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Abstract. In the present work, a flamelet-type modeling is made for describing the features of liquid fuel combustion, at
it’s final stage, inside a porous inert medium. The flamelet theory has been formulated for describing a flame element
for turbulent combustion, and is one of the tools for studying flame dynamics. Combustion established inside a porous
medium has some features that are not observable at free propagating combustion. First of all, one must consider that the
porous matrix acts as a resistance force to the flow due to the tortuosity, which is taken into account in the conservation
equations. Also, the porous matrix interacts directly with the system recirculating the heat upward and downward the
reaction zone, leading to a more efficient burning process, and, consequently, with less pollutant combustion emission.
In the present work we consider the final stage of a diffusion flame established inside the porous medium, where the
remaining fuel is a heavy, very low volatile one, in which the remaining physical process is a lower order vaporization,
not enough to sustain the flame. We model our system using assumption of a very low volatility fuel, low permeability
porous medium and use boundary-layer approximation. The vaporization rate is estimated, and temperature profiles for
the three existing phases are obtained, so as the momentum profile for the flowing gas. Asymptotic theory was used as the
mathematical approach.
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1. INTRODUCTION

Combustion phenomena inside porous medium have been studied for decades (Howell et al., 1996; Kayal and Chakra-
varty, 2005). Such interest may be explained by the enormous amount of applications encountered for these combustion
systems, ranging from industrial chambers, passing by in-situ oil recovery to household applications (Mujeebu et al.,
2008). One of the main features related to porous media confined combustion is the heat recirculation from downstream
to upstream the flame, such characteristic provides an excess enthalpy to preheat the reactants, leading then to a more
efficient combustion process, and even making it possible to burn lean mixtures. Also one may observe improvement in
the excess temperature, making the process of porous media confined combustion more efficient than free one.

In the present work, a post-combustion, heavy-fuel evaporating regime established inside a porous medium is studied.
Such situation appears, for example, after in-situ combustion have been performed in oil wells. The propagation of a
combustion front in wells is used as a thermal recovery of heavy oil (Castanier and Brigham, 2003). After the front have
passed, the remaining fuel left behind is the heaviest part of the oil, and it contains undesirable impurities. But since the
well is still hot, this remaining heavy fuel may continue to vaporize, establishing a regime similar to the one presented in
this work.

The physical configuration to be considered, when analyzed from the flamelet scope, is an impinging hot oxidant
stream over a pool of liquid fuel, as seen below:

air injected in porous media

liquid fuel inside porous media

Figure 1. Evaporating fuel

We assume that the flame have extinguished and the remaining fuel is heavy and very low-volatile. At this configura-
tion, we observe the low vaporization regime.
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When the flow impinges at the liquid surface, a stagnation-point-kind of flow configuration is established. In a free
impinging flow system, the evaporating regime is non-efficient. But when we add the porous matrix, the solid carries the
heat to inside the liquid fuel, due to the high value of thermal conductivity, if compared to the gas.

The gas-solid problem have a field solution very similar to the field created by a stagnation-point flow (Wu et al.,
2005). Analyzing the liquid-solid problem, we find two distinct zones: a equilibrium region, where the temperatures for
solid and liquid are equal, and a boiling zone, where the liquid have a constant temperature near it’s boiling temperature
and the solid continue to raise its temperature, since it has no upper limit. In this boiling zone the profiles are decoupled,
and such thermal difference is the main responsible for providing the necessary heat for the fuel phase change. In the
present work we assume that all heat used to vaporize the fuel comes from the liquid-solid thermal interaction.

The proposed model uses asymptotic theory to obtain analytical expressions for the entire gas, liquid and solid coupled
problems. The obtained results will be discussed in physical grounds.

2. MATHEMATICAL FORMULATION

In the proposed model, we utilize conservation equations for both regions, liquid-solid and gas-solid. Non-dimensional
variables are given by: u ≡ ū/v̄∞, % ≡ ρ/ρ∞ = 1, %l ≡ ρl/ρ∞, v ≡ v̄/v̄∞, vl ≡ v̄l/v̄∞, p ≡ p̄/(ρ∞v2

∞), x ≡ x̄/lc,
z ≡ z̄/lc, a ≡ (lc/v̄∞)dū/dx̄|∞, θg ≡ Tg/T∞, θs ≡ Ts/T∞, θl ≡ Tl/T∞, yO ≡ YO/YO∞ and yF ≡ YF .

And the transformations used are:

u = a x U(z), % v = −a1/2f,

p0 − p =
1
2
Pr a2

(
1 +

1
Γ

l2c
aK

)(
x2 +

2F (z)
a

)
, η = %a1/2z

Above, p0 is the stagnation pressure and lc is a characteristic length scale, defined by lc = λ̄s/(ρ∞cpv̄∞).
In the following, the non-dimensional conservation equations are presented with the transformations already perfor-

med. First, the mass conservation equation:

U =
df

dη
(1)

The momentum conservation equation is given by:

Pr

Γ
d3f

dη3
+ f

d2f

dη2
−

(
df

dη

)2

− ε
Pr

κΓ
df

dη
= −εPr

(
1 +

1
κΓ

)
(2)

Pr is the Prandtl number and Γ ∼ 60 is a ratio between solid and gas thermal conductivities. κ is a non-dimensional
permeability and it is assumed to be proportional to 1/Γ2.

The species conservation are presented as:

1
Γ

d2yF

dη2
+ LF f

dyF

dη
= 0 (3)

1
Γ

d2yO

dη2
+ LOf

dyO

dη
= 0 (4)

Where the Lewis numbers appears, connecting mass and thermal diffusion.
The energy equation are presented next, both for the gas and solid matrix filled with gas:

ε
1
Γ

d2θg

dη2
+ εf

dθg

dη
= −Nv

a
(θs − θg) (5)

0 = (1− ε)
d2θs

dη2
−Nv

1
a
(θs − θg) (6)

The following boundary conditions must be obeyed:

df

dη
− 1 = θg − 1 = θs − 1 = yO − 1 = yF = 0 for η = ∞

At the liquid surface η = 0, the boundary conditions are

df

dη
= f − f0 = θg − θb = θs − θs0 = yO = yF − yF0 = 0,

1
Γ

1
LF

dyF

dη

∣∣∣∣
η=0+

= (1− yF0)f0,
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1
Γ

dθg

dη

∣∣∣∣
η=0+

= −lf0 +
J

a1/2

dθl

dz

∣∣∣∣
z=−zb

− Nl

a1/2

∫ 0

−zb

(θs − θl)dz, (7)

in which l ≡ L/(cpT∞) À 1, since we consider a extreme low volatile fuel.
For the liquid phase of the problem, we have the following set of equations:

%lvl =
¯̇m

ρ∞v̄∞
≡ ṁ (8)

εJ
d2θl

dz2
− εM

dθl

dz
= −Nl(θs − θl), (9)

(1− ε)
d2θs

dz2
= Nl(θs − θl) (10)

The above parameters are given by:

M ≡ ṁ(cl/cp), J ≡ (λ̄l/λ̄s),

The Clapeyron relation relates the fuel mass fraction at the liquid surface with the corresponding temperature as

yF0 = exp

[
lR

(
1

θl0
− 1

θb

)]
(11)

the parameter lR is defined as lR ≡ L/(RT∞) À 1.
The boundary conditions in the inlet liquid fuel are (z → −∞)

vl − vl−∞ = θl − θ−∞ = θs − θ−∞ = %l − (ρl/ρ∞) = yF − 1 = 0

The velocity of the fuel in the gas phase at the liquid surface is related with the vaporization rate as

−a1/2f0 = %l vl0 = ṁ (12)

The liquid temperature θl0 at the interface liquid-gas is very close to that of boiling, but the solid phase temperature
θs0 is higher than that. The value for θs0 will be obtained from the solid temperature profile coupling between the gas and
liquid problem.

3. SOLUTIONS

The problem presents several scales, for the gas-solid region as for the liquid-solid region. Those two regions will be
solved and their coupling will come from energy conservation condition at the interface. The assumption of low-porosity
medium will appear as we consider 1/(κΓ) = βΓ, β being a unitary order parameter.

3.1 Gas-solid region

Above the interface, we must solve Eqs. (1) - (6) with proper boundary conditions. In this region, we recognize two
distinct zones: one where viscous effects are not observed, denoted outer zone, and one at near the interface liquid-gas,
where viscous effects becomes relevant. These two zones will be solved separately, but they must couple at proper limits.

In the outer zone, viscous effects are not significant. We perform a expansion for f given by f = f(0) + Γ−1f(1) +
O(Γ−2), and obtain, from Eq. (2):

f
′
(0) = 1 (13)

f(0)f
′′
(0) −

(
f
′
(0)

)2

− εPrβf
′
(1) = −εPr (14)

The boundary conditions at the outer zone are given by:

f(0)(0) = f(1)(0) = 0,

df(0)

dη

∣∣∣∣
∞

= 1,
df(1)

dη

∣∣∣∣
∞

= U1

U1 is the higher order correction from the expansion of the boundary for U and will be from Eq. (14).
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Solving the above set of equations, we obtain the momentum for the outer zone:

f(η) = η − Γ−1

(
1− εPr

1− ε

)
γ

βPr
η + O

(
Γ−2

)
(15)

In this outer zone, gas and solid are in thermal equilibrium, since we assume that the interphase heat exchange is high.
We quantify this by assuming θg ∼ θs and utilizing a single variable θ for both phases.

Performing a expansion in θ and utilizing the expression for f , we obtain from Eqs. (3) and (4), defining γ = (1−ε)/ε:

γθ
′′
(0) + ηθ

′
(0) = 0, (16)

θ
′′
(0) + γθ

′′
(1) + ηθ

′
(1) − η

(
1− εPr

1− ε

)
γ

βPr
θ
′
(0) = 0 (17)

The boundary conditions are given by:

θ(0)(0) = θm, θ(1)(0) = θm1,

θ(0)(η →∞) = 1, θ(1)(η →∞) = 0

In the large scale we are not able to enter the inner zone (at the interface the temperature is different for solid and gas,
the inner zone will contemplate this decoupling). In order to couple solutions, we will develop the outer zone solution
with the inner zone solution to obtain the temperature (θm and it’s correction θm1) at an intermediary point.

The temperature at the outer zone is then given by:

θ(η) = θm + (1− θm) erf

(
η√
2γ

)
− Γ−1

[
(1− θm)

2γ

√
2

πγ

(
1 +

1− εPr

1− ε

γ2

βPr

)
η exp

(
− η2

2γ

)
−

θm1

(
1− erf

(
η√
2γ

))]
+ O

(
Γ−2

)
(18)

When we analyze the problem close to the interface, we are entering the inner zone. In this zone, viscous effects
become important and we observe a decoupling between the temperature profiles.

We perform a coordinate change given by η̃ = Γη and re-scale the momentum variable also as f̃ = Γf , since in the
inner zone f is very small. Note that when we consider f as being small, we are in the regime of low order vaporization
rate, hence, reinforcing the fact that the flame have extinguished, since if we have a small vaporization rate, the flame
cannot sustain itself.

The interphase heat exchange is quantified by considering Nv = Γ nv , where nv is a unitary order parameter.
Performing the coordinate change, the re-scaling and expanding f̃ = f̃i(0)+Γ−1f̃i(1)+O(Γ−2), after collecting equal

powers, we obtain:

f̃
′′′
i(0) − εβ

(
f̃
′
i(0) − 1

)
= 0 (19)

Prf̃
′′′
i(1) + f̃i(0)f̃

′′
i(0) −

(
f̃
′
i(0)

)2

− εβPrf̃
′
i(1) = −εPr (20)

The boundary conditions are:

f̃i(0)(0) = f̃0 = Γf0,
df̃i(0)

dη̃

∣∣∣∣∣
0

= 0,
df̃i(0)

dη̃

∣∣∣∣∣
∞

=
df0

dη

∣∣∣∣
0

= 1,

f̃i(1)(0) = 0,
df̃i(1)

dη̃

∣∣∣∣∣
0

= 0,
df̃i(1)

dη̃

∣∣∣∣∣
∞

=
df1

dη

∣∣∣∣
0

= −
(

1− εPr

1− ε

)
γ

βPr

Solving the above set of equations, we obtain the momentum in the inner zone:

f̃(η̃) = η̃ +
1√
εβ

(
exp

(
−

√
εβη̃

)
− 1

)
+ f̃0 + Γ−1 1

8εβPr

[
8(εPr − 1)η̃ − exp

(
−

√
εβη̃

)(
10η̃ + 2

√
εβη̃2

)
−

(
exp

(
−

√
εβη̃

)
− 1

) 10 + 8 (1− εPr)√
εβ

)]
+ O

(
Γ−2

)
(21)
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In the inner zone, the temperature profiles decouple and we observe a different behavior for each phase, solid and gas.
At the interface, the solid temperature is higher than the gas temperature, a result that will be shown when we obtain the
values for θs0, θm and θm1.

The equations to be solved are Eqs. (5) and (6). The coordinate η̃ is used also, and we perform expansion in both
temperature variables, and after collecting equal powers, we obtain a set of four equations:

εθ
′′
g(0) = − nv

(
θs(0) − θg(0)

)
, (22)

εθ
′′
g(1) + εf̃i(0)θ

′
g(0) = − nv

(
θs(1) − θg(1)

)
(23)

(1− ε)θ
′′
s(0) = 0, (24)

(1− ε)θ
′′
s(1) = nv

(
θs(0) − θg(0)

)
(25)

With boundary conditions given by:

θg(0)(0) = θb, θs(0)(0) = θs0,

θg(1)(0) = θs(1)(0) = 0

The solutions also must obey a matching flux condition with the outer zone flux.
Solving the above set of equations, we obtain:

θg(η̃) = θs0 + (1− θm)
√

2
πγ

η̃ − (θs0 − θb) exp

(
−

√
nv

ε
η̃

)
+ Γ−1

[
ε

nv

(
(1− θm)

√
2

πγ

(
f̃0 − 1√

εβ

)
+

θs0 − θb

1− ε

) (
e−
√

nv
ε η̃ − 1

)
−

(
1− θm

2γ

√
2

πγ

(
1 +

1− εPr

1− ε

γ2

βPr

)
+ θm1

√
2

πγ

)
η̃ − θs0 − θb

2
√

εβ

(
f̃0 −

1− ε

√
β

nv

(
1

1− ε
+
√

ε +
√

nv η̃

2
√

ε

))
η̃ e−

√
nv
ε η̃ +

√
nv

εβ

(θs0 − θb)
(2
√

nv + ε
√

β)
e−
√

nv
ε η̃

(
e−
√

εβη̃ − 1
)]

+O
(
Γ−2

)
(26)

And for the solid phase:

θs(η̃) = θs0 + (1− θm)
√

2
πγ

η̃ − Γ−1

[(
1− θm

2γ

√
2

πγ

(
1 +

1− εPr

1− ε

γ2

βPr

)
+ θm1

√
2

πγ

)
η̃ −

(θs0 − θb)
γ

1
nv

(
e−
√

nv
ε η̃ − 1

)]
+ O

(
Γ−2

)
(27)

In the equation for the gas phase in the inner zone, we made use of the fact that the difference (1− θm) is very small,
as will be seen forward, hence, we actually solved a simplified version of Eq. (23).

3.2 Liquid-solid region

For the liquid phase problem, we must analyze only Eqs. (9) and (10) with the proper boundary conditions. We
re-scale Nl as Nl = nlΓ2, where nl is a unitary order parameter, as we consider a high interphase heat exchange. With
this in mind, we will decouple the liquid phase problem into two characteristic zones: a equilibrium and a boiling zone.

In the equilibrium zone, liquid fuel and solid matrix are in thermal equilibrium, and as in the case for the outer zone in
the gas phase problem, we consider both temperatures as equal. With this in mind, we utilize Eqs. (9) and (10) to obtain:

(J + γ)
M

d2θ

dz2
− dθ

dz
= 0 (28)

Which must satisfy the conditions:

θ(z → −∞) = θ−∞, θ(z = 0) = θb

So, for the equilibrium region, the temperature profile is given by:

θ(z) = (θb − θ−∞)ez/r1 + θ−∞ (29)
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where r1 = (J + γ) /M .
When we reach the boiling zone, the profiles decouple, since the liquid reaches the boiling temperature and the heat

provided to this phase is used to the phase change. The solid, however, continue to raise it’s temperature, since it has no
upper limit. So, when we reach the interface, the solid temperature is higher than the liquid temperature.

To analyze such zone, we perform a coordinate change given by z̃ = Γz and a expansion given by:

θs = θs(0) + Γ−1θs(1) + O(Γ−2),

θl = θb − Γ−1θl(1) + O(Γ−2)

With this, the governing equations are given by:

(1− ε)
d2θs(0)

dz̃2
= nl

(
θs(0) − θb

)
(30)

(1− ε)
d2θs(1)

dz̃2
= nl(θs(1) + θl(1)) (31)

And for the liquid phase, we only have a equation for the higher order correction, since the leading order is constant-
valued:

−εJ
d2θl(1)

dz̃2
= −nl(θs(1) + θl(1)) (32)

The boundary conditions are:

θs(0)(0) = θs0, θs(0)(z̃ → −∞) = θ(z = 0),

θs(1)(0) = θl(1)(0) = 0,
dθs(1)

dz̃

∣∣∣∣
−∞

= − dθl(1)

dz̃

∣∣∣∣
−∞

=
dθ

dz

∣∣∣∣
0−

=
(θb − θ−∞)

r1

The temperature profiles in the inner zone will be given then by:

θs(z̃) = θb + (θs0 − θb) exp

(√
nl

1− ε
z̃

)
+ Γ−1

(
θb − θ−∞

r1

)
z̃ + O

(
Γ−2

)
(33)

θl = θb + Γ−1

(
θb − θ−∞

r1

)
z̃ + O

(
Γ−2

)
(34)

The continuity for the heat flux in the leading order for the solid phase is not obeyed because when one enters the
boiling zone the heat provided by the solid phase in this region is used for the liquid phase change.

From the condition of energy conservation at the interface and from the matching flux of thermal energy of solid phase
from the gas problem with the liquid problem, we obtain the undetermined values θs0, θm and θm1.

Considering the continuity of the higher order heat flux of the solid phase at the interface, and the higher order
correction in Eq. (37):

θs0 = θb +

√
ε(1− ε)√

(1− ε)nv +
√

ε nl

(θb − θ−∞)
J + γ

J

a1/2
M (35)

θm = 1−
√

π

2

√
nlγ√

nvγ +
√

nl

(θb − θ−∞)
J + γ

J

a1/2
M (36)

In the present problem we are considering a very low volatile fuel, so we re-write l = Γ2 l̃. With this, Eq. (7), re-scaled,
is given by:

dθg

dη̃

∣∣∣∣
η̃=0+

= −Γ l̃f̃0 + Γ
J

a1/2

dθl

dz̃

∣∣∣∣
z̃=−∞

− Γ
(nl

a

)1/2

(θs0 − θb) (1− ε)1/2 (37)

Where we already evaluated the integral term that corresponds to the heat exchange between solid and liquid at the
boiling zone, this heat exchange is the responsible for the vaporization process.

From this, we estimate the vaporization rate as:

f̃0 = −
(nl

a

)1/2 (θs0 − θb)
l̃

(1− ε)1/2 (38)

And from the coupling condition at higher order correction of the solid phase, we obtain:

θm1 = −
√

πγ

2

√
nv

ε

(θs0 − θb)
γ nv

− (1− θm)
2γ

(
1 +

(
1− εPr

1− ε

)
γ2

βPr

)
−

√
πγ

2
(θb − θ−∞)

J + γ
M (39)

With those values, the whole coupled problem have been solved, in all scales. In the next section, graphic results will
be presented, so as their analysis.
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4. RESULTS AND DISCUSSION

In the gas-solid region we observe two distinct zones: an outer zone and an inner zone. In the outer zone, viscous
effects are not observed, since they occur near the liquid surface.

Analyzing the problem in this region, we observe a equal temperature profile for both gas and solid. This is due to
the fact that at this scale, the heat exchange brings the temperature to a balance quickly. Also, one is not able to observe
temperature variations occurring at the inner zone, and when we approach the inner zone, is observed an intermediary
value θm + Γ−1θm1 + O(Γ−2).

For the plotted figures below, we considered θb = 0.5 and θ−∞ = 0.25. The parameters β, Pr, nl, nv, J and M
are considered equal to 1 and the porosity used is 0.3. With those values, we obtain that θm ∼ 0.943, θm1 ∼ −0.259,
θs0 ∼ 0.525 and f̃0 ∼ −0.021.

The outer zone behavior is observed in Figs. (2) and (3) for both momentum and temperature profiles.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5

f

η

f for outer zone

Figure 2. Velocity in outer zone
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Figure 3. Temperature in outer zone

When we change the observable scale and enter the inner zone, viscous effects become relevant, as we can observe
from Fig. (4). Also, it is possible to capture the decoupling between temperature profiles for gas and solid. Near the
interface, heat transport for gas and solid are significantly different. This fact arise from their different-valued thermal
conductivities, that is responsible for the observable decoupling, as we can see from Fig. (5).
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Figure 4. Velocity in inner zone
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Figure 5. Temperature in inner zone

At the liquid-solid region we also observe two distinct zones: an equilibrium and a boiling zone. Far from the interface,
we observe that the very high interphase heat exchange is responsible from bringing temperatures into equilibrium. Like
in the outer zone case analyzed in the gas-solid problem, we observe a equal behavior for liquid and solid temperature in
this equilibrium region. Both phases sense a exponential growth in their temperatures profiles, as one can see from Fig.
(6).

When the profiles reach approximately the boiling fuel temperature, we observe their decoupling. At this temperature,
all the heat provided to the liquid fuel will be used to the phase change process, while the solid porous matrix do not have
such restrain. The observable effect is this profile decoupling, as the temperature for the solid phase continues to raise,
until it reaches the interface temperature θs0, a higher value than θl0 = θb, as we can see from Fig. (7). This difference
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between solid and liquid temperature in the boiling zone is the responsible for the vaporization process, as we obtained
from Eq. (37).
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Figure 7. Temperatures in boiling zone

The vaporization rate, as given by Eq. (38), dependence over the medium porosity and the strain-rate is shown by Fig.
(8).
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Figure 8. Vaporization rate

5. CONCLUSIONS

A flamelet formulation for the problem of the end of a diffusion flame of liquid fuel inside a low porosity porous
medium was presented and analyzed analytically. In the final stage of the diffusion flame studied, the remaining fuel is a
heavy, very low-volatile one and the relevant physical process is the vaporization. Since the vaporization rate obtained is
very small, it is not possible to sustain the flame under such conditions.

In this evaporating regime, we must solve two regions: one that corresponds to the gas-solid and another corresponding
to the liquid-solid region. In both regions we have two distinct zones. Outer zone and inner zone for the gas-solid region,
and equilibrium zone and boiling zone for the liquid-solid region.

In the gas-solid region, the outer zone doesn’t consider the viscous effects occurring near the liquid-gas interface. Gas
and solid remain in equilibrium due to the high value of the interphase heat exchange. In this outer zone, it is not possible
to enter the inner zone and analyze viscous effects, and a coordinate change is necessary. In the inner zone, near the
interface, temperature profiles decouple and the viscous effects are observed.

The solid matrix carries the heat to the interior of the liquid-solid region. Far below the interface, liquid and solid are
in thermal equilibrium, due to the high interphase heat exchange. As they approach the interface, we enter the boiling
zone and solid and liquid profiles decouple, since the liquid reaches the boiling temperature and in this situation, all heat
delivered to the liquid fuel will be used in phase change. The solid phase does not have such restrain, so it keeps raising



Proceedings of ENCIT 2010
Copyright c© 2010 by ABCM

13th Brazilian Congress of Thermal Sciences and Engineering
December 05-10, 2010, Uberlândia, MG, Brazil

the temperature, until it reaches θs0 at the interface. The interphase heat exchange in the boiling zone is the responsible
for vaporizing the low volatility liquid fuel.

We performed an analytical analysis of the proposed, obtaining all relevant parameters and profiles for all regions and
scales. Vaporization rate was estimated using energy conservation at the interface liquid-gas.

A very low volatile fuel have been assumed. If one assumes a highly volatile fuel, the vaporization process occur
before the liquid reaches the boiling temperature, and the boiling zone collapses. To analyze such situation, one must
consider a two-phase flow when the fuel starts to vaporize. Future works will consider highly volatility fuels, so as the
combustion process itself.
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