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Resumo

Neste artigo abordamos o problema de minimizacauideero de ciclos de corte de maquina
dentro de um processo de corte. Mostramos que quanclisto do tempo de maquina €
dominante comparado com outros custos, o problerguialente ao problema de corte de
estoque em que as demandas séo reduzidas por amdéaescala. Apresentamos tambéem
heuristicas simples para gerar uma solucao viarel gste problema.

Palavras chave minimizacao de ciclos de corte, corte de estomaericdo de padroes

Abstract

In this article we address the problem of minimgzthe number of machine cutting cycles
problem within a cutting process. We show that wile@ cost of the machine time is

dominant compared to the other costs, then thelgmobs equivalent to a cutting stock

problem where the demands are scaled by a facteral$d present some simple heuristics to
generate a feasible solution to this problem.

Keywords: minimization of cutting cycles, cutting stock tigan reduction

1. Introduction

Cutting problems arise in many industries such has gaper, glass, furniture, metallurgy,
plastics and textile industries. Their practicaplagation and the computational difficulty in
solving them motivate the researchers in the sdardmproved solution methods.

Cutting problems have been studied by many reseesdisee, for instance, Hinxamn,1980;
Dyckhoff and Waescher, 1990; Lirov, 1992; Dowslamti Dowsland, 1992; Sweeney and
Paternoster, 1992; Dyckhoff and Finke, 1992; Maotell994a, 1994b; Bischoff and

Waescher, 1995; Mukhacheva, 1997; Dyckhoff etl&l97 ); Arenales et al., 1999; Wang and
Waescher, 2002; Hifi, 2002; and ESICUP, 2007). Mdiffierent cutting problems have been
addressed in the literature, each one with itsiquaarities. Hence, a taxonomy for these
problems has been proposed (see for instance, DifclI®990; Wascher et al., 2006), so that
readers can correctly identify the problem beeatéein an article.



We address here the cutting stock problem thatistsns cutting large pieces (denoted by
objects), usually available in stock, into a setsofaller pieces (denoted items) in order to
fulfill their demands, optimizing a certain objeaifunction such as minimization of the
number of objects cut, minimization of waste, miization of production costs.

Let us consider a cutting stock problem (CSP) wiingle type of object with the objective
of minimizing the total number of objects used ttt all the required items. A possible
mathematical model for this problem is:

Model CSP
Zo = Minimizef(y) = ¢> x, (1)
i=1
subjectto: > a;x; 2 d i=1,..m (2)
j=1
X =0 and integej,= 1,...,n 3)
where
n is the total number of different cutting patterns
m is the total number of different items;

ai- (mj, aoj, ., ) IS anm non-negative integer valued vector that represpatgernj,
where each elemeum; is the quantity of itemiscontained in pattepj =1, 2, ...,n;

c is the cost of an object;
di is the requirement of itemi =1, 2 ...,m;
X is the decision variable that gives the numbeimoés (the frequency) that pattgris

tobecut,j=1,2..,n

Consider a industrial setting with high demandteims where an important component of the
production costs is the time of the saw machine Machine is able to cut many objects, all
at once, by just stacking them one on top of thertThe maximum amouptof objects that
the machine can cut at a time is determined byildéh of each object, say, and it is given
byp = |_H /WJ, whereH is the maximum height of the stack of objects thatmachine can

handle.

If the cost of the machine time is dominant comgawéh the other costs of the production, a
desired objective in this high demand setting isettuce the number of the machine cutting
cycles assuming the machine takes about the samaddicut one object g@robjects.

The problem of minimizing the number of cutting iegc(MCC) can be formulated as
Model MCC

21 = Minimize > [x / p| (4)
i=1

subjectto: Y a;x; 2 d i=1,...m (5)
=1
X =20 i=1,2,..nand integer (6)

The problem of minimizing the number of cutting legc(MCC) has not been addressed much
in the literature. We are aware of the heuristioppsed to solve it in Yanasse et al (1993)
and, more recently, its variation suggested by Mesg and Rangel (2007) .



In the next section we discuss some features dfiB€ problem (4)-(6).

2. The cutting problem with reduction on the numberof cycles

In (4)-(6), ifxj is a multiple ofp for alli, then models CSP and MCC are equivalent except for
a constant. Howevex; be a multiple op for alli is unlikely to happen, unlegs= 1.

Consider the case wheretd.. Model MCC can be rewritten as

Model 1
2 = Minimize »y, (7)
i=1
Subject to
Doax 24 i=1..m (8)
=1
X =20 i=1,2,..nand integer (9)
Yizx/p i=1,2,..n (10)
Yi integerj =1, 2, ..n (11
where
Vi is the minimum number of cutting cycles require@ubx; times the pattern

Sincez, is the minimum number of objects necessary toatluthe required items, then a

lower bound forz; is [z,/p]| {Z X / p—l, wherex’ is an optimal solution of (1)-(3). An

i=1

upper bound forz; is Z|_xi* / p-| sincey; = \){ I'p \ =12 ..,n, is a feasible solution to
i=1
(7)-(12).
Lety  be an optimal solution to (7)-(11). We have frdifi)(that
X <PYi i=1,2,..n
and since
D apx; zd i=1,.,m
j:
then
D a;py 2d i=1,..m
j=1

and, therefore,
> a,y;zdlp i=1,..m (12)
j=1

Sincea; is integer for all andj, y; is integer for all, andp is integer, then the left hand side

of the inequalities (12) are integer, thereforehaut modifying the optimality of the solution
y', we can replace the right hand side of (12J&y/ p],i = 1,...,m.



Let us define Model 2 as

Model 2
z, = Minimize Zn: Y, (13)
i1
Subject to
Zn:aij y,; = [d/p] i=1,..m (14)
i
yj 2 0 i=1,2,...,nand integer (15)

Proposition 1: Models 1 and 2 are equivalent (that is, an optisoéitiony” of model 1 is an
optimal solution of model 2 and vice-versa; and dpémal solution values are equal, that is
= Zz).

Proof of Proposition 1: Let (x*, y*) be an optimal solution to Model 1. Therefore, wae
from (10) that

X <py i=1,2, ..n
From (8) we have that
D> apx; zd i=1,..m,
j:
therefore
> a;py;2d i=1,..m
j=1
and, then,
> a,y;zdlp i=1,.m
j=1

Sincea; is integer for all andj, y; is integer for ali, andp is integer, then the left hand side
of the previous inequalities are integer, so, istrie larger or equal tEﬁi / p—\, i=1,..,m
Thereforey* is a feasible solution to Model 2 andK z.

Consider now an optimal solutigri for Model 2. From (14) we have that

Zn:aij y;=[d /p] i=1,.,m,
=

and, therefore,
Zn:aij y, 2di/p i=1,..m
=)

or
Zn:aij py; = d i=1,.,m
=

Let x =p vy, ,i=1,2,..n Then we have that



DX zd i=1,.,m,

j=1

and x ,i=1, 2, ...n satisfy (10), therefore, it is feasible for ModelTherefore, X* ,y*) is a

feasible solution to Model 1 arml< z. Consequently, an optimal solutignof model 1 is an
optimal solution of model 2 and vice-versa; apd z,.

From the previous results we observe that for #se avhere the cost of machine time to cut
the objects is dominant compared with the othetscosolved in the production, the problem
of minimizing the number of cycles is equivalenstive a CSP with scaled demands.

Let us consider next the case where the cost ahtterial (objects) is also relevant. We have
Model 3

z3= Minimizec) x; +t Yy, (16)
j=1 i=1
Subject to
D oapx; zd i=1,...,m (17)
j:
Xp 2 0 i=1,2,..nand integer (18)
Yi>x/p i=1,2,..n (19)
Vi integerj =1, 2, ...n (20)
Lower bound foiz;
We have that
>7+t7 (21)

n n
sincez, andt z are the smallest values we can obtaincfdr x; andt »_y, , respectively, in
=1 i=1

(16), constrained to (17)-(20).

Simple heuristics to determine a solution to Mdglel

Heuristic 1

Let x* be an optimal solution to Model CSP. &t be obtained fronx* by rounding up to
the nearest integer the elementx’oflivided byp. (x*, y**) is a feasible solution to Model 3,
therefore,

<2+t (Y[% /).

Heuristic 2

Let y* be an optimal solution to Model 2. Let* be obtained by the following iterative
procedure:

Step 0: Sex «— py*



Step 1:Fori = 1, 2, ... m, determine}, = >_a, X, - d
=1

Step 2: Foj=1, 2, ...,nsuch thaty’; > 0, determindy, = min { J; /a; , with a;; > 0}.
Step 3: Les=h, = max { h, with y; >0} .
J

Step 4: Ifs = 0, seix** « x and stop, else sgt «— x«—sand return to Step 1.

(x**, y*) is a feasible solution to Model 3, therefore,

n
23502%1* +tz.

j=1

So, using Heuristics 1 and 2, we can obtain feasiblutions to Model 3 and choose the best.
An idea of the quality of the solution can be obai with the lower bound given in (21).

Heuristic 3

In Model 3, when all the values &f i = 1, 2, ...,n are smaller or equal to (for instance,
when we have low demands for the items) then th@abasy,, i = 1, 2, ...,n are binary.
Therefore, the model reduces to the problem of mizing the number of cutting patterns
which has been also studied by several resear¢bees for instance, Haessler (1975, 1991);
Farley and Richardson (1984), Foerster and Wagelé0), Diegel et al. (1993), Umetami et
al. (2003), Vanderbeck (2000), McDiarmid (1999),n#ase and Limeira (2006)). The
problem of minimizing the number of different patte arises when there is a significant cost
involved with the set up of new cutting patterns.

If we have a good solution method for the probleéhmmimizing the number of different
cutting patterns, we can generate a feasible (ndpefood) solution to Model 3 by the
following procedure.

Let x* be an optimal solution to Model CSP. lyebe obtained fronx* by rounding down to
the nearest integer the elementg’otlivided byp. Let z =py. For i =1, 2, ..., m, determine

n

o =di- z a; py. Observe that for all ; < p. Therefore, we propose to obtain a solution by
j=1

solving the residual problem as the following miraation of the number of different cutting

patterns problem (MNCP)

Model MNCP

n n
Minimizec) x; +t Yy,
=1 i=1

Subject to
Doayx; 26 i=1,.,m
j=1
X =20 i =1, 2,..nand integer
MYy > X i=1,2,..n

Yi binary i=1,2, ..n



If we obtain solutionx**, y**) for this problem, we can construct the solutior k** , y +

n

Z(x, / p—‘) that is feasible to Model 3.

i=1

MNCP is a difficult problem to solve. We can obtarsolution to it using a heuristic, for
instance, the ones proposed in Yanasse and Lif#€06).

3. Remarks

We presented some features of the problem of mamgithe number of cycles within a
cutting process. We also present three simple $tagito get a feasible solution to this
problem and a lower bound for the optimal solutrafue.

It is worth observing that we analysed the caser&loerproduction of items is allowed.
Scaling of the demands may not be valid in the edsere the demands of the items have to
be met exactly.

Recently Ranck Jr. et al. (2008), proposed theoWwhg model (Model 4) for the
minimization of cycles problem where the demandseta be met exactly:

Model 4:

Minimize izp:xja

j=1 a=1
Subject to

n p-1 )

> > ayx,(p-a)=b i=1,..m

=1 a=1

Xja 2 0 j=1,2,..n,a=1, ...,p—1, and integer
where:
Xia is the number of cycles cut of patt¢mwith a object stacked together.

The extension of this model to include the coghefobjects becomes:

Model 5:
. . 0 p_l o %
Minimizec) > x,(p-a)+t > > x, =
i=1 a=1 j=l a=1
n p-1

Minimize ) > x,[c(p-a)+t]

j=1 a=1

Subject to
n p-1 ‘
ZZ ij ]a(p a) b| | = 1,...,m
j=1 a=
Xg 2 0 j=1,2,..n,a=1, ....p—1, and integer

We hope the features, heuristics and models predeain be useful to better understand this
problem and in the development of more efficiegbathms to solve it.
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