiometric 
images - The vegetation, soil and shade components (end-
members) were extracted from MODIS images. Fig. 1  
depicts the spectral answer of the vegetation compo-
nent (green) in areas of ciliary’s woods, the shade com-
ponent (blue) in the area corresponding to a dam and 
the soil component (red) in areas of exposed soil in (i) 
the summer period (from 17 January 2002-1 February 
2002) and (ii) the winter period (from 28 July 2002-12 
August 2002).

Schistosomiasis prevalence and presence of B. glabra-
ta - Schistosomiasis prevalence data were gathered from 
the Brazilian Health National Foundation and the Health 
Secretariat of Minas Gerais Annual Reports. Informa-
tion on the presence of Biomphalaria was obtained from 
Souza et al. (2001) and from the Helminthiasis Laboratory 
and Medical Malacology of the Rene Rachou Research 
Institute-Fiocruz (MG) (Carvalho et al. 2008).

There were 853 points (pixels) in MG selected to cor-
respond to the mass centre of each municipality, as de-
picted in Fig. 2A. The correlation between fraction im-
ages and the VIs was analysed at these 853 points in two 
seasons (January and July 2002) to determine the extent 
to which they are linearly related and then represent the 
same information.

Additionally, 96 municipalities from MG were stud-
ied, where information for these municipalities on schis-
tosomiasis prevalence and the presence of B. glabrata 
was available, as depicted in Fig. 2B. Because these data 
were available at the municipality level, the averages 
were extracted by considering the pixels inside area of 
each municipality for all of the shade, soil and vegetation 
fraction images.

RESULTS

The soil, vegetation and shade fraction images were 
generated using the soil, vegetation and shade compo-
nents, respectively, of each pixel from the spectral an-
swer in MODIS’ several bands.

Figs 3 and 4 present the VIs (NDVI and EVI) and 
the fraction images from each season (January and July 
2002) for MG. As apparent in Fig. 3, the highest values 
(bright pixels) have a similar pattern in the vegetation 
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Fig. 1: spectral answer of the shade (blue), soil (red) and vegetation 
(green) components. Extracted of the Moderate Resolution Imaging 
Spectroradiometer images: A: summer; B: winter.

Fig. 2A: the state of Minas Gerais with the points selected through the 
municipalities’ center point; B: sets: 96 municipalities.
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fraction image and in EVI. In Fig. 4, NDVI depicts a 
similar pattern, however negatively related, with the soil 
fraction image.

Table I depicts correlations between the VIs and the 
vegetation, soil and shade fraction images for the two 
periods (January and July). There was a high correlation 
between the vegetation fraction image and the EVI (0.90 
and 0.96 in the January and July images, respectively) 
and between the soil fraction image and the NDVI (-0.86 
and -0.88 in January and July, respectively).

These results demonstrate that the atmosphere and 
soil components influenced the NDVI results mainly in 
the rainy season when the effect of soil between scarcely 
vegetated areas was greater. Additionally, both the veg-
etation fraction image and the EVI were more correlated 
with the NDVI in the July image (0.85 and 0.91, respec-
tively) than the January image (0.65 and 0.63, respective-
ly). This is likely due to the fact that rain is nearly absent 
in July and the vegetation is dry, which consequently 
minimises the effect of the soil component in the NDVI. 

Correlations were higher in July than January for 
all the variables except the shade fraction image, which 
had higher correlations with January variables (Table I). 
This may be because the rainy season is in January, at 
which time there is more shade from the trees.

The Table II shows the correlation values between 
the prevalence of schistosomiasis, the presence of B. gla-
brata and the soil, vegetation and shade fraction images 
from MODIS data in January and July 2002.

Correlations that are significant at the 5% are high-
lighted in bold. There is not a significant correlation to 
the fraction images of the rainy season (January 2002) 
as much as to the prevalence as to the existence of B. 
glabrata. On the other hand, the prevalence is positively 
correlated with the vegetation fraction in July 2002 but 
negatively correlated with the soil fraction. ���������� This indi-
cates that the prevalence was associated with the type of 
vegetation because in the dry season there is better dif-
ferentiation between the biomes (e.g., forest, cerrado and 
caatinga). Prevalence was negatively correlated with soil 

Fig. 3: similar behavior in the Enhanced Vegetation Index (EVI) (A) and in vegetation fraction image (B) of January/2002 and EVI (C) and 
in vegetation fraction image (D) of July/2002.
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Fig. 4: similar behavior, however inverse, in the soil fraction image (A) and in Normalized Difference Vegetation Index (NDVI) (B) of January/2002 
and the soil fraction image (C) and in NDVI (D) of July/2002.

TABLE I
Correlations between the vegetation indices and the vegetation, soil and shade fraction images  

for the January/2002 [summer (s)] and July/2002 [winter (w)] dates

EVIs NDVIs VEGs SOILs SHADs EVIw NDVIw VEGw SOILw SHADw

EVIs - 0.63 0.90 -0.40 -0.36 0.18 0.16 0.17 -0.07 -0.10
NDVIs 0.63 - 0.65 -0.85 0.41 0.29 0.33 0.27 -0.26 0.05
VEGs 0.90 0.65 - -0.50 -0.34 0.18 0.14 0.19 -0.05 -0.15
SOILs -0.40 -0.85 -0.50 - -0.53 -0.24 -0.27 -0.24 0.30 -0.14
SHADs -0.36 0.41 -0.34 -0.53 - 0.15 0.25 0.12 -0.25 0.20
EVIw 0.18 0.29 0.18 -0.24 0.15 - 0.91 0.96 -0.71 -0.12
NDVIw 0.16 0.33 0.14 -0.27 0.25 0.91 - 0.85 -0.88 0.25
VEGw 0.17 0.27 0.19 -0.24 0.12 0.96 0.85 - -0.71 -0.17
SOILw -0.07 -0.26 -0.05 0.30 -0.25 -0.71 -0.88 -0.71 - -0.57
SHADw -0.10 0.05 -0.15 -0.14 0.20 -0.12 0.25 -0.17 -0.57 -

EVI: Enhanced Vegetation Index; NDVI: Normalized Difference Vegetation Index; SHAD: shade fraction image; SOIL: soil 
fraction image; VEG: vegetation fraction image.
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fraction, including areas of exposed soil. ���������������The shade frac-
tion in July 2002 was positively correlated with the pres-
ence of B. glabrata, indicating that the mollusc inhabits 
areas with different forms of relief. Shade fraction can 
indicate water retention in the soil and in areas with the 
presence of water bodies (e.g., river, lakes and lagoons).

DISCUSSION

The vegetation fraction image of the LSMM was 
highly correlated with the EVI, while the soil fraction 
image was highly correlated with the NDVI for both 
dates. EVI minimizes the atmospheric and soil influ-
ences, as reported by Justice et al. (1998) and Weier and 
Herring (2004). Our results indicate that the vegetation 
fraction image of the LSMM also minimizes the influ-
ences of the atmosphere and soil, which makes these im-
ages more accurate than the NDVI in the changing of 
type of vegetation (biome).

This study also found that the variables were not 
highly correlated between the dry and rainy season, 
which demonstrates that variables from both seasons 
can be used in multiple regression analysis. Our results 
show that the variables from the LSMM in the dry sea-
son were significantly correlated with the prevalence of 
the disease and the presence of the mollusc. This may be 
due to the fact that higher concentrations of snails occur 
in the dry season, which increases disease transmission 
due to the decrease in rain and volume of water bodies 
and people searching for water bodies to minimize the 
warmth, either for drinking, bathing or entertainment. 
This information reiterates the importance of conduct-
ing studies on water bodies and snail presence.

The results show that variables from the LSMM can 
be used in place of the EVI and NDVI to determine and 
delimit risk areas for the presence of B. glabrata and for 
the occurrence of schistosomiasis in MG. This informa-
tion can be used to improve the allocation of resources 
in disease control.

The fraction images of the LSMM presented in this 
paper have been used in the following papers:

Freitas et al. (2006), Guimarães et al. (2008) and 
Martins (2008) used the vegetation, soil and shade frac-
tion images to estimate schistosomiasis prevalence in 
regression models. However, only Martins (2008) ob-
tained a model with vegetation fraction image during 
the dry season.

Martins-Bedé et al. (2010) presented the decision tree 
approach to model and classify infection risk. In this ap-
proach, the main tree was compared to three sub-trees 
and two sub-trees with the shade fraction image from 
the dry season (ShadeW) were very similar to the main 
tree, which did not have the variable ShadeW.

Additionally, Martins-Bedé et al. (2009) proposed 
the application of a similarity-based fuzzy case-based 
reasoning approach to classify the prevalence of schisto-
somiasis in MG using fraction images.

We observed that fraction images were highly use-
ful in the study of schistosomiasis. The fraction images 
obtained in the dry and rainy seasons can characterise 
the environment, such as the type of biome (Affonso 
2003, Ferreira 2003), geomorphology (Sousa 1998), hy-
drography (Hansen et al. 2008) and land cover change 
(Adams et al. 1995), which are important factors for 
predictive models. 

The use of MODIS images from other dates and places 
is recommended in order to verify if there is a high corre-
lation between fraction images, VIs and the prevalence of 
schistosomiasis and the occurrence of Biomphalaria.
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