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ABSTRACT  

In the present paper, a hybrid version of the Generalized 
Extremal Optimization (GEO) and Evolution Strategies (ES) 
algorithms [1], developed in order to conjugate the convergence 
properties of GEO with the self-tuning characteristics present in 
the ES, is applied to the estimation of the temperature distribution 
of the film cooling near the internal wall of a thruster. The 
temperature profile is determined through an inverse problem 
approach using the hybrid. The profile was obtained for steady-
state conditions, were the external wall temperature along the 
thruster is considered as a known input.  The Boltzmann’s equation 
parameters [2], which define the cooling film temperature profile, 
are the design variables. Results using simulated data showed that 
this approach was efficient in recuperating those parameters. The 
approach showed here can be used on the design of thrusters with 
lower wall temperatures, which is a desirable feature of such 
devices.  

1. INTRODUCTION 
In the last 20 years, a considerable number of global optimization 
methods have been developed. Most of them are based on natural 
phenomena analogies, trying to copy the efficiency and simplicity 
of observed self-optimized processes in nature. Algorithms based 
on the evolution of species [3,4], on the annealing of metals [5], on 
the functioning of the brain [6], on the immune system [7] and 
even on the social behavior of ants [8] have been developed and 
used to get optimized solutions for many science and engineering 

problems. Among them, perhaps the most commonly used are 
simulated annealing (SA) [5], genetic algorithms (GA) [3] and their 
derivatives.  

The Generalized Extremal Optimization algorithm (GEO) [9–11], 
like SA and GA, is a stochastic algorithm, but unlike these ones, it 
has only one free parameter (τ) to be set, instead of three or more.  

GEO was developed as a generalization to the EO method [12] and, 
since then, has been successfully applied to a broad variety of 
science and engineering real-world problems [9-11,13-19]. It is a 
global search meta-heuristic, based on a model of natural evolution 
[20], and specially devised to be used in complex optimization 
problems. It has its fundaments on the Self-Organized Criticality 
(SOC) theory, which has been used to explain the power law 
signatures that emerge from many complex systems [21].  

ES [22] is a well known technique, whose first developments 
remounts back to the early 1960’s and whose further versions were 
among the first algorithms to include self-tuning (of their internal 
parameters) as a feature.  

The GEO + ES hybrid algorithm [1] was developed as way of 
combining the good convergence properties of a real-valued 
version of the GEO algorithm with the self-tuning characteristics 
present in the ES methods. It also introduces a new mutation 
operator that allows the algorithm to change the locality of the 
search at each iteration. Three performance tests with test functions 
used by other authors [23-25] for testing their own algorithms were 
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also performed for GEO + ES in [1] and compared, all showing 
excellent performance for the GEO + ES hybrid. 

Low thrust bipropellant rocket engines development present a 
difficult task regarding the heat load on the thruster wall. The 
adiabatic combustion temperature for stoichiometric mixture of 
most propellant pairs is much higher than the allowable 
temperature limit of the combustion chamber material. A 
compromise solution between the energetic efficiency (near 
stoichiometric mixture ratio) and wall heat load (which requires a 
fuel or oxidizer rich film near the wall) must be found. 

The heat load on the thruster wall depends on the temperature of 
the combustion products in the gas film near the wall, and the heat 
transfer coefficient. The determination of these parameters by 
analytical methods is subject to very large errors due to difficulties 
in modeling the atomization, mixing and combustion processes 
inside the chamber. The experimental measurement of the heat 
transfer coefficient and near wall gas film temperature is also 
difficult to perform.  

In this paper we describe a method to estimate the near wall gas 
film temperature from the measured outside wall temperature 
during the wall heating transient. The success of the method 
depends on the hypothesis that the aero-thermodynamic process 
inside the chamber is much shorter than the wall heating transient. 

In [26], preliminary results were showed. In this article, the GEO + 
ES hybrid algorithm is thoroughly presented and used to solve the 
inverse problem of thermal model parameter estimation for the 
200N hydrazine thruster being developed by the National Institute 
for Space Research of Brazil, INPE (in portuguese, Instituto 
Nacional de Pesquisas Espaciais). From the experimental data on 
the temperatures along the thruster external wall, and considering 
steady-state conditions, one wants to find the optimal estimates for 
the Boltzmann’s equation parameters [2], e.g., the coefficients of 
the Boltzmann equation that best match the outside wall 
temperature profile during the initial thermal transient The 
temperatures of the burning mixture film on the vicinities of the 
thruster internal wall are defined with help of the Boltzmann 
equation. The importance of finding the optimal estimates is that, 
once accurately found, they allow precise computerized thermal 
simulations for the thruster. 

2. GEO + ES HYBRID ALGORITHM 
In the following, ES and GEO stand alone algorithms are 
described, being followed by the description of the GEO + ES 
hybrid. 

2.1 ES algorithm 
ES is an optimization technique based on the ideas of adaptation 
and evolution, being another member of the family of the 
Evolutionary Algorithms (EA) [22]. ES methods use real coded 
vectors (non binary) and mutation mainly, among others, as 
operators. As it is common in EA, the operators are applied in 
order: recombination, mutation, evaluation of the adaptation 
function and natural selection. Applying this loop one time is called 
a generation, and it is repeated until a stop criterion is reached. 

The first ES methods were based on a population of only two 
individuals per generation: one search space point (the father) and 
one mutation of it (the son), being used the notation (1+1)-ES. 
More recent versions employ populations of fathers and sons, such 

that the notation (µ+λ)-ES indicates that both populations take part 
of the natural selection and the notation (µ,λ)-ES indicates that 
only the sons population, λ, participates of the natural selection. On 
the ES, the selection pressure is rather high, since, typically, λ>>µ. 
The mutation, in its simpler version, is obtained by adding to each 
design variable vector component values coming from the same 
Gaussian distribution. The size or intensity of this mutation, i.e., 
the standard deviation of the Gaussian distribution, usually vary 
during the search, evolving together with the design variables, in a 
process known as self-adaptation. The self-adaptation is perhaps 
the main contribution from ES methods to the optimization field.  

A mutation operator version with ES, called one size uncorrelated 
mutation, uses only one Gaussian distribution, described by 
gauss(0,σ) = σ·gauss(0,1), as source of perturbation of size σ for all 
the N components of the vector X containing the N design 
variables. In this way, each vector X generated by the mutation 
operator has an associated σ. The σ parameter, by its turn, is 
considered as an additional variable by the ES. Then, each ES 
individual is composed by the set {X,σ}, and σ is mutated 
multiplying it by a variable with lognormal distribution with zero 
mean and standard deviation α. In this way:  

α)gauss(0,1-nn eσσ ⋅=  (1) 

)σ(0,gaussXX n
j

1-n
j

n
j +=  (2) 

Where the subscripts n-1 and n are used just to signalize value 
before mutation and after mutation, respectively. In the Eq. 2 
above, the subscript j of the function gauss(.) indicates that each 
design variable suffer a different mutation, despite coming from the 
same random variable (same probability distribution).  It is 
important to notice that, despite each individual being a {X,σ} pair, 
the adaptation function used in the selection process is the 
objective function, F(X), of the optimization problem originally 
formulated and not a F({X,σ}). The mutation mechanism described 
by the Eq.s 1 and 2 generates a self-adaptation for the mutation size 
σ, since the selection process acts, at each generation, on the X 
vectors resulting from the mutations done under several σ’s, but 
only the best X vectors survive, carrying with them their respective 
σ’s. The parameter α in the Eq. 1 becomes, then, the only free 
parameter of this ES version. This parameter is commonly called 
learning rate (of the ES about the F(X)). Basically, the parameter α 
defines how rapidly the value of σ can vary at each generation 
(iteration) of the ES. High values for α indicate that the ES can 
perform the search by rapidly passing from a global (high σ's) to a 
local search (low σ's) and vice-versa. 

According to [22], the essential characteristics present in the ES 
are: (i) ES methods are, in general, used for optimizing problems 
with continuous design variables (real); (ii) Mutation is the main 
operator used to generate new individuals; (iii) Design variables 
mutation is implemented by adding noise coming from a Gaussian 
distribution and; (iv) The parameters that control the mutation are 
modified along the algorithm execution.  

2.2 GEO algorithm versions 
Since GEO’s first appearance in the literature [9], it already had a 
variant called GEOvar. In this section, for conciseness, references to 
GEO must be understood as references to both GEO and GEOvar, 
unless explicitly stated otherwise.  
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In [1], four improvements for the canonical GEO algorithm [9] 
were suggested. One of them, called GEO4, uses real coded 
variables instead of the binary ones used by the canonical GEO and 
has presented very good performance results with test functions, in 
terms of convergence properties. All GEO versions and ES share 
the characteristic of using mutation as the main operator to generate 
individuals. The GEO4 version is the only one that shares with the 
ES also the characteristic of using real instead of binary 
codification of the design variables. Considering this and also 
considering its excellent performance, GEO4 was chosen to form 
the GEO + ES hybrid.  

In what follows, GEO canonical version and the real coded 
improved version GEO4 are described.  

2.2.1 The canonical GEO 
The description of the canonical GEO presented in this subsection 
can also be found, for instance, in [10,11], including application 
examples and performance comparisons with other stochastic 
algorithms.  

The GEO algorithm is a stochastic method, does not make use of 
derivatives and can be applied to non-convex or disjoint problems. 
It can also deal with any kind of variables, either continuous, 
discrete or integer. The τ free parameter allows one to set up the 
determinism degree of the search, from a random walk (τ = 0) to a 
deterministic search (τ → ∞).  

A flowchart for GEO and its variant GEOvar is presented in the 
Figure 1. In the flowchart, F(X) is the objective function, k is the 

ranking value of the bit, Lj is the number of bits of the design 
variable “j”, and L with no subscript is the number of bits encoding 
all the design variables. 

 

3.Rank the bits of each 
variable separately, 
according to their fitness 
values  (N rankings) 

2.For each bit attribute a fitness value 
proportional to the gain or loss that F(X) has 
if the bit mutates, compared to the best F(X) 
value found so far 

1.In itialize randomly a population of L bits 
that codifies N design variables 

3.Rank the bits (all) 
according to their 
fitness values (one 
ranking) 

4.Mutate one  bit of 
the population with 
probab .   P k   ∝   k - τ 

,  k = 1, ... , L 

 6.Return the best  solution found during the search 

Yes 

5.Stopping 
criterion satisfied? No 

4.Mutate one  bit of 
each variable 
with  probab .  P k   

∝  
k - τ   , k= 1,...,  L j 

G EO  GEO  var 

 

Figure 1. FLOWCHART FOR GEO AND GEO var. 

In GEO a string of L bits is considered a population of species. 
That is, each bit is a species. The string encodes the N design 
variables. For each of them is associated a fitness number that is 

proportional to the gain (or loss) the objective function value has in 
mutating (flipping) the bit. Regardless of the design variable it 
belongs to, all bits are ranked from 1, for the least adapted bit, to L 
for the best adapted. A bit is then mutated according to the 
probability distribution P(k) ∝ k-τ, where k is the rank of a selected 
bit candidate to mutate, and τ is a free control parameter, set prior 
to execution. For τ → 0, any bit of the string has the same 
probability to be mutated, while for τ → ∞, only the least adapted 
bit can be mutated. The meaning of this is that for τ → 0, GEO 
performs a random walk in the binary discretized search space, 
whereas for τ → ∞, it performs only deterministic (best choice) 
movements. In practice, due to the exponential character of the 
exponential distribution of P(k), for values of k > 10 the probability 
that other bit than the least adapted be mutated is very low. After 
the bit is mutated, the procedure is repeated until a given stopping 
criterion is reached, i.e., a predetermined number of objective 
function evaluations, and the best configuration of bits (the one that 
gives the best value for the objective function) found is returned.  

In a variation of the canonical GEO just described, called GEOvar, 
the bits are ranked separately for each sub-string that encodes each 
design variable, and N bits (one for each variable) are flipped at 
each iteration of the algorithm. In previous works, [9,10], it was 
observed that this implementation seems to be more efficient than 
the canonical one for cases in which the problem being tackled has 
only bound constraints (constraints that represent the limits for the 
design variables).   

2.2.2 The GEO4 version 
This version introduces in GEO the internal representation of the 
design variables in the real domain, as well as, an alternative 
framework for the mutations. To the problems where the domain 
and the design variables original representation form are, 
respectively, the real domain and the decimal numeric system, 
using internally to the algorithm real instead of binary 
representation for the design variables is an advantage. 

As seen in the preceding subsection, the canonical GEO uses 
internally binary codification to represent the design variables. 
However, there are studies pointing that the binary codification nor 
always is the most indicated form of representation [22]. Regarding 
this, Fig. 2 helps illustrating what happens. It shows a four bit tree 
discretization diagram for one single design variable, leading to a 
precision ε, as indicated in the figure. The vertical red lines 
crossing the x axis indicate movements between adjacent points on 
the discretized search space that are only achieved by simultaneous 
mutation (i.e., flipping) of two or more bits, as indicated by the 
numbers inside the dashed circles. Eventually, all the bits used in 
the discretization need to be changed, as happens on Fig. 2 for the 
points “0111” and “1000”. This fact is a characteristic inherent to 
the binary codification system. However, as GEO performs only 
one bit mutation per variable on each algorithm generation 
(iteration), it means that the movements between adjacent points 
crossing the red lines are “forbidden” (impossible) for GEO within 
a single iteration. 
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Figure 2.  FOUR BIT DISCRETIZATION TREE AND THE 

“FORBIDDEN” MOVEMENTS FOR GEO WITHIN A 
SINGLE ITERATION. 

Moreover, the canonical GEO changes the design variables by 
commuting the binary digits one by one during the fitness 
attribution phase. As the binary representation has base 2, it 
implicitly means that the mutation magnitudes are incremented by a 
multiplicative scale factor of 2, as illustrated on Fig. 3 for the point 
“0100”. As can be seen in the Fig. 3, the fourth and less significant 
bit has a magnitude of ε, the third has 2ε, the second 4ε, and the 
first and most significant bit has a magnitude of 8ε, that is 
approximately equal to half the size of the search space, i.e., 
(XMAX -XMIN)/2. Independently of the number of bits used for the 
discretization, this last fact remains true, i.e., the mutation of the 
most significant bit has a magnitude of ~1/2(XMAX -XMIN). It also 
means that the greatest mutation at each iteration as a fixed size 
equal to half of the search space of the respective design variable. It 
is reasonable to imagine that, for some objective functions, a 
different size for the greatest mutation could improve the efficiency 
of the algorithm.  

 
Figure 3. GEO MUTATIONS FOR THE POINT “0100”. 

All the aforementioned situations, described in the previous 
paragraphs, regarding the use of a binary representation with GEO 
were addressed in the reformulated version of the mutation 
framework that GEO4 was born from. To the authors’ knowledge, 
such framework was not proposed so far, and represents, in fact, a 
new mutation operator for AE, since it can be applied not only to 
GEO4, but to AE in general (like GA, for instance). This new 
mutation operator is one of the main responsible for the 
convergence improvements obtained by GEO4 over GEO with test 
functions [1]. 

 

Figure 4. GEO 4 MUTATION FRAMEWORK. 

Figure 4 presents the GEO4 mutation framework, where l real-
valued mutations are added to the real-valued design variable x. It 
is assumed that the present iteration value of x during a search is as 

indicated by the vertical dotted line. First of all, the sign of ε, the 
first (and smallest) mutation, is randomly chosen from an uniform 
distribution. Then, the sign of all the other mutations is chosen in a 
way to switch (be the opposite) regarding the preceding one. The 
scale factor among consecutive mutations is given by b, which is a 
real-valued parameter greater than 1. In the Fig. 4, the case where 
the sign of the first mutation happened to be negative and an even 
number of mutations l is shown. For GEO4, given the values of b 
and l, the precision ε of the design variable x is calculated by: 

( )1b

)X(X
ε MINMAX

−
−=

l
 (3) 

In the canonical GEO, the precision is defined by the number of 
bits used. In GEO4, besides the number of mutations, l, the 
precision is defined also by b, which becomes an additional 
parameter of the algorithm that needs to be set. This can be 
considered a drawback. The counterpart is that, now, the locality of 
the search performed by GEO4 at each iteration is adjusted prior to 
execution with the help of b. As indicated in Fig. 4, the greater 
mutation has a size (or magnitude) of bl-1ε. When b�1, ε�∞ 
(please see Eq. 3), and the mutation size also tends to ∞, meaning 
very low locality for the search. When b�∞, ε and the mutation 
size tend to zero, meaning a search that is highly local. Mutations 
greater than 100% of (XMAX -XMIN) in size would mean side 
restriction violation of the design variables. To avoid this, GEO4 
replaces any mutation that would cause such situation by a totally 
random mutation for x within [XMAX ,XMIN]. A very big size 
mutation means very low locality during a search. A fully random 
one has also very low locality. In this way, the mentioned 
replacement helps avoiding a problem while produces practically 
the same effect. 

The flowchart of Fig. 1 is still valid for GEO4 and GEOvar4, but 
references to “bit” must be understood as “mutation”.  Also, the 
mutations cited in step 2 of the flowchart must be performed as 
explained in the two preceding paragraphs.  

2.3 GEO + ES hybrid algorithm 

In the ES, the parameter σ defines the size of the mutations that 
affect X and, as a consequence, defines also the locality of the 
search. In GEO4, as just seen, the locality of the search is defined 
by the parameter b. This way, by analogy to the ES, the idea is to 
apply to the parameter b a variation mechanism similar to that used 
in the ES for the parameter σ. However, preliminary tests using 
function tests [1] have shown that the best way of mutating b is not 
by multiplication of a random variable with lognormal distribution, 
as indicated by Eq. 1, but by the addition of a random variable with 
a Gaussian distribution. Then: 

α)δ, gauss(bb 1-nn +=  (4) 

Where the subscripts n-1 and n signalize value before mutation and 
after mutation, respectively. 

Besides the learning rate, α, Eq. 4 presents yet the parameter δ, that 
is the mean of the Gaussian distribution used to mutate b. It 
indicates the bias imposed in the mutation of b. If δ=0, there is no 
bias. Imagining a search starting with b=bMIN (>1), then, using δ>0 
generates, to the end of many generations, a schedule with 
stochastically increasing values for b, even that not monotonic ones 
(except if α=0).  Remembering that low values for b impose a sparse 
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search and high values for b impose a local search, then a 
scheduling with increasing values for b means a search that starts 
sparse, when b~bMIN, and that ends local, when b>>1. The idea 
behind using δ≠0 is to allow a better tuning flexibility to the 
algorithm at the expenses of tuning one more algorithm parameter. 
In the cases where this flexibility is not wanted or needed, it is just 
to use the same idea adopted by the vast majority of the ES, i.e., to 
set δ=0.   

Regarding the way of muting X, the same sistematic already 
described for GEO4 is used. 

An important change introduced in GEO + ES, regarding GEO4, is 
the use of selection by elitism instead of stochastic selection with τ. 
Selection by elitism, in case of GEO4, implies in only selecting the 
best among all the L individuals generated in each iteration, not 
requiring, this way, any additional parameter.  

The steps of the GEO+ES hybrid used in this paper are given by: 

1. Initialize randomly and with uniform distribution between 
Xmin and Xmax a vector X containing the N design variables. 
Calculate the value of the objective function F(X), do Xbest = 
X and save Xbest and F(Xbest). 

2. Define the number of mutations l j, j∈{1,2,...,N} for each 
variable Xj, such that ∑

j
 l j = L, being L the total number of 

mutations acting on the N design variables. Define values for 
the parameters δ e α. Define values for the limits inferior, 
bMIN, and superior, bMAX ,  of the base, with bMIN>1. Do b= 
bMIN. 

3. Calculate the vector ε, where εj≡ (XMAX j
- XMINj

)/(
jb

l
-1) and 

j is the variable index, i.e., j∈{1,2,...,N}. The element εj 
defines the mutation resolution of the j-th design variable. By 
resolution understand the least value to be added or 
subtracted from Xj. 

4. Do F(X)ref= F(X), F(Xbest)ref= F(Xbest). 

5. For each design variable j∈{1,2,...,N} of vector X, do: 

a. Draw from uniform distribution a value for c∈{0, 1}. 
b. For each mutation i∈{1,2,..., lj} of the variable Xj, do: 

1st. Calculate the mutation size m= j
1)(i
εb ⋅−

. 

2nd. Calculate the mutation sign s=
)-(i c1)(− , where c 

is the binary value obtained in the step 5.a. 
3rd. Mutate Xj. First, do Xaux= Xj. Then, do Xj= 

X j+s⋅m, generating a mutated vector Xi. Verify 
the limits: If Xj > XMAX j

 or Xj < XMINj
, then draw a 

new Xj∈[X MINj
 , XMAX j

] with uniform distribution 

and do m= abs(Xj-Xaux) and s=(Xj-Xaux)/m. 
4th. Calculate the objective function value F(Xi). 

Atribute to the mutation i na adaptation value 
∆F(Xi)= F(Xi) – F(Xbest)ref, that indicates the gain 
or loss the objective function has if the mutation i 
occurs, when compared with the best objective 
function value found up to the previous iteration. 
Next, if F(Xi) < F(Xbest) then do F(Xbest)= F(Xi) 
and Xbest = Xi.  

5th. Return X to its non mutated condition:  do Xj= 
X j-s⋅m. 

c. Choose, within the l j mutations generated in the step 5.b, 
the one with the minor ∆F(Xi). Save the respective Xj at 
the j-th element of the vector Xc. 

6. Perform the mutations of the present iteration: do X = Xc, 
where Xc is the resulting vector from the execution of the step 
5.c for each variable j∈{1,2,...,N}. 

7. Verify the base adaptation: Calculate the new F(X) value. If 
F(X) ≥ 0.99⋅F(X)ref then do b= b + y, with y=gauss(δ,σ), 
where gauss(δ,α) is the value drawn from an uniform 
distribution with mean δ and standard deviation α. Verifique 
os limites da base: If b > bMAX  or if b < bMIN, do b= bMIN + 
gauss(0,1) ⋅(bMAX - bMIN).  

8. Repeat the steps 3 to 7 until a given stop criterion be 
satisfied. 

9. Return Xbest and F(Xbest). 

When GEO + ES is compared to the canonical GEO, the main 
differences can be summarized by: 

- Real valued vector instead of binary chain is used to 
represent the design variables; 

- Mutations on the design variables are done by magnitudes 
(any base) instead of bits (base 2); 

- Number of mutations is dissociated from the numeric 
precision of the design variables; 

- Absence of the τ parameter: Selection is performed by 
elitism, instead of stochastically; 

- Adaptedness of the base b, which controls both the locality 
and the stochasticity of the search; 

- Existence of three adjusting parameters: α, the learning 
rate, δ, the learning bias, and l j, the number of mutations. 

3. THE 200N HYDRAZINE THRUSTER 
The 200N thruster in development at INPE is intended for use in 
the apogee acceleration block of geostationary satellites and launch 
vehicle roll control. Fig. 5 gives a view of the thruster. 

 

Figure 5. PERSPECTIVE VIEW OF THE 200N THRUSTER. 

The thruster wall is manufactured in Inconel 600 and has a working 
temperature limit of 1300 K. The total length of the thrust chamber 
is 210mm. The combustion chamber is cylindrical with an internal 
diameter of 42mm.  

The fuel is monomethyl hydrazine and the oxidizer is nitrogen 
tetroxide. The O/F mixture ratio is varied on the range of 0.6 to 1.3. 
The adiabatic combustion temperature for these mixture ratios goes 
from 2000 K to 2500 K. For an O/F mass ratio of 1 the adiabatic 
temperature of the combustion products for this propellant pair is 
2360 K. The thruster is fire-tested in a test stand that includes 
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altitude simulation. The outer wall temperature is measured in a 
discreet number of points with type K thermocouples. An infrared 
camera has been used to monitor the entire external wall 
temperature.  

Knowing the heat load on the thruster chamber wall is very 
important in order to establish a safe range of operating parameters 
of the thruster regarding mixture ratio, amount of fuel used in the 
film cooling and mechanical properties of the wall material at high 
temperature. The thermal model presented in the next section and 
the hybrid optimization algorithm described in the previous section 
have been used to simulate this temperature using thermal balance 
and comparing the external wall temperature simulated with the 
measured in the infrared camera. 

4. THERMAL MATHEMATICAL MODEL 
The thermal protection mechanism for the thruster wall is a film 
cooling on the inside and thermal radiation on the outside of the 
wall. To be able to determine with good precision the heat load on 
the inside of the wall one must know the temperature of the gas 
layer near the wall. The heat transfer convective coefficient is 
determined in the internal surface by Bartz`s equation [27]. The 
direct measurement of these quantities, or its determination from 
analytical models, is very difficult to be done.  

Thermal models of thruster are usually constructed using a lumped 
parameter network formulation [28]. In this method, the thruster is 
divided into a number of lumped masses, called nodes, which are 
assumed isothermal. A thermal network is drawn connecting the 
nodes. A governing thermal energy expression is written for each 
node, resulting in a system of coupled equations whose solution 
yields the temperature of nodes. For the 200N hydrazine thruster, 
the thermal model was constructed using INPE´s PCTER thermal 
software package [29]. 

To apply the optimization technique, a lumped parameter model 
was constructed for the thruster using 160 nodes, as shown in 
Figure 6.  As the thruster has radial symmetry along the 
longitudinal axis, only half of the longitudinal section needs to be 
modeled and the resulting model is bidimensional.  

 

Figure 6. GEOMETRIC DISTRIBUTION OF THE NODES. 

Heat from the hot gases inside the thruster is exchanged  by 
radiation and convection with the thruster’s internal wall, then is 
transferred by conduction to the external surface of the thruster and 
then to space by radiation. (external boundary conditions 
temperature). 

Using the lumped parameter representation [28] and assuming 
steady state conditions, the heat balance at each one of the nodes 
takes the form of the following system of equations: 
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Where term (1) in Eq. 5 is the conductive term and the (2) is the 
radiative term and (3) is the convective term. 

As is usual in this type of thruster, the propellant is injected from 
the periphery of the injector plate, as a way to create a thin cooling 
propellant film on the inner surfaces of the thruster, protecting 
them. The equation of Boltzmann [2] is the most used way of 
empirically determining what the resulting temperature of the 
cooling film is. It is given by: 
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Where y is the film temperature, x is the longitudinal distance 
along the thruster, x0 locates the smallest transversal section of the 
thruster (the bottleneck’s position), dx is the longitudinal distance 
from the point where the film cooling temperature goes from level 
A to level A1. A is the entrance fuel temperature, and A1 is the 
adiabatic temperature of the combustion products. 

When the set of parameters {A,A1,x0,dx } is known, the film 
cooling temperature profile is obtained and the external wall  
temperature can be calculated using the direct model.  When the set 
of parameters {A,A1,x0,dx} is not known, but experimental data 
about the temperatures on the outer surface of thruster is available, 
then it is possible to formulate an optimization problem in which 
{A,A 1,x0,dx} are the unknowns and the objective is to find the 
values of them that lead to the best match between the observed 
data (measured temperatures) and the corresponding data obtained 
by solving Eq. 5. This is the inverse problem. In this paper, INPE 
PCTER thermal software package is used for solving Eq. 5 [29]. 

5. OPTIMIZATION PROBLEM FORMULATION 
Mathematically, the optimization problem described in the last 
paragraph of the preceding section is stated as follows: 

2
)()( DS TXTX −=FMinimize  (7) 

MAXMIN XXX ≤≤:toSubject   

Where the objective function, F(X), is the Euclidian norm of the 
difference vector between the calculated and the given temperatures 
on the external surface of the thruster wall. TS is the given 
temperature profile and TD is the calculated one. The vector X is 
the design variables vector, i.e., X = [A,A1,x0,dx], that must remain 
between the side limits XMIN = [ 1.0, 1500.0, 0.19, 0.005 ], and 
XMAX = [ 40.0, 2400.0, 0.57, 0.3 ]. 

6. RESULTS 
In order to evaluate the performance of the GEO + ES hybrid in the 
solution of the optimization problem described in section 5, the set 
{A,A 1,x0,dx}={23.0, 2087.0, 0.41, 0.238} was considered  and 
experimental data was synthetically generated using the PCTER 
software, as real experimental data on the outer wall temperature 
was not available. In this way, the optimal solution is known 
beforehand.  

Three mutations per variable were used, so l j=l=3 and L=12. The 
limits for varying b were set to bMIN=1.05 and bMAX=10. The values 
of δ=0.0 and of α=0.3 were used. After that, GEO + ES was run 10 
times, each one with a different and random starting point. For each 
run, the limit of 5⋅104 evaluations of F(X) was used as the stopping 
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criterion. Each run took approximately 3.6 hours on an AMD 
Athlon (1.1GHz) PC computer with 896MB of RAM memory. 

The ten solutions found with the help of GEO + ES plus the 
Boltzmann exact solution are presented in Table 1. As can be seen 
from the Table, the greatest parameter value variation occurred for 
the parameter A. 

Table 1. INVERSE PROBLEM SOLUTIONS 

Run  X1 (A) X2 (A1) X3 (x0) X4 (dx) F(X) 

1 15.37 2092.6 0.4096 0.2403 5.10 
2 27.82 2089.0 0.4119 0.2382 1.42 
3 20.83 2089.9 0.4105 0.2398 1.80 
4 30.81 2081.3 0.4110 0.2372 1.56 
5 27.16 2089.7 0.4122 0.2386 1.21 
6 37.89 2080.4 0.4123 0.2355 2.28 
7 29.40 2090.2 0.4125 0.2383 3.10 
8 26.51 2092.2 0.4126 0.2392 1.70 
9 34.49 2082.3 0.4122 0.2363 1.99 
10 26.94 2090.9 0.4125 0.2390 1.54 

BOLTZ. 23.00 2087.0 0.4100 0.2380 0.00 
 

Figure 7 shows the 10 solutions retrieved by the GEO + ES hybrid, 
in terms of the resulting film cooling temperature profiles, 
identified as C01 to C10. For each one, the graph gives also the 
respective F(X) final value. The original temperature profile is also 
presented, identified as “BOLTZMANN”.  As can be seen, all the 
solutions match very well the original profile, up to a point that 
they can’t be seen isolatedly, meaning that the optimization 
algorithm was able to solve the inverse optimization problem very 
well for all the ten runs. It indicates that the algorithm is not 
sensitive to the random starting point used to start the search. This 
is also confirmed by the numerical values obtained for F(X). Even 
the worst one, that happened to be C01, had F(X)=5.10ºC. 
Considering that F(X) is, in fact, a difference vector composed of 
41 elements, and if it is assumed that the differences have 
homogeneous distribution among all the 41 elements, then, it 
would mean a discrepancy of just 5.10/41  ≅ 0.8ºC per element 

(sensor) for the worst match and only 1.21/41  ≅ 0.19ºC per 
element (sensor) for the best match. 
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Figure 7. ORIGINAL AND OPTIMIZED FILM COOLING 
TEMPERATURES. 

Figure 8, by its turn, shows the complete profile of temperatures. 
For the external wall and for the film cooling two temperature 
profiles are presented. One given by the Boltzmann original 
parameters (exact solution) and other given by the best solution 
found obtained by GEO + ES (run number 5). As can be observed 
in Fig. 8, the two temperature profiles coming from the 
optimization problem solution fit quite well the corresponding 
original temperature profiles.  
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Figure 8. ORIGINAL AND OPTIMIZED TEMPERATURE 
PROFILES. 

7. CONCLUSIONS 
In this paper, a new hybrid algorithm called GEO + ES was 
presented and applied to a real world application. The algorithm 
was developed in a way to congregate the good convergence 
properties of a real-valued version of the GEO algorithm with the 
self-tuning characteristics of the ES methods. A new mutation 
operator that can be used by any other EA was also introduced and 
used. The performance of the new algorithm was tested by using it 
to solve the inverse optimization problem of the estimation of the 
temperature distribution of the film cooling near the internal 
wall of a thruster. The results obtained have indicated that 
GEO + ES was able to solve the problem very well and in a 
consistent way, independently of the starting point randomly 
used by the algorithm to start the search. In this way, GEO + 
ES becomes an important tool for improving the accuracy of 
the thermal model of the thruster and of all the subsequent 
thermal simulations to be performed. 
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