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Abstract: The aim of this paper was to present a calibration procedure applied to an inertial measurement unit

composed of a triad of accelerometers and four gyros in a tetrad configuration. The procedure has taken

into account a technique based on least-square methods and wavelet denoising to perform the best estimate

of the sensor axis misalignments. The wavelet analysis takes place in order to remove undesirable high

frequency components via multi-resolution signal decomposition analysis applied gyro signals. Equations for

the least-square methods and wavelets analysis are presented, and the procedure is experimentally verified.
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INTRODUCTION

The main error sources in the inertial navigation
computation are associated with the sensor biases and scale
factors, as well as the overall misalignments of the sensor
configurations. Therefore, a method and an error model for
inertial measurement unit (IMU) calibration are required. In
order to design a proper method and an error model, spectral
analysis and wavelet denoising were performed to highlight
the long-term component and to remove high-frequency
disturbances. Generally, the performance of the method
is verified by comparison between a reference command
and sensor computations, after error compensation (Cho
and Park, 2005). In this work, it was used a parity vector
analysis to verify the overall performance of the calibration.
Such analysis was possible due to a redundant sensor that
holds the existence of the parity vector. The performance
analysis, based on parity vector, allows us to verify the
amount of alignment error in any direction of rotation. In
the sequence, this paper has developed the geometric, parity
vector, and error model formulations, the wavelet application,
the calibration technique, and the experimental results.
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GEOMETRIC CONFIGURATION ANALYSIS
Geometry

The geometrical arrangement used in this work considers
four gyros mounted on the faces (black hexagon) of a
tetrahedral structure (tetrad), and three accelerometers in a triad
configuration (blue block) internally fixed in the tetrahedral.
The analysis performed here takes into account the gyros only,
and the extension for accelerometers can be made easily. The
tetrad configuration is shown in Fig. 1.

Figure 1. Tetrahedral base

The mathematical representation of the gyro arrangement
is given in terms of measurement matrix, where each line
represents the direct cosines vector of the sensor axis with
respect to analytical triorthogonal axes (analytical triad).
Therefore, considering the schematic represented in Fig. 1,
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where a = 54.736°, the measurement matrix is given by Eq. 1:

/Y3 0 J6/3
Hzl/ﬁ J212 —/616 (1)
/Y3 =212 =/61/6

1 0 0

The matrix H relates the sensor measurements (g,) with the
angular rate in the main axes in the form of the eq. (2).

g, = Ho 2)

The estimate of the angular rate components in the main
axes can be obtained from Eq. 2, as in Egs. 3 and 4:

& =H*g, 3)
H*=(H'H)"'H' 4)

where, the superscript (") indicates the transpose; g =[g, 2,2, 2,]"
is the vector of the gyro outputs; w=/w_ w, o /" is the vector
of angular rate about main axes; o is the angular rate estimate
vector; and H* is the generalized inverse of H.

Equation 4 provides the best state estimation in the least
square sense.

Parity vector

The sensor equation considered in Eq. 2 can be rewritten
with addition of faults, biases and noise components as in Eq. 5:

8, = Ho + g, + f + 7, 5

where, 8g_ is a constant term (bias) vector; f is the fault vector;
and 7, is a random term vector (Gaussian noise and other
random disturbances).

Applying the singular value decomposition (SVD) on H, the
range and null spaces from this matrix can be obtained (Shim
and Yang, 2004). In addition, it can also compute the biases
influence on the arrangement. Decomposing H as Eqs. 6 and 7:

UHV—A—(O) ©)

H= UAV' (M
where, U, A, and VT:V:In are matrices obtained from SVD of H.
The matrix X is a diagonal one, whose elements are

eigenvalues of H.
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Applying Eq. 7 into 5 and multiplying both sides by U7, it
can be obtained the relationship as in Eq. 8:

U'g, = AV w+U' (g, +f+7,) ®)
Partitioning U as Eq. 9:
U=[U:U] ©)

where U, € R*? and U, € R*" , and applying it into Eq. 8, the
resulting equations can be written as Eqs. 10 and 11:

U'g, = EV)o + Ui (0g, + f+ 7,) (10)

U: g, = U:(dg, + +7.) (11

Equation 10 leads to a least square estimate of . In actual
situations, bias, fault, and random-term vectors are unknown
and defined as zero. This estimate is equivalent to Eq. 3, and
can be expressed by Eq. 12:
D5 = (ZV)ﬂUngo (12)

The meaning of Eq. 11 is that, if sensors faults and biases
are zero, the resulting product of parity vector with sensor
measurements is a white noise with zero mean. Otherwise,
if the biases and/or faults values differ from zero, Eq. 11 is a
“weighted” sensor errors summation. Then, U] is the parity
vector (v) obtained from null space of H.

MISALIGNMENT ERROR EQUATION

The estimation of the sensor axis misalignments takes an
important role on the IMU construction. They are disagrees
between predicted (or nominal) sensor axis angles and actual
ones after built. Consequently, these alignment errors must be
estimated and incorporated to perform a new sensor matrix.
In addition, the scale factor is another important element to be
estimated, and it can be performed in the same experiment.

In this work, a method based on least square technique
was used (Cho and Park, 2005) to estimate misalignments and
scale factors of the sensors, and the experimental procedures to
obtain the proper sensor outputs for calibration were executed
on 2-degree-of-freedom (DOF) turntable.

The IMU is composed of four gyros, as shown in Fig. 1,
and, in order to design a proper error model, this arrangement
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is divided into two subsystems. The first one is composed of
gyros g, g, and g, in a triorthogonal configuration, and the
second one is composed of gyro g,, whose measurement
axis is collinear to the vertical X-axis. Therefore, the error
modeling can be mathematically expressed as Eq. 13:
Srg, =MHw +b+ 7 (13)
where, S, is a diagonal matrix whose elements are the sensor
scale factors in (%)/mV, g is the sensor outputs in mV, M is
the misalignment matrix, and b is the bias vector;

The misalignment matrix (M) can be seen as a rotation
from nominal sensor axes position to the real one. Separating
Eq. 13 into two subsystems, there is Eq. 14:

Srigu w b
szgvz _ M, |03 E w': + b, +7 (14)
Srigis 0us| Mz || Ha|| b,
[OF —
Sragu b,
where,
myg My Mz hlx hly hlz
M= |my myn mxslM, = [l’fhx m4)-m4z]; H, =|h. th h|; Ho =1
Mz Mz Mz hi, h}y hs,

At this point, some remarks are needed to clarify Eq. 14:

 the misalignment of g, is estimated independently of
the other sensors, and it is considered, without loss of
generality, as a part of triorthogonal arrangement (pseudo-
arrangement) coincident with the main axes;

* in spite of matrix H has 4x3 dimension, it is extended
to accommodate the axes y and z in order to permit the
estimate of misalignment between g, and those two axes;

+ at a first glance, the matrix M could be 4x4 dimensional,
given H has 4x3 dimension; however, this consideration
would lead to singularity in the method.

Equation 15 is the Eq. 14 rewritten in a compact form:

Srigu = [miamlbmir] H;w +b;+ 7 (15)
where,
i=1, 2,3, 4 —is the sensor number;
. . i=1=a=1.b=2.c=
j=1,2 —is the sensor subsystem; for S a=1,6=2,c=3
j=2-a=x,b=y,c=z
Defining the difference between two successive sequences
by w9 — w, where I = x, y, z and @™ is the positive/
negative commanded turntable rate, the following vectors can

J. Aerosp. Technol. Manag., Sdo José dos Campos, Vol.4, No 2, pp. 163-168, Apr.-Jun., 2012

be constructed (Eq. 16):

) =)

T Wy —Wx
n|=Hj|lo" —w” (16)
I " —w!”

Using Egs. 15 and 16, after some manipulations, it can be
reached to a relationship expressed in Eq. 17.

Miq /SFi
[gw'(ﬂ - gvi(i)] = [rarbrr] mib /SFE + 7]i
Mic | Sri

)

Performing & evaluations (k>3) for Eq. 17, it can be
obtained Eq. 18,

mia/SFi
My Sk | = (RTR)ilRTG (18)
mu‘/SFi
where,
r(1) n(l) (1) gu(1) —gu(2)

oo #®-a@

R= and G

(k) n(k) r.(k) _ N
’ gu(n —1) = g.(n)

and g, is the mean value of the ith sensor measurement, & is
the number of r-vectors, and #n is the number of commanded
sequences on two-axis table.

In order to solve Eq. 18, the constraint in Eq. 19 is
necessary,
mi +mi, +mi; =1 (19)

After estimating the scale factors and misalignments, and
rewritten Eq. 13, the sensor biases can be obtained as in Eq. 20:
726 @), —Ho) = b (20)
where, H=MH, b is the mean value of bias, and (g), 1s
the mean value of sensor output at nth turntable sequence.

The gyros used in the IMU (FOQG) have biases with the same
order of the Earth rotation rate (£2,). Thus, it is a complicated
task to separate one from another in a skewed sensor
configurations. In Eq. 20 this problem is solved by performing

the average value of the residue, given by (S(g ) —H® ), where
the Q_ influence is eliminated. This procedure will be clear
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after displaying wavelet multi-resolution decomposition of the
sensor outputs, and after being proved by parity vector analysis.

WAVELET TRANSFORM

After analyzing the spectral content and detecting the presence
of long-term components in the sensor outputs, the wavelet analysis
was chosen in order to eliminate undesirable high-frequency
components and to highlight these long-terms (denoising).

Wavelet analysis has been used in a wide range of
applications in signal processing techniques, due to its
particular properties, such as compressing and denoising
with low degradation of the original signal, time-scale
representation, application in real-time operations in
nonstationary signals, and by exposing hidden aspects of the
signals like discontinuities, breakdown points, and trends
(El-Sheimy and Nassar, 2004).

The theoretical foundations that hold the generalization
and applicability of wavelet analysis to nonstationary signals
can be found in Daubechies (1992), Mallat (1989) and Strang
and Nguyen (1996).

The orthogonality properties of the discrete wavelet
transformation make possible the multi-resolution
decomposition of any time series (Daubechies, 1992). In the
multi-resolution process, a complex function is decomposed
at several levels of approximations or resolutions, where
low- and high-pass filters in a filter bank configuration
perform the discrete wavelet transformation at each level. In
this scheme, the high-pass filters are responsible for details,
while the low-pass ones are responsible for approximations.
Some details contain noise components of high-frequency and
others disturbances. In the approximations, there are long-
term components, and thus include frequency components of
the Earth rotation rate. At each level, the cutoff frequency (f))
of'the filter is one-half of the maximum frequency components
into the previous level. Therefore, considering that the output
of sensor is sampled (f)) at 100 Hz, the maximum frequency
component in the signal is 50 Hz (f,/2), and at each level, the
cutoff frequency is given by (f) =f/2"", where i represents
the level of decomposition.

The analyses performed here considered eight levels of
decomposition, which indicates a filtering about 0.2 Hz. In this
work, the choice of wavelet family was based on properties of
continuity, detection of transient singularities, and slow moving
anomalies. In this context, the Daubechies (db) wavelet family
has been used in several works (Kim, Kim, Park, 2007), and, in
the same way, it was also chosen for our purpose.
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DATA ACQUISITION PROCEDURE

In order to obtain misalignment, scale factor and bias
estimates from Eq. 17 to 20, a sequence of previously defined
turntable commands is required to perform the matrix R
formed by elements computed in Eq. 16. Once matrix R has
rank three, it is not possible to estimate the IMU errors in
one step only, forcing the IMU partition into two sub-IMU,
and consequent considerations that hold the remarks and the
model represented by Eq. 14. After denoising with wavelet
algorithm, the gyro outputs are computed by error model
equations, which obey the turntable sequence given in Table 1.

Table 1. Sequence of commanded rates (w=w_; C=w_ cos (30°)
and S=w_ sin (30°).
Sq. Rot.axis Input rate
n Inner Outer X Y Z
1 +w 0 +w 0 0
2 -w 0’ -w 0 0
2 -w 0° -w 0 0
3 +w +180° +w 0 0
4 -w +180° -w 0 0
5 0° Tw 0 +w 0
6 0° -w 0 -w 0
7 - 30° +w 0 +w 0
8 +180° -w 0 -w 0
9 +90° +w 0 0 +w
10 +90° -w 0 0 -w
11 -90° w 0 0 +w
12 -90° -w 0 0 -w
13 +30° +w 0 +C +S
14 +30° -w 0 -C -S
15 -30° +w 0 +C -S
16 -30° -w 0 -C +S

Notice that calibration procedures of tetrahedral base
with FOG was performed on the two-DOF rotate table
(BD267) with attitude error less than 1x107* degree, and
rate error less than 1x107 degree/second. The rate (w ) used
for calibration procedure was 10%. The method could be
executed with only six sequences (two rotation directions
per axis); however, 16 sequences were employed aiming
at minimizing turntable error effects and error covariance
matrix ([R”R]™). The block diagram of the acquisition
system is shown in Fig. 2. The ensemble is composed by
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four FOG connected to an embedded computer PC104 via
bus RS232 asynchronous, which performs the acquisition
and data storage. After the execution of commanded
sequences is finished (Table 1), data are transferred to a
personal computer via FTP communication and processed
according to the error model.

Platform 1
Computer FTP /
(Pc104) @

Figure 2. Block diagram of the calibration set (data acquisition).
RESULTS

After denoising the output signals, the long-term
components are highlighted and represent the earth rotation
rate (Fig. 3), which modulates the gyro outputs of the
sequences, from k=3 to k=8 (n=5:16, k=3 results from

(gv),_s - (gv), , and k=8 results from (gv) _, - (gv),_,,) related

n=15
to outer axis rotation. With this group of measurements,
the mean value estimated for _ was 15.8721°h, which
represents a good approximation with the actual one. The
modulation level at each output is related to the sensor

position, and the frequency is related to the turntable rate.

Output of the gyro #4

o
i

T T T T
60| |~ gyro #4 without de-noising
—*— gyro #4 de-noised at scale 8

Rate (°/h)

1
Time (s)

Figure 3. Output of the gyro #4. Original (red); de-noised with db4

at scale 8 (black).

Considering that the integration of modulation signal
for integer numbers of cycles about the outer axis is
zero, the mean value of the gyro outputs in this condition
will contain, basically, the commanded rate and biases.

Therefore, Eq. 20 applied in the sequences from n=35 to
n=16 holds the estimation of the mean values of the biases.

Figure 4 illustrates the stability of the bias determination
from k=3. The plot was obtained from the product of the
corrected parity vector (Eq. 25) with the mean value of the
gyro outputs combined to remove ®_ (g,), as in Eq. 21.

Vel = Ve[ 3SH(@)a + @)es)] @1

N P _
Ve = Ve[ 3 S0 (@) + @) 22)

_ le - _
ng - V[ 2 SF((gv)n + (gv)n*'l):l (23)
v="U;=[-0408250 -040825 -0408250 0.70711] (24)
v. =[-0.40955 -0.40903 -0.40585 0.70729] (25)

0.9999895 —0.0019974 0.0041171
M; =] 0.0004597 0.9999998 —0.0004378 (26)
—0.0009892 0.0003843  0.9999994
M.=[0.99999 0.0010024 0.0016921]
Parity vector

0.025, T T T T T T

0.02- : ] [ T— |
_oos- »
OQ » Rotation about Rotation about
\m/ Y - axis Z - axis Rotation about
T YIZ - axes
T 001 : 2|

)Féet:)t(iizn about i 3
0.005- e ’g . A Al
o A Al A AT i
1 7 ; ' ; G 7 s

4 5
Sequence (k)

Figure 4. Absolute mean value of parity vector of sequences

k(@™-w") without bias and Q_

In addition, for comparison, it was plotted the product
of the estimated biases (Eq. 20) with corrected parity vector
(v.b). The results obtained for bias and scale factor are shown
in Table 2, and they are compared with results obtained for
the same FOG in the individual calibration (Silva, 2010).
Therefore, the individual calibration was made in a different
set, location and time. The results obtained for tetrad are
quite consistent. For the FOG used in this work, the nominal
value of the scale factor was 24mV/°/s. The misalignment
matrices (M, and M,) are given in Eq. 26.
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Table 2. Results from individual sensor and tetrad calibrations.

Gyro Individual calibration (+20°s) Tetrad calibration (+10°s)
# Bias (/s) S, (mV/°/s) Bias (°/s) S, (mV/%/s)
1 0.0020795 26.5912 0.0015563 26.6259
2 0.0027427 25.9534 0.0024357 26.0274
3 0.0034507 26.0316 0.0031409 26.0730
4 0.0020057 26.6659 0.0015402 26.7118

In order to evaluate the improvement of the calibration
procedure, and considering that the parity equation should
result in a white noise with zero mean, it was plotted in the
Fig.5 the results of Eqs. 22 and 23, which take into account
the commanded rate only (bias and w_ are removed). In that
condition, the difference between nominal and corrected
parity equations reveal the misalignments influence only. Bear
in mind that, in some situations, not all sensors are excited
when the rate is applied on one of the main axes and, in the
same way, if the misalignments plane is orthogonal to the
input axis (commanded rate), it will not appear. Therefore,
this approach allows us to evaluate the improvement of the
misalignment estimates in all directions in one step. It is
clear, in Fig.5, the improvement of the method; however, a
small residual error in the sequences k=5 to k=8 remains.

-us"mJ ‘ Parity vector ‘
EE 1PV nominal
; A PV corrected
4 ~(-PV from estimated biases (k=3 to 8)
A5 B
& -0.001885|
2 @... A
g, o O - O T T Rt SR a
25 L B
3 L L | 1
1 2 3 4 5 6 7 8
Sequence (k)
Figure 5. Mean value of parity vector of sequences k(w™-w®)
without
CONCLUSIONS

In this paper, a method based on least square parameter
estimation was used to estimate the misalignments of an
IMU in a tetrad configuration, and parity equations were
also used to evaluate the quality of the calibration. In
this arrangement, the parity equations do not provide the

individual misalignment residue, but they indicate the amount
of error in the overall estimation process in any direction
that the system may be excited. Therefore, it is a good index
of quality in the calibration process. In addition, the parity
equation analysis will give support to fault detect algorithms
in terms of threshold determination, consequently, reducing
the false alarm probability. When compared with individual
calibration, the results obtained by this method are quite
consistent, and denote the quality of the methodology used.
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