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Resumo 
 
Neste artigo abordamos o problema de minimização do número de ciclos de corte de máquina 
dentro de um processo de corte. Mostramos que quando o custo do tempo de máquina é 
dominante comparado com outros custos, o problema é equivalente ao problema de corte de 
estoque em que as demandas são reduzidas por um fator de escala. Apresentamos também 
heurísticas simples para gerar uma solução viável para este problema. 
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Abstract 
 

In this article we address the problem of minimizing the number of machine cutting cycles 
problem within a cutting process. We show that when the cost of the machine time is 
dominant compared to the other costs, then the problem is equivalent to a cutting stock 
problem where the demands are scaled by a factor. We also present some simple heuristics to 
generate a feasible solution to this problem. 
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1. Introduction 

Cutting problems arise in many industries such as the paper, glass, furniture, metallurgy, 
plastics and textile industries. Their practical application and the computational difficulty in 
solving them motivate the researchers in the search for improved solution methods.  

Cutting problems have been studied by many researchers (see, for instance, Hinxamn,1980; 
Dyckhoff and Waescher, 1990; Lirov, 1992; Dowsland and Dowsland, 1992; Sweeney and 
Paternoster, 1992; Dyckhoff and Finke, 1992; Martello, 1994a, 1994b; Bischoff and 
Waescher, 1995; Mukhacheva, 1997; Dyckhoff et al., 1997 ); Arenales et al., 1999; Wang and 
Waescher, 2002; Hifi, 2002; and ESICUP, 2007). Many different cutting problems have been  
addressed in the literature, each one with its particularities. Hence, a taxonomy for these 
problems has been proposed (see for instance, Dyckhoff, 1990; Wascher et al., 2006), so that 
readers can correctly identify the problem been treated in an article.  



We address here the cutting stock problem that consists in cutting large pieces (denoted by 
objects), usually available in stock, into a set of smaller pieces (denoted items) in order to 
fulfill their demands, optimizing a certain objective function such as  minimization of the 
number of objects cut, minimization of waste, minimization of production costs.  

Let us consider a cutting stock problem (CSP) with a single type of object with the objective 
of minimizing the total number of objects used to cut all the required items. A possible 
mathematical model for this problem is:  

Model CSP 

  z0 = Minimize f(y) =  c∑
=

n

j
jx

1

       (1) 

subject to: ∑
=

n

j
jij x

1

α ≥ di  i = 1,..., m    (2) 

xj ≥ 0     and integer, j = 1,…, n  (3) 

where  

n  is the total number of different cutting patterns; 

m  is the total number of different items; 

αj = (α1j, α2j, ..., αMj)  is an m non-negative integer valued vector that represents pattern j, 
where each element αij is the quantity of items i contained in pattern j, j = 1, 2, ..., n; 

c  is the cost of an object; 

di  is the requirement of item i, i = 1, 2, ..., m; 

xj  is the decision variable that gives the number of times (the frequency) that pattern j is 
to be cut,  j = 1, 2, ..., n. 

Consider a industrial setting with high demand of items where an important component of the 
production costs is the time of the saw machine. The machine is able to cut many objects, all 
at once, by just stacking them one on top of the other. The maximum amount p of objects that 
the machine can cut at a time is determined by the width of each object, say w, and it is given 
by p =  wH / , where H is the maximum height of the stack of objects that the machine can 

handle. 

If the cost of the machine time is dominant compared with the other costs of the production, a 
desired objective in this high demand setting is to reduce the number of the machine cutting 
cycles assuming the machine takes about the same time to cut one object or p objects.    

The problem of minimizing the number of cutting cycles (MCC) can be formulated as  

Model MCC 

z1 = Minimize  ∑
=

n

i
i px

1

/        (4) 

   subject to: ∑
=

n

j
jij x

1

α ≥ di  i = 1,..., m    (5) 

xi  ≥  0              i = 1, 2, ..., n and integer   (6) 

The problem of minimizing the number of cutting cycles (MCC) has not been addressed much 
in the literature. We are aware of the heuristic proposed to solve it in Yanasse et al (1993) 
and, more recently, its variation suggested by Mosquera and Rangel (2007) .  



In the next section we discuss some features of the MCC problem (4)-(6).   

 

2. The cutting problem with reduction on the number of cycles 

In (4)-(6), if xi is a multiple of p for all i, then models CSP and MCC are equivalent except for 

a constant. However, xi be a multiple of p for all i is unlikely to happen, unless p = 1.    

Consider the case where p ≠ 1. Model MCC can be rewritten as 

Model 1 

z1 = Minimize ∑
=

n

i
iy

1

        (7) 

   Subject to  

∑
=

n

j
jij x

1

α ≥ di  i = 1,..., m    (8) 

xi  ≥  0               i = 1, 2, ..., n and integer  (9) 

yi ≥ xi / p  i = 1, 2, ..., n    (10) 

yi     integer, i = 1, 2, ..., n   (11) 

where 

yi is the minimum number of cutting cycles required to cut xi times the pattern i,  

Since z0 is the minimum number of objects necessary to cut all the required items, then a 

lower bound for z1 is   pz /0  = 







∑

=

n

i
i px

1

* / , where x* is an optimal solution of (1)-(3).  An 

upper bound for  z1 is  ∑
=

n

i
i px

1

* /   since yi =  pxi /* ,  i = 1, 2, ..., n, is a feasible solution to 

(7)-(12).  

Let y* be an optimal solution to (7)-(11). We have from (10) that  

xi ≤ p yi   i = 1, 2, ..., n    

and since 

∑
=

n

j
jij x

1

α ≥ di  i = 1,..., m    

then 

∑
=

n

j
jij py

1

*α ≥ di  i = 1,..., m    

and, therefore, 

∑
=

n

j
jij y

1

*α ≥ di / p  i = 1,..., m   (12) 

Since αij is integer for all i and j, *
iy  is integer for all i, and p is integer, then the left hand side 

of the inequalities (12) are integer, therefore, without modifying the optimality of the solution 
y*, we can replace the right hand side of (12) by  pdi / , i = 1,..., m. 



Let us define Model 2 as 

Model 2   

z2 = Minimize ∑
=

n

i
iy

1

       (13) 

    Subject to  

∑
=

n

j
jij y

1

α ≥   pdi /   i = 1,..., m   (14) 

yi  ≥  0              i = 1, 2, …, n and integer   (15) 

Proposition 1: Models 1 and 2 are equivalent (that is, an optimal solution y* of model 1 is an 
optimal solution of model 2 and vice-versa; and the optimal solution values are equal, that is 
z1 = z2).  

Proof of Proposition 1: Let (x* , y* ) be an optimal solution to Model 1. Therefore, we have 
from (10) that 

*
ix  ≤ p *

iy    i = 1, 2, ..., n. 

From (8) we have that 

∑
=

n

j
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1

*α ≥ di  i = 1,..., m,    

therefore 

*

1
j
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=

α ≥ di  i = 1,..., m    

and, then, 

∑
=

n

j
jij y

1

*α ≥ di / p  i = 1,..., m. 

Since αij is integer for all i and j, *
iy  is integer for all i, and p is integer, then the left hand side 

of the previous inequalities are integer, so, it must be larger or equal to  pdi / , i = 1,..., m. 

Therefore, y*  is a feasible solution to Model 2 and z2 ≤ z1.  

Consider now an optimal solution y*  for Model 2. From (14) we have that  

∑
=

n

j
jij y

1

*α ≥  pdi /   i = 1,..., m, 

and, therefore,  

∑
=

n

j
jij y

1

*α  ≥ di / p  i = 1,..., m 

or 

∑
=

n

j
jij py

1

*α ≥ di  i = 1,..., m. 

Let  *
ix  = p *

iy , i = 1, 2, ..., n. Then we have that  



∑
=

n

j
jij x

1

*α ≥ di  i = 1,..., m,    

and *
ix , i = 1, 2, ..., n satisfy (10), therefore, it is feasible for Model 1. Therefore, (x* ,y* ) is a 

feasible solution to Model 1 and z1 ≤ z2. Consequently, an optimal solution y* of model 1 is an 
optimal solution of model 2 and vice-versa; and z1 = z2. 

From the previous results we observe that for the case where the cost of machine time to cut 
the objects is dominant compared with the other costs involved in the production, the problem 
of minimizing the number of cycles is equivalent to solve a CSP with scaled demands. 

Let us consider next the case where the cost of the material (objects) is also relevant. We have 

Model 3 

z3 = Minimize c∑
=
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j
jx

1

+ t ∑
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i
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     (16) 

    Subject to  

∑
=
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jij x

1

α ≥ di  i = 1,..., m    (17) 

xi  ≥  0               i = 1, 2, ..., n and integer  (18) 

yi ≥ xi / p  i = 1, 2, ..., n    (19) 

yi     integer, i = 1, 2, ..., n   (20) 

 

Lower bound for z3 

We have that  

z3 ≥ z0 + t z1       (21) 

since z0 and t z1 are the smallest values we can obtain for c∑
=

n

j
jx

1

and t ∑
=

n

i
iy

1

, respectively, in 

(16), constrained to (17)-(20). 

  

Simple heuristics to determine a solution to Model 3 

 

Heuristic 1 

Let x*  be an optimal solution to Model CSP. Let y**  be obtained from x*  by rounding up to 
the nearest integer the elements of x* divided by p. (x* , y** ) is a feasible solution to Model 3, 
therefore,  

    z3 ≤ z0 + t (  ∑
=

n

i
i px

1

* / ). 

 

Heuristic 2 

Let y*  be an optimal solution to Model 2. Let x**  be obtained by the following iterative 
procedure: 

Step 0:  Set x ← p y*   



Step 1: For  i = 1, 2, …, m, determine δi  = ∑
=

n

j
jij x

1

α -  di  

Step 2:  For j = 1, 2, …, n such that *
jy  > 0, determine hj = 

i
min {  δi /αij , with αij > 0}. 

Step 3:  Let s = hk  = 
j

max {  hj, with *
jy  > 0} . 

Step 4: If s = 0, set x**  ← x and stop, else set xk  ← xk – s and return to Step 1. 

 

(x** , y* ) is a feasible solution to Model 3, therefore,  

    z3 ≤ c∑
=

n

j
jx

1

**  + t z1. 

 

So, using Heuristics 1 and 2, we can obtain feasible solutions to Model 3 and choose the best. 
An idea of the quality of the solution can be obtained with the lower bound given in (21).  

 

Heuristic 3 

In Model 3, when all the values of xi, i = 1, 2, ..., n are smaller or equal to p (for instance, 
when we have low demands for the items) then the variables yi, i = 1, 2, ..., n are binary. 
Therefore, the model reduces to the problem of minimizing the number of cutting patterns 
which has been also studied by several researchers (see, for instance, Haessler (1975, 1991); 
Farley and Richardson (1984), Foerster and Wäscher (2000), Diegel et al. (1993), Umetami et 
al. (2003), Vanderbeck (2000), McDiarmid (1999), Yanasse and Limeira (2006)). The 
problem of minimizing the number of different patterns arises when there is a significant cost 
involved with the set up of new cutting patterns.  

If we have a good solution method for the problem of minimizing the number of different 
cutting patterns, we can generate a feasible (hopefully good) solution to Model 3 by the 
following procedure.    

Let x*  be an optimal solution to Model CSP. Let y be obtained from x*  by rounding down to 
the nearest integer the elements of x* divided by p. Let  z = p y. For  i = 1, 2, …, m, determine 

δi  = di - ∑
=

n

j 1

αij pyj. Observe that for all i, δi < p. Therefore, we propose to obtain a solution by 

solving the residual problem as the following minimization of the number of different cutting 
patterns problem (MNCP)  

Model MNCP 

  Minimize c∑
=
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1

+ t ∑
=
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    Subject to  

∑
=
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j
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1

α ≥ δi  i = 1,..., m    

xi  ≥  0               i = 1, 2, ..., n and integer   

M yi ≥ xi  i = 1, 2, ..., n     

yi   binary    i = 1, 2, ..., n.     



If we obtain solution (x** , y** ) for this problem, we can construct the solution (z + x** , y + 

 ∑
=

n

i
i px

1

** / ) that is feasible to Model 3.  

MNCP is a difficult problem to solve. We can obtain a solution to it using a heuristic, for 
instance, the ones proposed in Yanasse and Limeira (2006). 

 

3. Remarks 

We presented some features of the problem of minimizing the number of cycles within a 
cutting process. We also present three simple heuristics to get a feasible solution to this 
problem and a lower bound for the optimal solution value.  

It is worth observing that we analysed the case where overproduction of items is allowed. 
Scaling of the demands may not be valid in the case where the demands of the items have to 
be met exactly.    

Recently Ranck Jr. et al. (2008), proposed the following model (Model 4) for the 
minimization of cycles problem where the demands have to be met exactly: 

Model 4: 

  Minimize ∑∑
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α =  bi  i = 1,..., m  

 xja  ≥  0               j = 1, 2, ..., n, a = 1, …, p – 1, and integer 

where: 
xja is the number of cycles cut of pattern j with a object stacked together.  
 

The extension of this model to include the cost of the objects becomes: 

Model 5: 
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a
ij −∑∑

=

−

=

α =  bi  i = 1,..., m  

 xja  ≥  0               j = 1, 2, ..., n, a = 1, …, p – 1, and integer 

We hope the features, heuristics and models presented can be useful to better understand this 
problem and in the development of more efficient algorithms to solve it. 

Acknowledgments: This work was partially financed by FAPESP and CNPq.  

 



References 

 ARENALES, M.N., MORABITO, R. & YANASSE, H.H.  (Eds.) Special issue: Cutting and 
packing problems. Pesquisa Operacional Vol.19, n.2,p.107-299, 1999. 

BISCHOFF, E. & WÄSCHER, G. (Eds.) Special issue: Cutting and packing. European 
Journal of Operational Research Vol. 84, n.3, 1995. 

DIEGEL, A., CHETTY, M., VAN SCHALKWYCK, S. & NAIDOO , S.  Setup Combining 
in the Trim Loss Problem – 3to2 & 2to1. Working Paper, Business Administration, University 
of Natal, Durban, First Draft, 1993. 

DOWSLAND, K. & DOWSLAND, W.  Packing problems. European Journal of Operational 
Research Vol. 56, p.2-14, 1992. 

DYCKHOFF, H.  A typology of cutting and packing problems. European Journal of 
Operational Research Vol.44, p.145-159, 1990. 

DYCKHOFF, H. & FINKE, U.  Cutting and packing in production and distribution: 
Typology and bibliography, Springer-Verlag Co, Heidelberg, 1992. 

DYCKHOFF, H., SCHEITHAUER, G., &TERNO, J.  Cutting and packing. In: Amico, M., 
Maffioli, F., Martello, S. (Eds.), Annotated bibliographies in combinatorial optimisation, John 
Wiley & Sons, New York, NY, p.393-414, 1997. 

DYCKHOFF, H. & WÄSCHER, G.  (Eds.) Special Issue on cutting and packing. European 
Journal of Operational Research Vol.44, 1990. 

ESICUP, EURO Special Interest Group on Cutting and Packing, (Website 
http://paginas.fe.up.pt/~esicup/), 2007. 

FARLEY, A.A. & RICHARDSON, K.V.  Fixed charge problems with identical fixed 
charges. European Journal of Operational Research Vol. 18, p.245-249, 1984. 

FOERSTER, H. & WÄSCHER, G. Pattern reduction in one-dimensional cutting stock 
problem. International Journal of Production Research Vol. 38, p. 1657-1676, 2000.  

HAESSLER, R.W. Controlling cutting pattern changes in one-dimensional trim problems. 
Operations Research Vol. 23, p.483-493, 1975. 

HAESSLER, R.W. Cutting stock problems and solutions procedures. European Journal of 
Operational Research Vol. 54, p.141-150, 1991. 

HIFI, M.  (Ed.) Special issue on cutting and packing. Studia Informatica Universalis Vol. 2, 
2002. 

HINXMAN, A.  The trim-loss and assortment problems: a survey. European Journal of 
Operational Research Vol. 5, p.8-18, 1980. 

LIROV, Y. (Ed.) Special issue: Cutting stock: Geometric resource allocation. Mathematical 
and Computer Modelling Vol.16, n.1, 1992. 

MARTELLO, S.  (Ed.) Special issue: Knapsack, packing and cutting, Part I: One-
dimensional knapsack problems, INFOR Vol.32, n.3, 1994a. 

MARTELLO, S.  (Ed.) Special issue: Knapsack, packing and cutting, Part I: 
Multidimensional knapsack and cutting stock problems, INFOR Vol.32, n.3, 1994b. 

MCDIARMID, C.  Pattern minimisation in cutting stock problems. Discrete Applied 
Mathematics Vol.98, p.121-130, 1999. 

MOSQUERA, G.P. & RANGEL, M.S.N. Strategies to reduce the number of saw cycles in a 
furniture industry. X Oficina Nacional de Problemas de Corte & Empacotamento e 
Correlatos, 26 e 27 de abril de 2007, São José dos Campos, SP. (in portuguese). 



MUKHACHEVA, E.A.  (Ed.) Decision making under conditions of uncertainty: cutting -
packing problems. The International Scientific Collection, Ufa, Russia, 1997. 

RANCK JR., R., YANASSE, H.H. & BECCENERI, J.C.  A heuristic for the problem of 
reducing the number of saw cycles, Submitted to XL Simpósio Brasilerio de Pesquisa 
Operacional, João Pessoa, Setembro de 2008. (in portuguese).  

SWEENEY, P. & PATERNOSTER, E. Cutting and packing problems: A categorised, 
application-oriented research bibliography, Journal of the Operational Research Society Vol. 
43, p.691-706, 1992. 

UMETAMI, S., YAGIURA, M. & IBARAKI, T.  One-dimensional cutting stock problem to 
minimize the number of different patterns. European Journal of Operational Research Vol. 
146, p.388-402, 2003. 

VANDERBECK, F. Exact algorithm for minimizing the number of setups in the one-
dimensional cutting stock problem. Operations Research Vol. 48, p. 915-926, 2000. 

WANG, P. &WÄSCHER, G. (Eds.) Special Issue on cutting and packing problems. 
European Journal of Operational Research Vol.141, p.239-469, 2002. 

WÄSCHER, G., HAUSSNER, H. & SCHUMANN, H. An improved typology of cutting 
and packing problems. European Journal of Operational Research, to appear, accepted in 
2006 . 

YANASSE, H.H., HARRIS, R.G. & ZINOBER, A.S.I.  A heuristic to reduce the number of 
saw cycles when cutting hardboards. XIII ENEGEP - Encontro Nacional de Engenharia de 
Produção/ I Congresso Latino Americano de Engenharia Industrial, Florianópolis, SC, Brazil, 
Oct. 1993. Proceedings of the XIII ENEGEP 1993; II: 879-85. (in portuguese). 

YANASSE, H.H. & LIMEIRA, M.S. A hybrid heuristic to reduce the number of different 
patterns in cutting stock problems. Computers and Operations Research Vol.33, p.2744-2756, 
2006.  


