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PREDICTABILITY FOR A CHAOTIC SOLAR PLASMA SYSTEM

Rosangela S. Cintra
Haroldo F. de Campos Velho
Laboratory for Computing and Applied Mathematics - LAC
National Institute for Space Research - INPE
C. Postal 515 12245-970 Sao Jose dos Campos - SP - Brazil
rosangela.cintra@lac.inpe.br, haroldo@lac.inpe.br

Abstract. The problem of unpredictability in a physical system due to the incomplete knowl-
edge of the evolution laws is addressed. Predictability is an indication of the instability of the
underlying flow computed from a numerical model, where small errors in the initial conditions
(or imperfections in the model) grow to large amplitudes in finite times. Bred vectors are the
difference between two nonlinear model integrations, periodically rescaled to avoid nonlinear
saturation of the instabilities of interest. The technique of breeding vectors is applied to the
Lorenz model, as an example, and a three coupling waves model for solar activities connected
to the space weather process. The bred vector growth can be used to reliably predict which will
be the last orbit in each of the two regimes and how long will the next regime last. The purpose
of this paper is to describe the breeding method that explores chaotic model predictability and
its results.

Keywords: chaotic dynamics, bred vector, solar three coupled wave model.



1. INTRODUCTION

The ability to predict the future state of a system, given its present state, stands at the
foundations of scientific knowledge with relevant implications from an applicative point of
view in geophysical and astronomical sciences. Major interest is devoted to the analysis of
error amplification in chaotic systems with many characteristic times and scales. Using the
concepts of dynamical systems theory, there has been some progress made in understanding the
growth of an uncertainty during the time evolution.

By definition, chaotic dynamical systems display sensitive dependence on initial condi-
tions: two initially close trajectories will diverge exponentially in the phase space with a rate can
be given by the leading Lyapunov exponent (Boffetta, 1998). The prediction of the future state
of a system knowing its initial conditions is a fundamental problem with obvious applications in
geophysycal flows (Dalcher, 1987). The predictability of weather and climate forecasts is deter-
mined by the projection of uncertainties in both initial conditions and model formulation onto
flow-dependent instabilities of the chaotic climate attractor. Since it is essential to be able to
estimate the impact of such uncertainties on forecast accuracy, no weather or climate prediction
can be considered complete without a forecast of the associated flow-dependent predictability.
Earths climate is a prototypical chaotic system (Lorenz, 1963), however an appreciation of the
importance of quantifying the role that initial error plays in limiting the accuracy of weather
predictions (Thompson, 1957). With the understanding of how the solar wind influences the
magnetosphere (related do space weather), it became possible to make quantitative predictions
of magnetic activity.

The space weather refers to conditions on the sun and in the solar wind, magnetosphere
and thermosphere that can influence the performance and reliability of space-borne and ground-
based technological systems (Cole, 2003). With the understanding of how the solar wind in-
fluences the magnetosphere, it became possible to make quantitative predictions of magnetic
activity. Then, the predictability of the Magnetosphere is also fundamental to understanding the
its dynamics.

The use of ensemble forecasting and data assimilation shows the importance of local pre-
dictability properties of the atmosphere in space and in time (Toth, 1997). The local/regional
loss of predictability is an indication of the instability of the underlying flow computed from
a numerical model, where small errors in the initial conditions (or imperfections in the model)
grow to large amplitudes in finite times.

Chaotic dynamics implies also that rate of growth of initial error is itself a function of the
initial state (Palmer, 1993). Forecast errors can originate from errors in the initial conditions
that, due to the chaotic nature of the atmosphere grow with time, or from model deficiencies.
Because the error growth is not uniform, but is associated with instabilities of the background
flow, forecast errors tend to be dominated by relatively large errors intermittent in space and in
time. Bred vectors are the difference between two nonlinear model integrations, periodically
rescaled.

The method of applying small perturbations in chaotic systems has been applied to a va-
riety of physical applications for some purposes. A perturbation initialization method is used
to quantify error growth due to inaccuracies of the forecast model. We review the breeding
method to generate and the properties of bred vectors in Section 2. In Section 3, we show that
breeding growth rates provide reliable forecast rules for regime transition in the Lorenz (1963)
3-variable model. This method was applied in a nonlinear three-wave interactions involving
Langmuir, Whistler, and Alfvén waves in the planetary magnetosphere, and that growth rates
also provide the predictability of that chaotic dynamic system.



2. BREEDING METHOD

The breeding method is a well-established and computationally inexpensive method for
generating perturbations for ensemble integrations. Breeding was developed as a method to
generate initial perturbations for ensemble forecasting in numerical weather prediction at the
National Centers for Environmental Prediction (NCEP) (Toth, 1997).

The method involves simply running the nonlinear model used for the control a second
time. Periodically subtracting the control from the perturbed solution, and rescaling the differ-
ence so that it has the same size as the original perturbation. The rescaled difference (a bred
vector) is added to the control run and the process repeated. Their growth rate is a measure of
the local instability of the flow. The stability properties of evolving flows have been studied
using Lyapunov vectors (Alligood, 1996), and with bred vectors more recently (Kalnay, 2002).
Bred vectors are a nonlinear generalization of leading Lyapunov exponents, that rate presents
the differences of two initially close trajectories of chaotic dynamical systems.

In the context of data assimilation, the rescaled difference is added to the analysis (an
appropraited combination of the predicted fields and observed fields) – se Figure 1. Their
growth rate is a measure of the local instability of the flow.

Figure 1: Schematic of the growth of bred vectors.

Bred Vectors (BVs) are computed as follows (Kalnay and Cai, 2002):

1. Start with an arbitrary initial perturbation δf(x, t) of size A defined with an arbitrary
norm. This initialization step is executed only once. The size of A is essentially the only
tunable parameter of breeding.

2. Add the perturbation to the basic solution, integrate the perturbed initial condition with
the nonlinear model, and subtract the original unperturbed solution from the perturbed
nonlinear integration

δf(x, t+ ∆t) = M [f(t+ ∆t)] (1)

3. Measure the size A + δA of the evolved perturbation δf(x, t+ ∆t), and divide the per-
turbation by the measured amplification factor so that its size remains equal to A:

δf(x, t+ ∆t) = δf(x, t+ ∆t) ∼ A/(A+ δA) (2)

Steps 2 and 3 are repeated for the next time interval and so on. It has been found that after
a short transient time of the order of the time scale of the dominant instabilities. In practical
applications, bred vectors are intrinsically local in space and time, and they are finite amplitude,
finite time vectors – see Fig.1.



3. NUMERICAL EXPERIMENTS

The application of the bred vector methodology as a scheme to drive us to formulate the
predictability for a chaotic system will be illustrated with Lorenz system. From such example,
the procedure will be applied to produce some rules for the chaotic three coupled waves in the
solar dynamics.

3.1 Lorenz System

Like an Example to study how to apply Bred Vectors in chaotic dynamical ssystems, we
reproduce the Research Internships in Science and Engineering (RISE) (Evans, 2004) experi-
ment with the 3-variable Lorenz model that indicate that orthogonalized the bred vectors can
result in significantly improved performance. This experiment showed that the regime changes
in Lorenzs model are predictable.

Explore the predictability using breeding a Lorenz (1963) model, this algorithm was chosen
because of its simplicity. The Lorenz Model equations are:

dx

dt
= −σx− y (3)

dy

dt
= −ρx− y − xz (4)

dz

dt
= xy − βz (5)

where σ = 10, ρ = 28, β = 8/3 are its parameters and they are chosen by Lorenz results in
chaotic solutions . This model has been very widely used as a prototype of chaotic behavior
(Fig. 2). The model was integrated with a 4th order Runge-Kutta numerical scheme. We used
two sets of the Lorenz equations starting with different initial condition. The Lorenz attractor
have two regimes, which we could denote as two seasons (”warm” and ”cold”), but it is hard to
identify the changes in regimes will happen, and how long will they last.

Figure 2: Solutions of the Lorenz model equations showing two chaotic regime

The breeding is performed on the Lorenz model integrated with time steps ∆t = 0.01,
and a second run started from an initial perturbation δx0 = (δx0, δy0, δz0) added to the control
at time t0. The Every 8 times steps we take the difference δx between the perturbed and the
control run; rescale it to the initial amplitude and add it to the control. The growth rate of the
perturbation was measured per time step as (Evans, 2004)

g =
1

n
∗ (|δx|/|δx0|) .



The Figure 3 presents the attractor with that simple procedure which allows us to estimate
the stability of the attractor. Moreover, the growth rate measured by breeding provides remark-
ably precise forecasting rules, illustrate in (Fig. 4), that could be used by a forecaster living in
the Lorenz attractor to make extended range forecasts about when will the present regime end,
and how long will the next regime last. The presence of a red star shows bred vector growth in
the previous 8 steps was greater than 0.064, it can be used to forecast that the next orbit will be
the last one in the current regime. The blue stars indicate a negative growth rate, meaning that
the perturbations are actually decaying. The results shown in Figure 3 suggested that the bred
vector growth would allow estimating of high and low predictability. We found that plotting the
growth rates on the evolution of the variable x(t) provides a means to predict when the model
will enter a new regime, and also how long the new regime will last.

Figure 3: The Lorenz ”butterfly” attractor colored with the bred vector growth

Figure 4: X(t) for the Lorenz model with red stars providing ”forecasting rules”.

3.2 Nonlinear Three-wave coupled model

Nonlinear three-wave coupling is of general interest in many branches of physics such
as nuclear fusion, space geophysics, astrophysics, nonlinear optics, and fluid mechanics. For



example, it causes the stimulated scattering and anomalous absorption of laser beams in in-
ertial fusion experiments (Chow, 1992) and appears in the plasma edge region of a magnetic
fusion device during radio-frequency heating experiments (Hidalgo, 1993); it is responsible
for the generation and modulation of plasma waves in the planetary magnetosphere and solar
wind (Chian, 1994); and other applications. A nonlinear analysis of auroral Langmuir, whistler
and Alfven (LAW) events in the planetary magnetosphere was carried out by Lopes and Chian
(1996) (Lopes, 1996), under the assumption that all three interacting waves are linearly damped.
In the satured regime of this model, chaotic solutions can be found, in this case, the wave solu-
tions can evolve from order to chaos via various routes such as period-doubling or intermittent
(Chian, 2000).

The theoretical modeling of this experiment based on Lorenz equation is in good agreement
with the experimental resulting. The simplest model for describing the temporal dynamics
of resonant nonlinear coupling of three waves can be obtained assuming terms in the wave
amplitudes. Moreover, the waves may be assumed monochromatic, with the electric fields
written in the form: Eα(x, t) = 1

2
Aα(x, t) exp{i(kαx − ωt)}, where α = 1, 2, 3 and the time

scale of the nonlinear interactions is much longer than the periods of the linear (uncoupled)
waves.

In order for three-wave interactions to occur, the wave frequencies ωα and wave vectors kα

must satisfy the resonant conditions

ω3
∼= ω1 − ω2, k3 = k1 − k2 (6)

Under these circumstances, the nonlinear temporal dynamics of the system can be governed by
the following set of three first-order autonomous differential equations written in terms of the
complex slowly varying wave amplitude (Meunier, 1982):

dA1/dτ = v1A1 + A2A3 (7)
dA2/dτ = iδA2 + v2A2A1A

∗
3 (8)

dA3/dτ = v3A3A1A
∗
2 (9)

where the variable τ = χt, with χ is a characteristic frequency: δ = (ω1 − ω2 − ω3)/χ is
the normalized linear frequency mismatch and vα = vα/χ give the linear wave behaviors on
the long time scale. The wave A1 is We assumed linearly unstable (v1 > 0) and the other
two waves, A2 and A3, are linearly damped (v2 = v3 ≡ −v < 0) and henceforth it is set
χ = v1 (Meunier, 1982; Lopes, 1996). The system admits both periodic and chaotic waves.
The Figure 5 shows the chaotic attractor. One regime is characterized by the straight line, and
other regime is identified as a curve line.

The breeding method was applied in three-wave model like first experiment: first perform
breeding on the three-wave model integrated with time steps ∆t = 0.001, and a second run
started from an initial perturbation δx0 added to the control at time t0 . Every 8 times steps, the
difference δx was also taken between the perturbed and the control run; rescale it to the initial
amplitude and add it to the control, then get the growth rate and plot the trajectory of wave A1

(Langmuir wave).
Two regimes were also noted in three-wave attractor, one is at straight line and other were

noted in a curve line (see Figure 6), we suppose the rules like the first experiment, two or more
red stars together predict the change of regime and it lasts a long time, two yellow stars predict
a change of regime at short time, one or more separated stars with blue stars contain weak chaos
but predict a change of regime too. The same rules are applied at waves A2 and A3. See Figures
7 to 9.



Figure 5: Solutions of the Three-wave model equations showing two chaotic regimes.

Figure 6: Langmuir wave for the coupled three-wave model with ”forecasting rules”.

Figure 7: Langmuir wave for the coupled three-wave model with ”forecasting rules”.

4. Conclusion

This paper presents examples with models that indicate that with simple breeding, we can
make accurate ”long-range forecasts” of regime changes. The chaotic behaviors of nonlinear



Figure 8: Whistler wave for the coupled three-wave model with ”forecasting rules”.

Figure 9: Alfvn wave for the coupled three-wave model with ”forecasting rules”.

interactions in three wave model can be predicted by the analysis of bred vectors too. This is a
simple and effective method of predict changes in experiments in plasma physics.

Bred Vectors have been used as well-adapted ensembles of initial conditions. It has ex-
plained by a phenomenological argument saying that they carry some of the underlying dynam-
ics, and errors are spacialy distributed according to this dynamics.

In spatio-temporal chaotic systems predictability strongly depends on the spatial correlation
of initial conditions. Correlated ensembles have errors, which implies a longer prediction time
of variables. The prediction range of numerical models can be adjusted. Hence a method
to obtain ensembles with varying amplitude and correlation by means of breeding method is
feasible like a predictive method.
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