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Abstract

This work proposes an enhancement to the optimization technique that mimics the flight of a  
flock of birds, the Particle Swarm Optimization. In the original form of the algorithm, each bird 
represents a candidate solution and updates its position in the search space from the previous 
best evaluated positions obtained by itself and by the flock. The proposed innovation is given by 
the addition of an atmospheric turbulence that affects in an independent, random and sporadic  
way the flight of each bird of the flock. Optimization tests were performed, using standard real  
functions,  in  order  to  check  the  new  algorithm.  It  can  be  concluded  that  the  addition  of  
turbulence is effective, in comparison to the original algorithm, to escape from local minima and  
to reach better solutions. In addition, the new algorithm is more robust concerning the choice of  
tuning parameters that balance the influence of the past better positions.

Keywords:  Particle  Swarm  Optimization,  flock-of-birds  algorithm,  function  minimization, 
turbulence. 

1. Introduction

This work proposes an enhancement to the optimization technique that mimics the flight 
of a flock of birds, the Particle Swarm Optimization (PSO). The original version of the algorithm 
was proposed in 1995 [4]. In the PSO, a flock of birds is associated to the particle swarm and the 
algorithm tries to mimic the behavior of the birds that compose the flock. Each bird is associated 
to  a  candidate  solution  and  updates  its  position  in  the  search  space  from the  previous  best 
evaluated positions obtained by itself and by the entire flock.

The proposed enhancement  to the PSO algorithm is the addition of a new stochastic 
component to simulate the atmospheric wind, which is always subjected to turbulence [7]. This 
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turbulent component affects in an independent, random and sporadic way the flight of each bird 
of  the  flock.  We  denoted  the  new algorithm by PSO-T (Particle  Swarm Optimization  with 
Turbulence).

Optimization tests were performed, using standard real functions, in order to compare the 
new PSO-T implementation to a standard PSO one. It  can be concluded that the addition of 
turbulence is effective, in comparison to the original algorithm, to escape from local minima and 
to reach better solutions. In addition, the new algorithm is more robust concerning the choice of 
tuning parameters that balance the influence of the past better positions. 

The next section is about PSO concepts and the introduction of turbulence. Section 3 
discusses  the  minimization  of  real  functions  and  describes  the  standard  functions  that  were 
employed in the tests,  while section 4 discusses the results.  Finally,  section 5 includes some 
discussions of the obtained results and proposes future works.

2. The flock of birds paradigm and atmospheric turbulence

One of the main streams in artificial life is to understand how real world animals behave 
as part  of a swarm and to try to mimic this behavior in an algorithm.  Some aspects of such 
behavior must be abstracted in order to obtain rules that are feasible to be implemented in an 
algorithm.  Even when the individual  behavior is  simple,  the  collective  behavior can be very 
complex. This is the case of the PSO.

Boyd e Richerson [2] have studied the decision making process in human beings and 
observed that decisions are taken based on the personal experience, but also on the neighbors’ 
experience. This feature was exploited in the PSO algorithm and applied to the behavior of the 
birds. It is assumed that the behavior of the flock is a consequence of the effort of each bird in 
keeping an optimal distance from the neighboring birds.

The aesthetical choreography of a flock of birds was studied by zoology and computer 
science researchers in order to know what are the rules that provide for the synchronous flight of 
the flock even subjected to successive changes of direction.

In the PSO, a flock of birds is represented in a n-dimensional search space. The position 
of each agent/bird  i in iteration  k is given by its vector of Cartesian coordinates  Xi

k. At every 
iteration,  that  corresponds  to  an  unitary  amount  of  time,  the  flock  of  birds  evolve  as  a 
consequence of the update of the positions of each bird. The update of position of agent/bird i is 
calculated using its  current  velocity vector  Vi

k,  which is  also updated at  every iteration as a 
function of its previous position Xi

k-1 and velocity Vi
k-1.

The  position  of  each  bird  represents  a  possible  solution  in  the  search  space.  The 
evaluation of each bird is performed at every iteration by means of an objective function F(X). 
Each bird stores its best position  Xi

pbest,  that corresponds to the better evaluation obtained by 
itself. This information is due to its own experience. Every bird also knows the best evaluation 
obtained by the flock until the moment, Xgbest, that correponds to the experience of the group. At 
every iteration, the velocity vector  Vi

k-1 of each bird  i is updated in function of the following 
variables: 

• its previous position Xi
k-1

• its previous velocity Vi
k-1 

• the distance vector defined by its previous position and its Xi
pbest

• the distance vector defined by its previous position and flock’s Xgbest 

The  new  (current)  position  Xi
k is  defined  by  applying  the  current  velocity  operator  to 

previous position Xi
k-1. Actually, for a unitary time step, this is equivalent to add this velocity to 

the previous position in order to obtain the current position (see eq. (4)).

 In the PSO, the following equation defines the current velocity of each bird:
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Vi
k = c1.Vi

k-1 + c2.rand1 (Xi
pbest - Xi

k-1 ) + c3.rand2 (Xgbest - Xi
k-1)   (1)

where  rand1 and rand2 are random numbers  between 0 and 1 and the  positive  real  numbers, 
denoted learning parameters, must be chosen:

c1: parameter that express the trust of the bird in itself;
c2: parameter that express the trust of the bird in its experience;
c3: parameter that express the trust of the bird in the experience of the flock.

The above learning parameters  c2 and c3,  weight  the stochastic  accelerations towards 
positions Xi

pbest and Xgbest, respectively [5]. In terms of behavior, the parameter c2 represents the 
cognitive factor associated to its best former experience, while the parameter c3 represents the 
social factor associated to the best former experience of the group. It is common to assign the 
same value to these two parameters [3] e [6].  

The contribution of this work is the addition of an atmospheric turbulence, which affects 
in an independent, random and sporadic way the flight of each bird of the flock in the PSO-T 
(Particle  Swarm  Optimization  with  Turbulence).  In  order  to  simulate  this  turbulence,  it  is 
required to define how the turbulence will affect the birds of the flock. A new real parameter (q0), 
with value between 0 and 1, is used by a roulette scheme: at every iteration a random number is 
generated and compared to q0 in order to include or not turbulence in the flight of all birds of the 
flock.  Additionally,  a  turbulence intensity parameter  iturb is  defined in  function of  the  best 
evaluation of the flock F(Xgbest) and of the number of the elapsed number of iterations with no 
improvement of this evaluation: 

iturb= [(c1+c2+c3)/ F(Xgbest)] * [1.0/(nit-nit_improv)]    (2)

where,
c1, c2, c3  are the learning parameters of equation (1),
nit: is the iteration number,
nit_improv: is the previous iteration in which F(Xgbest) improved.

 In the presence of turbulence, in a given iteration, each velocity component of bird i  is 
multiplied by the intensity parameter iturb and also by a random number between 0 and 1 (randi). 
A new random number is generated for each component of the velocity of each bird. In this way, 
the turbulence acts as a stochastic forcing, causing a perturbation in each of the n components of 
velocity Vi

k of bird i, as follows:

vi
k = vi

k *iturb*randi; (3)

where Vi
k = [(vi

k)1  (vi
k) 2

…
  (vi

k)n]. As mentioned before, the position of each bird is updated by the 
following equation, for a unitary step of time: 

Xi
k = Xi

k-1 + Vi
k (4)

A general description of the proposed PSO-T algorithm follows.

Step 1: Setting of initial conditions for the flock; for each bird, the position (Xi
0) and 

velocity (Vi
0), are randomly generated, given suitable ranges;

Step 2: Evaluation of the objective function F(X) for each bird of the flock; the positions 
Xi

pbest and Xgbest are eventually updated;
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Step 3: Update of the velocities of each bird of the flock; the velocity of a bird is updated 
using eq. (1), obtaining  Vi

k and turbulence is applied according to the roulette 
scheme that uses the parameter q0 ; if there is turbulence, eqs. (2) and (3) are used 
to independently perturb the velocities of each bird of the flock in that iteration;

Step 4: Update of the positions of each bird of the flock using eq. (4), in order to obtain 
the new positions Xi

k ;

Step 5: Check of the stopping criteria; if it is not verified, return to step 2 for the next 
iteration.

The stopping criteria can be defined in a suitable manner. In this work, it is employed a 
limit  processing time in order to end the algorithm.  Other options include a limit  number  of 
iterations or a threshold to be reached by the objective function – this would require a careful 
choice of the threshold to avoid a never-ending algorithm. 

3. Function Minimization Tests 

In order to check the influence of the addition of turbulence to the original PSO algorithm, we 
choose to test the new PSO-T in the minimization of real functions. Four well-known functions 
were minimized: Rosenbrock, Schwefel, Rastrigin e Griewank. These functions are defined at 
http://www.geatbx.com/docu/fcnindex-01.html as of late May, 2009. 

The number of variables of each function can be set and in the present minimization tests 
we employed 5 variables and a processing time limit as stopping criteria. The search space was 
limited in a suitable manner for each function, employing intervals that are commonly found in 
the optimization literature. Table 1 shows, for each function the optimal value and corresponding 
values of the variables (Xi), as well as the considered domain (“interval” column).

Function Fmin optimal optimal Xmin (i=1, ...,5) interval (i=1, ...,5)
Griewank 0 xi= 0 xi ∈ [-600, 600]
Rastrigin 0 xi= 0 xi ∈ [-5.12, 5.12]
Rosenbrock 0 xi= 1 xi ∈ [-5.12, 5.12]
Schwefel -2094.3225880493 xi= 420 xi ∈ [-500, 500]

Table 1: Optimal values Fmin, corresponding Xmin and limits for the considered functions.

Additionally, the PSO-T algorithm requires the setting of the following parameters:

• np: number of birds of the flock;
• T_limit: limit processing time; 
• Seed: chosen seed for the random number generator;
• q0:  parameter  associated  to  the  roulette  scheme  that  defines  presence/absence  of 

turbulence in a given iteration. 

Next,  it  is presented some test cases.  In each test,  1600 birds were utilized, during 1800 
seconds. For each function, 25 test cases were executed, each one with a different seed to 
generate random numbers. The tables show results for different values of c1, c2 and c3. The 
parameter q0 = 0.2 in all cases.
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  PSO PSO-t
  Mean StdDev Min Mean StdDev Min

Griewank

Cost 0,524 0,126 0,323 0,010 0,007 0,000

Best 
Iteractio

n
173,960 240,706 6,000 29801,360 36951,634 238,000

Rastrigin

Cost 0,255 0,308 0,063 0,000 0,000 0,000

Best 
Iteractio

n
357,840 170,850 127,000 786,680 900,980 196,000

Rosenbrock

Cost 1,908 0,823 0,181 0,398 0,392 0,000

Best 
Iteractio

n
213,280 200,530 26,000 15067,640 16799,088 1768,000

Schwefeld

Cost -2055,04
5 65,750 -2094,72

5 -1949,630 89,717 -2094,91
4

Best 
Iteractio

n
738,760 474,107 129,000 1439,960 4307,529 161,000

Table 2: c1 = 1.0, c2 = 0.1, c3 = 0.1

  PSO PSO-t
  Mean StdDev Min Mean StdDev Min

Griewank

Cost 0,567 0,136 0,396 0,012 0,010 0,000

Best 
Iteractio

n
72,750 44,814 31,000 27765,680 62932,680 194,000

Rastrigin

Cost 0,533 0,703 0,017 0,000 0,000 0,000

Best 
Iteractio

n
218,280 143,549 34,000 298,000 241,807 132,000

Rosenbrock

Cost 2,289 0,756 0,954 0,022 0,112 0,000

Best 
Iteractio

n
120,720 137,849 9,000 4964,760 14466,394 1121,000

Schwefeld

Cost -1978,81
2 100,806 -2094,68

5 -1962,264 98,620 -2094,91
4

Best 
Iteractio

n
222,480 177,716 52,000 852,400 2381,515 134,000

Table 3: c1 = 1.0, c2 = 0.2, c3 = 0.2
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  PSO PSO-t
  Mean StdDev Min Mean StdDev Min

Griewank

Cost 0,000 0,000 0,000 0,000 0,000 0,000

Best 
Iteractio

n
1673,120 3442,228 211,000 1661,160 1806,964 224,000

Rastrigin

Cost 0,000 0,000 0,000 0,000 0,000 0,000

Best 
Iteractio

n
177,280 33,035 135,000 152,960 19,938 120,000

Rosenbrock

Cost 0,000 0,000 0,000 0,000 0,000 0,000

Best 
Iteractio

n
2469,840 355,367 1347,000 26637,920 3776,423 22680,000

Schwefeld

Cost -2066,48
9 51,626 -2094,91

4 -2094,914 0,000 -2094,914

Best 
Iteractio

n
1645,920 2928,706 133,000 193,080 49,071 129,000

Table 4: c1 = 0.5, c2 = 2.0, c3 = 2.0

The preceding tables allow comparing the original PSO algorithm to the proposed PSO-
T.  This will be done in the next section.

4. Final remarks

This  work  presented  a  new version  of  PSO algorithm,  denoted  as  PSO-T  (Particle  Swarm 
Optimization with Turbulence). These new version introduces a turbulent term that affects in an 
independent, random and sporadic way the flight of each bird of the flock. Minimization tests of 
real functions were performed comparing the PSO-T to the PSO and allow to conclude that the 
turbulence  is  effective  to  escape  from local  minima  in  the  search  space  of  these  functions, 
yielding  better  solutions.  For  example,  in  Table  2,  function Griewank,  PSO stops  in  a  local 
minima  after  173,96  iterations  (in  mean),  while  PSO-T,  stops  in  a  local  minima  only  after 
29801,36 iterations (in mean)  and gets a better value for  the function (0,10 against  0,524 of 
canonical PSO), with a lower standard deviation. The same comments can be applied to Rastrigin 
and Rosenbrock functions. In addition, the turbulence gives more robustness to the algorithm, 
since  the  side  effects  of  choosing  a  far  from optimum set  of  parameters  (c1,  c2 and  c3)  is 
diminished. This is due to the higher capability of perform a random search that is provided by 
the turbulence. This behavior is clearly seen in Tables 3 and 4, where at least one seed of PSO-T 
(but  none  of  PSO)  finds  the  global  optima.  In  [1]  PSOT  is  applied  to  Thermal-Vacuum 
Modelling, to find out fuzzy models to represent dynamic behavior of space systems that lie 
underneath  the  space  qualification  process.  It  is  intended  to  employ  the  PSO-T for  solving 
inverse problems, which are usually iteratively solved as optimization problems. For instance, 
another metaheuristic, the Ant Colony Optimization, was successfully applied to such problems 
as can be seen in [7].
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