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Abstract

The present investigation is focused on the solution of
a dynamic inverse problem for damage identification
in structures from measured data. The inverse problem
is formulated as an optimization problem. It is solved
using the Adjoint Method, adapted by frequency domain
measurements, coupled with the Genetic Algorithm
method. The damage estimation has been evaluated
using noiseless and noisy synthetic experimental data,
considering three different structures: a simple spring-
mass system, a truss structure and a beam-like structure.

Keywords: Inverse vibration problem, damage
identification, variational approach, genetic algorithm.

1 Introduction

The direct solution of forced vibration problems are con-
cerned with the determination of the system displace-
ment, velocity and acceleration at timet when the initial
conditions, external forces, and system parameters, such
as stiffness coefficients and damping coefficients, are
specified. On the other hand, the inverse vibration prob-
lems are concerned with the estimation of such quanti-
ties (stiffness or damping coefficients, external forces)
from the measured vibration data, i.e., natural frequency
and/or mode shapes, or displacement measurements.

The techniques of inverse problems have been ap-
plied in many different areas of engineering research,
such as in thermal science, where some of them have
been presented good results. In general the inverse
problem, i.e. the ill-posed problem, is presented as a
well-posed functional form, whose solution is obtained
through an optimization procedure. Such thermal in-
verse problems have been addressed in the literature by
using regularization approaches [16, 3], the conjugate
gradient method with the adjoint equation [1, 12, 3],
and a regularized solution through the genetic algorithm

method [3, 5].

Regarding the inverse vibration problem, consider-
able research and effort over the last few decades has
taken place in the field of damage detection and damage
classification in structures. A variety of experimental,
numerical and analytical techniques has already been
proposed to solve the damage identification problem,
and has received notable attention due to its practical
applications [8].

The structural damage detection is displayed as an
inverse vibration problem, since the damage evaluation
is achieved through the determination of the stiffness
coefficient variation, or the stiffness coefficient by it-
self. Recently this type of problem has already been
solved employing the Variational technique, i.e. the
adjoint equation method, where the results have been
reported concerning lumped-parameter systems with a
small number of degrees-of-freedom (DOFs) [10] or
with a higher number of DOFs [11, 4]. Also, in some
works more realistic structures have been considered
such as truss and beam-like structures [6, 7, 2]. In the
cited works the time-history of the displacement data
have been adopted as the available experimental data.

In this work, the adjoint equation method has been
applied to the inverse vibration problem of damage
assessment in three different structures: a lumped-
parameter system represented by an spring-mass sys-
tem, a naturally discrete structure of truss and a
distributed-parameter system represented by a beam-
like structure, Figures 1, 2 and 3, respectively. In all
cases natural frequencies measurements have been as-
sumed as the available experimental data.
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Figure 1: The10-DOF spring-mass system considered in this
work.
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Figure 2: The three bay structure considered in this work.
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Figure 3: The 20-DOF beam structure considered in this
work.

2 The Inverse Analysis

The goal is to recover the unknown stiffness coefficients
from the synthetic system frequency measurements of
three different structures. The inverse analysis with the
conjugate gradient method involves the following steps
[1, 12]: (i) the solution of direct problem; (ii) the solu-
tion of sensitivity problem; (iii) the solution of adjoint
problem and the gradient equation; (iv) the conjugate
gradient method of minimization; (v) the stopping crite-
ria.

Next, a brief description of the basic procedures in-
volved in each of these steps is presented.

2.1 The Direct Problem

The undamped free vibration of aN -DOF structural sys-
tem gives rise to the matrix eigenvalue problem,

Kφ = λMφ , (1)

which will be considered as the direct eigenproblem in
the frequency domain; beingK andM the stiffness and
mass matrices,λ are the eigenvalues (natural frequen-
cies squared), andφ are the eigenvectors.

2.2 The Sensitivity Problem

Since the problem involvesN unknown stiffness param-
eters, which constitute the elements of the stiffness ma-
trix K = f [K], whereK = [K1, ...,KN ], in order to de-
rive the sensitivity problem for each unknown function
Ki, each unknown stiffness coefficient should be per-
turbed at a time. Supposing that theKi is perturbed by a

small amount4Kij δ(i−j), where theδ(·) is the Dirac-
delta function andj = 1, . . . , N , it results in a small
change in frequencies and mode-shapes by the amounts
4λij(t) and4φij(t), respectively. Then, the sensitivity
problem is obtained by replacing in the eigenvalue prob-
lemKi byKi +4Kij δ(i− j), λi by λi +4λij , φi by
φi +4φij , and is given by

[(Ki +4Kj)− (λi +4λij)M] (φi +4φij) = 0 . (2)

Rearranging the terms of the above equation and sub-
tracting from the resulting expression the original eigen-
value problem (1), after some algebraic manipulations
and neglecting the second-order terms, the following ex-
pression yields

φT
i (4Kj −4λijM)φi = 0 ⇒ 4λij =

φT
i 4Kj φi

φT
i M φi

, (3)

which provides a sensibility analysis where the eigen-
vectorsφ have been obtained when the updated stiffness
matrix is considered.

2.3 The Adjoint Problem and the Gradi-
ent Equation

The inverse problem is to be solved as an optimization
problem, requiring that the unknown functionK should
minimize the functionalJ[K] defined by

J[K] =
∥∥λexp − λ

∥∥2

2
, (4)

whereλ andλexp are the computed and measured fre-
quencies, respectively. For solving the minimization
problem (4), theLagrangemultipliersψ are usually used
to associate the constraints (1) to the functional form.

J(λ,K, ψ) =
∥∥λexp − λ

∥∥2 − ψT (K− λM)φ . (5)

The variation4Jj [K] of the functional is obtained by
perturbingK by4Kj which causes a small disturbance
in the frequenciesλ by4λj and also in the mode-shapes
φ by4φj in Eq. (5). Subtracting from the resulting ex-
pression the original Eq. (5), after some algebraic ma-
nipulations and neglecting the second-order terms, the
following expression yields

ψT M φ = −2(λexp − λ) , (6)

which is defined as the adjoint problem which is used for
the determination of theLagrangemultipliers. Applying
the variational theory [17], the left term is employed to
determine the gradientJ′[K], which is given by

J′[K] = −ψT4K̃ φ , (7)

where4K̃j refers to thejth perturbed stiffness matrix,
i.e.4K̃j = ∂[4K]/∂Kj .



2.4 The conjugate gradient method and
the Stopping Criteria

The iterative procedure based on the conjugate gradient
method is used for the estimation of the unknown stiff-
ness coefficientsK given in the form [12]:

Kn+1 = Kn − βn Pn, n = 0, 1, 2, ...., (8)

Pn = J′n + γn Pn−1, with γ0 = 0, (9)

whereβn is the step size vector,Pn is the direction of
descent vector andγn is the conjugate coefficient vec-
tor. The step size vectorβn, appearing in Eq. (8), is de-
termined by minimizing the functional vectorJ[Kn+1]
given by Eq. (4) with respectβn. The discrepancy prin-
ciple [15] for the stopping criterion is taken as

J[Kn+1] < ε2. (10)

whereε2 = N σ2, andσ is the standard deviation of the
measurements errors.

2.5 The Solution Algorithm

The procedure for the adjoint method can be summa-
rized as:

Step 1: Choose an initial guessK0 – for example,
K0 = constant.

Step 2: Solve the direct eigenvalue problem [Eq. (1)],
to obtainλ.

Step 3: Solve the adjoint problem [Eq. (6)], to obtain
theLagrangemultiplier vectorψ.

Step 4: Knowingψ, compute the gradient function vec-
tor J′(K) from Eq. (7).

Step 5: Compute the conjugate coefficient vectorγ n.

Step 6: Compute the direction of descent vectorPn

from Eq. (9).

Step 7: Setting4K = Pn, solve the sensitivity prob-
lem [Eq. (3)], to obtain4λ.

Step 8: Compute the step sizeβn.

Step 9: ComputeKn+1 from Eq. (8).

Step 10: Test if the stopping criteria, Eq. (10), is satis-
fied. If not, go to step 2.

Concerning the detection and assessment of dam-
age in a specific structure, it has been observed that the
application of the standard Variational Method is em-
ployed providing excellent estimation results only when
both the structure presents a small number of degrees
of freedom and small size damages are to be evaluated.

When these conditions are not satisfied, it has been no-
ticed that the initial guess choice becomes more deci-
sive and according the choice this iterative procedure
could not converge. To overcame this difficulty a new
approach has been proposed, where the Genetic Algo-
rithm (GA) method is used to generate a primary solu-
tion which is employed as the initial guess for the con-
jugate gradient method. This new approach could be
inserted in the above procedure as the newStep 1.

2.6 The Stochastic Method – Genetic Al-
gorithm

Genetic algorithms are essentially optimization algo-
rithms whose solutions evolve somehow from the sci-
ence of genetics and the processes of natural selection -
the Darwinian principle. They differ from more conven-
tional optimization techniques since they work on whole
populations of encoded solutions, and each possible so-
lution is encoded as a gene.

The most important phases in standard GAs are se-
lection (competition), reproduction, mutation and fitness
evaluation. Selection is an operation used to decide
which individuals to use for reproduction and mutation
in order to produce new search points. Reproduction or
crossover is the process by which the genetic material
from two parent individuals is combined to obtain one
or more offsprings. Mutation is normally applied to one
individual in order to produce a new version of it where
some of the original genetic material has been randomly
changed. Fitness evaluation is the step in which the
quality of an individual is assessed [9].

The application of GA method to solve the problem
of damage identification is also a minimization problem,
as well as the gradient conjugate method. The same
functional form, or fitness function, given by Eq. (4),
is employed

J[K] =
∥∥λexp − λ

∥∥2

2
.

In this GA implementation, the algorithm operates on a
fixed-sized population which is randomly generated ini-
tially. The members of this population are fixed-length
and real-valued strings that encode the variable which
the algorithm is trying to optimize (K). The fixed popu-
lation size has been taken as 100 individuals, the mu-
tation probability has been taken as 25% and a fixed
maximal generation number of 5000 has been adopted
as stopping criteria for the GA method.

Next, the evolutionary operators employed in this
work are presented.



– Tournament Selection [14]

bigger:=rand; smaller:=rand; val:=0.75;
if (rand < val) then

position:=smaller;
else

position:=bigger;
endif

whererand is a random number from [0,1] with uniform
distribution,smaller is the better fitness individual and
bigger is the worse fitness individual.

– Arithmetic Crossover [13]

A crossover operator that linearly combines two parent
chromosome vectors,x andy, to produce two new off-
spring according to the following equations:

z1 = a × x+ (1− a) × y ,

(11)

z2 = (1− a) × x+ a × y ,

wherea is a real weighting factor in [0,1] which has
been taken asa = 0.5 in this work.

– Non-uniform Mutation [13]

This mutation operator is defined by

x′i =
{
xi +4(t, lsup − xi) if a digit is 0,
xi −4(t, xi − linf ) if a digit is 1,

(12)

such that

4(t, y) = y
[
1− rand(1−

t
T )b]

,

whererand is a random number from [0,1] with uni-
form distribution,T is the maximal generation number,
t is the current generation number, andb is a system
parameter determining the degree of non-uniformity.

– Epidemical Strategy [3]

This operator is activated when a specific number of
generations is reached without improvement of the best
individual. When it is activated, all the individuals are
replaced, and only the best-fit individuals remain. At
the present work, the new individuals have been gener-
ated randomly, just as the initial population, and 80% of
the current population have been substituted, preserving
only 20% of this original population, the best individu-
als.

3 Results and Discussion

In this work an alternative hybrid approach has been
used to solve the damage identification problem involv-
ing the estimation of the unknown stiffness parameters.
In order to evaluate the capability of this new approach
three different structures have been considered: a 10-
DOF spring-mass system, a 3-bay truss structure (12-
DOF) obtained from a finite element model of bar and a
20-DOF beam structure obtained from a finite element
model of beam. In order to generate a damaged struc-
ture a reduced value of some stiffness parameters have
been imposed on the discretization model.

The experimental data (measured frequencies) have
been obtained from the exact solution of the eigenvalue
problem (noiseless data) and also by adding a random
perturbation (noisy data),

λexp = λ (1 + σR) , (13)

whereσ is the standard deviation of the errors andR
is a random variable from a normal distributionR ∼
Normal(0;1). For numerical purposes, it has been
adoptedσ = 1%. The stopping criterion has been set
by usingε2 = 10−10 for the noiseless case. The stop-
ping criterion has been set by using Eq. (10) for the
noisy case.

Also, the comparison between the estimated and ex-
act values has been done through the use of the damage
factor, defined as

DFi =
Ku

i −Kd
i

Ku
i

i = 1, . . . , N (14)

whereKu
i andKd

i are the undamaged and damaged
parameters, respectively. The numerical results have
been obtained considering no prior information about
the functional form of the unknown quantities, and the
initial guess has been provided by the GA method.

3.1 The Spring-mass system

The parameters which define the undamaged configura-
tion of the spring-mass, Figure 1, are taken as:Mi =
10.0 kg, andKi = 2 × 105 N/m, wherei = 1, . . . , 10.
The following damage configuration has been consid-
ered: a 10% damage over the element 1; 25% over the
element 3; 15% over the element 4; 5% over the ele-
ment 5; 30% over the element 7; 20% over the element
8 and a 10% damage over the element 10. All the oth-
ers elements have been assumed as undamaged for the
generation of the experimental data.

Figure 4 shows estimated and exact damage factor
values, for (a) noiseless and (b) noisy experimental data,
respectively. Perfect damage estimations are obtained



for noiseless data and even for noisy data very good es-
timations are obtained.
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Figure 4: Estimated damage factor for the spring-mass sys-
tem: (a) noiseless data, (b) noisy data.

3.2 The Truss Structure

The truss structure considered here, Figure 2, is com-
posed by 12 aluminum bars (ρ = 2700 kg/m3 and
E = 70 GPa) with a square cross section areaA =
9.0× 10−4 m2, where the nondiagonal elements are1.0
m long. For this numerical example it has been used
the finite element method to calculate the mass and the
stiffness matrices that appear in Eq. (1), note that for this
example one finite element for each bar has been used.
The following damage configuration has been consid-
ered: a 15% damage over the element 2; 5% over the
element 4, 30% over the element 7; 10% over the ele-
ment 10 and a 20% damage over the element 12. All the
others elements have been assumed as undamaged.

Figure 5 shows estimated and exact damage factor
values, for (a) noiseless and (b) noisy experimental data,
respectively. Perfect damage estimations are obtained
for noiseless data and even for noisy data very good es-
timations are obtained.
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Figure 5: Estimated damage factor for the 3-bay truss struc-
ture: (a) noiseless data, (b) noisy data.

3.3 The Beam Structure

The numerical example considered here is a beam-like
structure, Figure 3, modeled with 10 beam finite ele-
ments and clamped at one end. The aluminum beam

(ρ = 2700 kg/m3 andE = 70 GPa) presents the fol-
lowing properties: rectangular cross section areaA =
4.5×10−5 m2, lengthL = 0.43m and inertial moment
I = 3.375 × 10−11 m4. For this numerical example it
has been used the finite element method to calculate the
mass and the stiffness matrices that appear in Eq. (1),
note that for this example one finite element for each
bar has been used. The following damage configuration
has been considered: a 20% damage over the element 2;
10% over the element 5; 15% over the element 9 and a
5% damage over the element 10. All the others elements
have been assumed as undamaged.

Figure 6 shows estimated and exact damage factor
values, for (a) noiseless and (b) noisy experimental data,
respectively. Perfect damage estimations are obtained
for noiseless data and good estimations are obtained
when noisy experimental data is used.
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Figure 6: Estimated damage factor for the beam structure: (a)
noiseless data, (b) noisy data.

4 Final Remarks

The evaluation of the conjugate gradient method with
the adjoint equation on the estimation of stiffness co-
efficients (damage identification) has been considered.
Three simple dynamical system have been adopted to
verify the feasibility of the variational approach consid-
ering damage scenarios and employing synthetic noise-
less and noisy frequencies measurements. Perfect re-
constructions have been achieved for the noiseless data,
and satisfactory estimations for the noisy data.

Futute works include more realistic structures, as
well as other inverse vibration problems, such as damp-
ing matrix identification.
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