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The main goal of this work is to develop a new efficient image restoration algorithm based on
projections onto convex sets technique (POCS), which uses some a priori information about the
images in the form of restriction sets. The proposed convex formulation used in this work is the
prototype image contraints, which was obtained by the Modified Inverse Filter, limited amplitude and
by the Modified Row-Action Projection (MRAP) algorithm. A simulation experiment was performed
using a high resolution IKONOS image, which was blurred and decimated according to
CBERS-2 CCD camera specifications. In order to allow quantitative analysis, the ISNR
and the Universal Image Quality Index methodologies were applied. An original CBERS-2
CCD image was also used to evaluate the proposed restoration method. The restored images show
a good visual performance, which can also be observed by the autocorrelation coefficients, which
indicate high frequency enhancement.
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1 Introduction

The amount of satellite imagery has widely increased with the new sophisti-
cated onboard imaging systems. These sensors provide high quality data and
allow a more accurate understanding of on ground phenomena.

Among this new generation of satellites, the CBERS project (China-Brazil
Earth Resources Satellite) was jointly developed by Brazil and China and its
mission was designed to create four satellites to capture high-resolution images
of the Earth by using panchromatic and multispectral detectors. The CBERS-2
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satellite is the second Earth observation satellite developed with this coopera-
tion, and it carries three sensors: Wide Field Imager (WFI), High Resolution
CCD Camera (CCD) and Infrared Multispectral Scanner (IR-MSS). The CCD
Camera has 4 spectral bands and provides images of 113 km wide strips with
sampling rate of 20 meters at nadir Bensebaa et al. (2003).

However, remote sensing images still have limitations. Therefore, the images
need to be processed to better reflect its radiometric and geometric quality.
One of the radiometric correction techniques is image restoration. Its goal is
the reconstruction or recovery of the degraded image using a priori knowledge
of the degradation phenomenon. The optical defocussing, combined with the
analog to digital converter and any corrections necessary to compensate for in-
ternal detector problems results in an image where the effective instantaneous
field of view (EIFOV) is different from the nominal resolution value, resulting
in a blurring effect.

These distortions can be approximated by a gaussian blur model, which
characterizes the effect of the imperfect optical focus of the lens, eletronic
filter and detector size. This model is similar to a low-pass filter, which pro-
duces an image with blurred appearance. The burring effect, however, can be
compensated by a restoration filter that is applied in the image to reduce its
blurred appearance.

The problem of satellite image restoration arises from the characteristics of
the modulation transfer function (MTF) of optical instruments, either multi-
spectral scanners or imaging spectrometers. In fact, the radiance signal cannot
be sampled at the Nyquist frequency (frequency at which the MTF holds the
value of 0.5), because the heavy tailed MTF would introduce an unacceptable
amount of aliasing. Therefore the image is slightly oversampled (typical MTF
value at cutoff frequency is 0.2 for multispectral sensors; even lower, e.g., 0.1,
for very high resolution panchromatic images). Hence, the images may have a
blurred appearance, that is likely to compromise both visual and automated
classification tasks. Restoration of multispectral images is crucial because the
majority of methods tend to increase the noisiness of the data, thus lowering
its radiometric quality, i.e., the SNR.

A large number of image restoration methods have been developed for sev-
eral applications, like Inverse and Wiener Filter, regularization techniques and
MAP techniques. Some works oriented towards remote sensing can be cited:
Fonseca et al. (1993) developed the Modified Inverse Filter, which is a regu-
larized version of the Inverse Filter to restore and interpolate Landsat images;
Wu and Schowengerdt (1993) dealt with the restoration of images contain-
ing mixed pixels; Bhaskar et al. (1994) tackled the problem of lens defocus
and linear motion blur in Space Shuttle images; Reichenbach et al. (1995) de-
scribed the design of small convolution kernels for the restoration and recon-
struction of Advanced Very High Resolution Radiometer (AVHRR) images;
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Boo and Bose (1997) applied image restoration techniques to multispectral
images; Jalobeanu et al. (1993) used complex wavelet packets to deconvolve
degraded images; Likhterov and Kopeika (2002) dealt with the problem of vi-
bration in images with a differential scheme; Chen and Xanju (1994) restored
SAR images using the technique of Independent Component Analysis; Papa et
al. (2005) compared two POCS techniques: the Row-Action Projetion Method
(RAP) and the Simultaneous Iterative Reconstruction Technique (SIRT) to
restore CBERS-1 images.

The POCS method uses a priori knowledge about the image or the imaging
system. The key to effectively apply this kind of algorithm is to define the
appropriate sets, compute the projection onto these sets, and incorporate the
projectors into an image processing algorithm designed to meet some criteria
implied by the constraints (Stark 1998).

In that way, the main goal of this work is to design a new ef-
ficient image restoration algorithm based on POCS methodology.
To the best of our knowledge, this paper is the first application of
projections onto convex sets technique for the restoration of remote
sensing images.

In order to quantitatively evaluate the results, we used the well
known improvement signal to noise ratio, ISNR, and the recent
approach Universal Image Quality Index Wang and Bovik (2002).
Our work is the first using this metric in this area of knowledge. The
remainder of the paper is organized as follows. Section 2 presents the
image restoration formulation. Section 3 contains the POCS theory.
Section 4 discusses the experimental results and Section 5 provides
some conclusions.

2 Image Restoration

The image restoration problem reported here is to obtain an estimate of an
image f from its degraded and noisy observation g which is the result of a
linear imaging system modeled by

g = Hf + n (1)

where H is the convolutional degradation operator, denoted here as the block
circulant matrix, and n denotes the additive observation noise (Gonzalez and
Woods 2001). Vectors g, f and n correspond to lexicographical ordering of the
respective two-dimensional fields by rows, with dimension M, and columns,
with dimension N. Consequently, these vectors and matrix H have, respec-
tively, MNx1 and MNxMN dimensions.
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The image restoration can be understood as a technique used to correct the
distortions produced by the imaging systems. The undesirable effect over the
image is detail smoothing and the correction of this problem is based on the
sensor caracteristics. Therefore, for each satellite, sensor and spectral band an
adjusted filter needs to be used.

2.1 Modified Inverse Filter

Equation (1) can be written in the Fourier domain as

G = HzF +N, (2)

where G, F and N are the Discrete Fourier Transform (DFT) of the degraded
image g, the original image f and the additive noise n, respectively. Matrix
Hz is the DFT of the zero padded point spread function, which models the
limitations of the sensor. In the absence of noise, Equation (2) can be rewritten
as

G = HzF, (3)

and an obvious choice for the Inverse Filter Î is:

Î =
1
Hz

. (4)

However, in the presence of noise, Equation (4) is unstable. The instability
arises from the fact that restoration is essentially an ill-conditioned problem.

The Modified Inverse Filter, also called Transfer Function Compensation,
approximates the Inverse Filter and at the same time attempts to control the
problems associated with it. The idea is to choose a desired function D as the
response of the system that would alleviate the ill-conditioning effects (Fonseca
et al. 1993):

D = HzW, (5)

where W is the restoration filter. The function D should have a better behavior
than the function W. A constant value for D yields the Inverse Filter. Once D
is selected, W can be estimated. Since we have a separable PSF for directions
X and Y, also called across-track and along-track, respectively, W, D and Hz
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will be treated as 1-D functions. In that way, W can be written as

W (u) =

{
D(u)
Hz(u) |u| ≤ uc,

0 otherwise
(6)

where u is the frequency and uc is the system cut-off frequency.
The desired response D(u) used in this work is

D(u) =

{
1 0 ≤ u ≤ uw,

0.5
(
1 + cos

[
π(u−uw)
(uc−uw)

])
uw < u ≤ uc

(7)

where uw is the frequency for which the Modulation Transfer Function is 0.5
(Fonseca et al. 1993).

3 POCS Technique

Some problems can be described in terms of convex sets constraints. POCS
(Projections onto Convex Sets) methods can be used to find a common vector
f which satisfies these constraints, each of which forms a convex set (Stark
1998). If we suppose that we have a priori information constraints about the
image, this common vector f lies in the intersection of all the convex sets

f ∈ C0 =
m⋂

i=1

Ci (8)

where the ith closed convex set Ci ∈ � denotes the ith constraint or a priori
knowledge on f and m is the number of those sets.

If the sets Ci(i = 1, . . . ,m) are closed and convex, and their intersection, C0

, is non-empty, the sucessive projections on the sets will converge to a vector
that belongs to this intersection.

This vector can be found by alternatively projecting it onto the convex sets
Ci via corresponding projecting operator PCi

as

f (k+1) = PCm
PCm−1 . . . PC1f(k), (9)

where PCi
means the projection onto convex set Ci ∈ � in the kth iteration.

The initial guess f (0) can be any vector in �.
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3.1 Convex Restriction Sets

3.1.1 Row-Action Projection - RAP. The image restoration linear model
can be described by Equation (10)

g = Hf, (10)

which is similar to Equation (1), but without the noise term, where each line
of g denotes an equation that can be represented by a hyperplane, which is a
convex set, and its solution can be found by the POCS method.

If the intersection of these convex sets is non-empty, the main goal is to find
this intersection set, which will contain the solution of the restoration problem.
The POCS algorithm to obtain the solution of the linear system described
by Equation (10) is called Row-Action Projection (RAP) or ART (Algebraic
Reconstruction Technique) in tomography, which was initially developed by
Kaczmarz in 1937 (Mammone 1992). The POCS method is a generalization
of RAP, where the hyperplanes may be substituted by other types of convex
sets (Kuo and Mammone 1992). The method converges to the hyperplanes
intersection, and the RAP equation is given by

f (k+1) = f (k) + λ
gp − ht

pf
k

‖hp‖2
hp, (11)

where λ is the relaxation parameter, gp is the pth element of vector g, ht
p

is the pth row of matrix H and f (k+1) is the f (k) projection onto the cor-
responding hyperplane. The iteration index is related to the equation index
by p = k(mod MN ), indicating that each row is used multiple times in the
restoration process. Thus, by definition, the Pix projection of a vector x onto
Ci set is the point in Ci closest to x. In that way, the Pix projector on a linear
system restriction set, based on Equation (11) is

Pix = PCR
= f (k) + λ

gp − ht
pf

k

‖hp‖2
hp. (12)

The success of RAP algorithm implementation depends on the initial condi-
tion, iteration number and relaxation parameter λ.

Modified RAP. Imaging systems are generally designed so that the degra-
dation matrix H is sparse. In addition, this degradation operator is a block
Toeplitz matrix in the shift-invariant case and will represent a 2-D linear con-
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volution given by

g(i, j) =
∑
m

∑
n

h(i−m, j − n)f̂(m,n). (13)

The sparseness of the matrix H is due to the fact that the size of the PSF is
genererally much smaller than the size of the image.

Tha RAP algorithm given by Equation (11) can be implemented by consid-
ering only a subregion of the 2-D image f̂ that is determined by the size of
the 2-D support of the PSF. In this case, every row of the matrix H in Equa-
tion (10) contains only NxN entries, where N denotes the PSF size. Each
pixel g(i, j) of the blurred image g corresponds to a specific equation of the
set given by Equation (11). Hence, the 2-D formulation of the RAP algorithm
can be written as

f̂ (k+1)(m,n) =

{
f̂ (k)(m,n) + λ ε(i,j)

‖h(i,j)‖2h(i−m, j −m; i, j), if f̂ (k)(m,n) ∈ Sh(i,j),

f̂ (k)(m,n) otherwise,
(14)

where

ε(i, j) = g(i, j) −
∑

m,n∈Sh(i,j)

h(i−m, j − n; i, j)f̂ (k)(m,n), (15)

‖h(i, j)‖2 =
∑

m,n∈Sh(i,j)

h(m,n; i, j)2, (16)

and Sh(i,j) is the support of the PSF centered at pixel g(i, j). In that way, the
Modified RAP (MRAP) algorithm can be implemented as a 2-D convolution.
That is, each projection operator is local, requiring only the neighborhood
Sh(i,j) of the image f̂ , at each iteration (Kuo and Mammone 1992). The MRAP
projection operator is based on Equation (14), just changing f̂ (k+1) of the
image by PCMRAP

.

3.1.2 Limited Amplitude Restriction Set. This set describes the upper
and lower bounds for the image pixels values to be restored. Equation (17)
describes this convex set, where α and β are the lower and upper bounds
respectively and Ω is the support region of the image:

CLA = {s : s ∈ S and α ≤ s(k, l) ≤ β ∀ k, l ∈ Ω} , (17)
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where S is a Hilbert Space. The projection operator onto the set CLA is de-
scribed as

PCLA
x(k, l) =


α, if x(k, l) < α

x(k, l), if α ≤ x(k, l) ≤ β
β, if x(k, l) > β.

(18)

Since it is known that the values of an image need to be in the interval [0, 255],
in this work we used the following values: α = 0 and β = 255.

3.1.3 Prototype Image Restriction Set. This restriction set is based on
prototype images, which can be obtained as a result of applying a predeter-
mined operator to the observed image. In this case, the operator and the
bound, which limits the variation of the restored image from the prototype,
are the two defining values of a prototype constraint.

In that way, a prototype image constraint set can be defined by

CPI =
{
y : ‖q − y‖2 ≤ δ

}
, (19)

where q and y are the prototype image and an arbitrary member of CPI ,
respectively, and δ denotes the bound on the variation of y from the prototype
(Sezan and Trussel 1991).

Prototype images are usually obtained from the observed image as result
of applying a predetermined operator, i.e., q = Og . In this case, the general
form described by Equation (19) can be rewritten as

CPI =
{
y : ‖Og − y‖2 ≤ δ

}
. (20)

The bound δ can be written as

δ = cψ, (21)

where c ≥ 0 is determined by the confidence which we would like to have about
the ideal solution in the set described by Equation (19), and ψ is the expected
variation given by

ψ = E
{
y : ‖WG− F‖2 ≤ δ

}
. (22)

W is the Modified Inverse Filter, G and F are the degraded and estimated
images, respectively. Image F was obtained through the convolution between
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G and the PSF, corresponding to an average filter (Sezan and Trussel 1991).
The projection of an arbitrary vector q onto CPI is given by

y∗ = CPIq ←→ Y ∗
{
WG−√δ ∆

|∆| if
∣∣∆2

∣∣ > δ

q otherwise,
(23)

where ∆ = WG−Q, and Q is the FT of q.

4 Experimental Results

4.1 Simulation Tests

In order to evaluate the results, the following methodology was
used. A panchromatic image from IKONOS satellite (1 meter) was
processed by a low pass filter similar to the CBERS-2 CCD MTF.
Afterwards, the output image was decimated in such a way that
the resulting image exhibited approximately the same pixel spacing
as CBERS-2 (20 meters). Finally, an amount of noise was added, to
complete the degradation process. We intended that this final image,
that we call phantom, to be very similar to a true CBERS-2 image.
At the same time, we produced a reference image by resampling the
panchromatic image to the same CBERS-2 spatial resolution.

In that way, the IKONOS image used in the experiments cov-
ers the area of São José dos Campos,Brazil, shown in Figure (1).
This image is 6920x3689, 8 bits/pixel. The blurring effect was ob-
tained by applying a bidirectional Gaussian PSF corresponding to
CBERS-2 band 3, and by adding zero mean Gaussian noise with
σ2 = 10, where σ2 is the noise variance. Figures (2) and (3) display,
respectively, the reference and phantom images. The standard de-
viations used to generate the gaussian function are σx = 23.30 and
σy = 17.66, corresponding to across-track and along-track satellite di-
rections, respectively. More details about the CBERS-2 radiometric
characteristcs can be found in Fonseca et al. (2004).

Although the convergence of the POCS is guaranteed, since the intersection
of all sets is non-empty, in pratice we chose to use a stop criterion, given by∥∥∥f̂ (n) − f̂ (n−1)

∥∥∥∥∥∥f̂ (n−1)
∥∥∥ ≤ ε (24)

where f̂ (n) corresponds to an estimate of the image at ith step (Stark 1998).
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Figure 1. Original IKONOS panchomatic image.

The restored images were evaluated through the ISNR (improvement signal
to noise ratio), given by

ISNR = 10 log10


∑

i,j [g(i, j) − f(i, j)]2∑
i,j

[
f̂(i, j) − f(i, j)

]2

 (25)

where g(i, j), f(i, j)and f̂(i, j) are, respectively, the degraded, original and
restored image. Another approach used to evaluate the restoration algorithm
was the Universal Image Quality Index (Wang and Bovik 2002), given by

U =
4σxyxy(

σ2
x + σ2

y

) [
(x)2 + (y)2

] (26)

where x, y, σ2
x and σ2

y are the average and variance of the original and restored
images, respectively, and σxy is the correlation coefficient between x and y. The
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Figure 2. Reference image obtained by decimating the IKONOS panchromatic image to the same
CBERS-2 pixel size.

dynamic range of U is [−1, 1]. The best value (1) is achieved if and only if
y = x.

The degraded images were restored using the POCS algorithm below:

f (k+1) = PCLA
PCP I

PCMRAP
f(k), (27)

where PCLA
, PCP I

and PCMRAP
are the projections onto the limited amplitude,

prototype image and MRAP constraint sets, respectively.
The projection operator PCMRAP

, described by Equation (14), can be ap-
proximated by Inverse Filter or Pseudoinverse solution, when H is a nonsquare
matrix, i.e.,

limk→∞f (k) = H†g, (28)

where H† denotes the pseudoinverse of H (Mammone 1992).
We know that the MRAP algorithm is based on Equation (10), which does

not consider the noise term, like Equation (1). In that way, there is a need to
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Figure 3. Phantom image obtained by degrading and decimating the IKONOS panchromatic
image.

control the effect of ill-conditioning by adding to the algorithm two restriction
sets: PCP I

and PCLA
, obtaining Equation (27). Figure (4) shows the result of

applying only the MRAP algorithm to the phantom image, which is described
by

f (k+1) = PCMRAP
f(k). (29)

Since the linear system given by Equation (1) does not have intersection
due to noise term, some artifacts located on the high frequencies regions of
the image can be observed. This problem demonstrates the numerical instabil-
ity that arises from inverse and pseudoinverse filters. Figure (5) displays the
restored phantom image using the algorithm given by Equation (27).

The value that maximized ISNR was obtained using the confidence value
c = 1 (Equation 21) and relaxation parameter λ = 1.5 (Equation 11). The
obtained value was ISNR = 2.0123. For the Universal Image Quality Index
we obtained U = 0.8808.

We demonstrate the validity of the proposed algorithm by applying well-
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Figure 4. Restored phantom image by applying Equation (29).

known methods to CBERS-2 image: Wiener Filter, Modified Inverse Filter
(described in Section 2.1) and POCS algorithm below, named as POCSINV :

f (k+1) = PCP I
f(k), (30)

where the prototype image used in PCP I
was obtained by the Modified Inverse

Filter. Table (1) displays the results. It can be observed that the values ob-
tained by POCSINV were very close to the Modified Inverse Filter results.
The proposed POCS procedure presented better results than those of other
tested methods, both in ISNR and U .

The experimental results were performed by using a computer with the
following characteristics: AMD AThlon XP 2400+ Processor and 512 Mb of
RAM DDR memory. The analysis in terms of computational costs (in seconds)
is presented in the Table (2).

It was expected that the computational costs of the proposed POCS proce-
dure would be greater than those of the other tested methods, since it is an
iterative procedure, compared to one pass procedures of the other methods.
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Figure 5. Restored phantom image.

Algorithm ISNR U
Wiener Filter 1.4456 0.7754
Modified Inverse Filter 1.1334 0.7289
POCSINV 1.1298 0.7103
Proposed POCS 2.0123 0.8808

Table 1. ISNR and Image Quality Index (U) values for Wiener Filter, Modified Inverse Filter, POCSINV

and the proposed POCS procedure applied to phantom image.

4.2 Real Tests

Finally, the POCS algorithm given by Equation (27) was applied to an image
acquired from CBERS-2 CCD camera. The parameters used in the restoration
process to model the bidirecional PSF were σx = 23.30 and σy = 17.66,
corresponding to across-track and along-track satellite directions, respectively
Fonseca et al. (2004). Figures (6) and (7) display, respectively, the original
CBERS-2 CCD and restored images. The CBERS-2 image had its contrast
enhanced for display purposes only.
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Algorithm Computational Time
Wiener Filter 1.33s
Modified Inverse Filter 1.01s
POCSINV 5.33s
Proposed POCS 84.32s

Table 2. Displays computational time of Wiener Filter, Modified Inverse Filter, POCSINV and the pro-

posed POCS procedure applied to phantom image.

Figure 6. Original CBERS-2 CCD image.

The image quality improvement can be observed visually or through the
autocorrelation coefficients, which indicate high frequency enhancement.We
noticed that the curve decreases faster for the restored than for the original
CBERS-2 image. The normalized autocorrelation coefficients, in directions x
and y, were computed using the equations below (Gonzalez and Woods 2001):

γx(k) =
Ax(k)
Ax(0)

, (31)

where

Ax(k) =
1

M(N − k)
M∑

x=1

N−k∑
y=1

f(x, y)f(x, y + k) (32)

and

γy(k) =
Ay(k)
Ay(0)

, (33)
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where

Ay(k) =
1

(M − k)N
M−k∑
x=1

N∑
y=1

f(x, y)f(x+ k, y). (34)

The variables M and N are the image dimensions.
Figures (8) and (9) display, respectively, the original and restored image

normalized autocorrelation coefficients, in both directions, x and y.

Figure 7. Restored CBERS-2 CCD image.
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Figure 8. Normalized autocorrelation coefficients for x direction. The continuous and dotted lines
are, respectively, the coefficients of original and restored CBERS-2 images.
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Figure 9. Normalized autocorrelation coefficients for y direction. The continuous and dotted lines
are, respectively, the coefficients of original and restored CBERS-2 images.

5 Conclusions

We presented a new efficient image restoration method based on POCS tech-
nique. We considered the case where the prototype images are obtained from
the observed image via a predetermined operator, which is the Modified In-
verse Filter. In order to allow quantitative evaluation, a phantom im-
age was obtained by decimating and blurring the high resolution
IKONOS image with the CBERS-2 CCD camera specifications. A
POCS algorithm using the proposed filter, the limited amplitude and the Mod-
ified Row-Action Projection constraints was applied to the phantom image
and observed CBERS-2 CCD image (band 3). The results obtained with low
levels for c and λ were better, with fast convergence (10 iterations). The
ISNR and Universal Image Quality Index values obtained by the
proposed methodology were better than those of other tested meth-
ods. The real experiment showed good visual performance, which can also be
observed through their autocorrelation coefficients. Our main contributions
are the first application of POCS techniques for remote sensing im-
age restoration and the use of the Universal Quality Index in this
area of knowledge.
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