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Resumo. Ege trabaho consdera o problema de transferéncia de oOrbita de um veiculo
espacia com minimo consumo de combustivel, em termos de sdlegdo, implementacéo e testes
numericos das solugdes escolhidas. O principa objetivo € obter as leis de controle para as
manobras necessrias a0 Satélite Brasileiro de Sensoriamento Remoto. Depois de uma
pesquisa hibliogréfica e andise dos trabahos disponiveis, foram selecionados dois métodos
de solucdo do problema. No primeiro, o problema de controle 6timo associado é tratado
numericamente através de um méodo de busca direta combinado com controle sub-6timo
parametrizado. No segundo, o método hibrido é usado e a determinacdo dos valores iniciais
dos multiplicadores de Lagrange (necessarias na resolucdo das equagbes dadas pelas
condigdes necessrias de primeira ordem para um minimo locd) € trandformada num
problema de busca direta Nos dois métodos, a solugdo numérica em cada iteracéo é
reduzida a um problema de programacdo néo-linear, que é resolvida peo método da
projecdo do gradiente. O veiculo egpacid é condderado em movimento Kepleriano
controlado gpenas pelo empuxo, que é assumido de magnitude constante (alta ou baixa) e

operando em modo liga-dediga. Resultados de s mulagdes numéricas sdo agpresentados.

Abstract. In this paper the problem of spacecraft orbit transfer with minimum fud
consumption is congidered, in terms of sdecting, implementing and testing numerica solutions.
The main god isto obtain the control laws for the maneuvers required by the Brazilian Remote
Sensng Sadlite. After a search in the literature and andysis of the results available, one
selects two schemes of solution to the problem. In the first one the associated optima control

problem is numericaly treated by using a direct search approach together with suboptimal



parameterized control. In the second one, a hybrid approach is used where the determination
of the initid vaues of the Lagrange multipliers (to solve the equations given by the first order
necessary conditions for a loca minimum) is transformed in a direct search problem. In both
schemes, the numerical solution of the problem in each iteration is reduced to one of nonlinear
programming, which is then solved with the gradient projection method. The spacecrdft is
supposed to be in Keplerian motion controlled by the thrudts, that are assumed to be of fixed
meagnitude (either low or high) and operating in an on-off mode. Results of Smulations are dso

presented.

1-INTRODUCTION

The remote sensng satdlite is the third Brazilian misson, in a set of four that are
scheduled for the 90's. The objective of thisfird set isto develop technical conditions that can
give to Brazil the capability to build, launch and contral artificia satellites. The complete set is
condtituted of two data collection and two remote sensing satellites. The latter will be put in a
parking orbit by the launcher, and will have the cgpability to go to its find orbit with its own
propulsion system. Smal maneuvers for tationkeeping will aso be required for this mission.

In this paper, from the andyses of the dternatives of solutions available (Prado, 1989:
Prado & Rios-Neto, 1993), results of the implementation and tests of two methods sdected
to solve the problem of sending a vehide from one orbit to another with minimum fue
expenditure are shown. The methods can be used ether for large orbit trandfer (as a
geosynchronous satdllite launched by the Space Shuttle in a low parking orbit) or for small
orbit correction (as the maneuvers required for station-keeping of a space station or aremote
senang sadlite). The objective isto find the best way (in terms of minimum fue expenditure)
to accomplish the maneuvers required by the firgt Brazilian Remote Senaing Satellite.

One of the firg solutions of this problem was obtained by Hohmann (1925), using an
impulsve gpproximation, the so cdled "Hohmann Transfer”. There are many solutions
proposed with this type of gpproximation, like the "Bi-Elliptical Transfer" (Hodker & Silber,
1959) and the "Parabolic Transfer". Later, a great attention has been gven to the more

redigtic gpproach, where the thrust is considered finite. Many researchers proposed solutions



for this case as Tsen (1953), Lawden (1955), Biggs (1978; 1979), Cebalos & Rios-Neto
(1981), Rios-Neto & Bambace (1981).
From the andysis of the dterndtives available (Prado, 1989), two choices were made:
i) Sub-optima parametrization;
i) Optima contral (hybrid approach);
and they were explored to develop procedures valid for high or low thrust and for large or
smdl transfers.
Numericd results obtained in the smulations of the orbit trandfer phase of the first

Brazilian remote sensing satellite are presented.

2- DEFINITION OF THE PROBLEM

The basic problem discussed in this paper is the problem of orbit transfer maneuvers.
The objective of this problem is to modify the orbit of a given spacecraft. In the case
congdered in this paper, an initid and a find orbit around the Earth is completely specified.
The problem is to find how to transfer the spacecraft between those two orbits in asuch way
that the fud consumed is minimum. There is no time redriction involved here and the
spacecraft can leave and arrive at any point in the given initid and find orbits. The maneuver is
performed with the use of an engine thet is able to ddiver a thrust with constant magnitude and
vaiable direction. The mechanism, time and fud consumption to change the direction of the

thrust is not considered in this paper.



3- MODEL USED
The spacecraft is supposed to be in Keplerian motion controlled only by the thrusts,
whenever they are active. This means that there are two types of mation:
i) A Keplerian orhit, that is an orbit obtained by assuming that the Earth's gravity (assumed to
be a point of mass) is the only force acting on the spacecraft. This motion occurs when the

thrusts are not firing;
if) The motion governed by two forces: the Earth's gravity field (dso assumed to be a point of
mass) and the force ddlivered by the thrusts. This motion occurs during the time the thrusts are
firing.

Figura 1 shows this Situation. F. is the gravitationd force of the Earth (assumed to be a

point of mass) and F, is the force given by the thrusts.
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Figural - Forces acting in the satdllite



The thrugts are assumed to have the following characteridtics
i) Fixed magnitude: The force generated by them is dways of constant magnitude during the
maneuver. The value of this congant is a free parameter (an input for the agorithm developed
here) that can be high or low;
if) Congtant Ejection Ve ocity: Meaning that the velocity of the gases gected from the thrustsis
constant. Theimportance of thisfact can be better understood by examining Prado (1989);

iii) Either free or congtrained angular motion: This means that the direction of the force given by
the thrusts can be modified during the transfer. This direction can be specified by the angles A
and B, cdled pitch (the angle between the direction of the thrust and the perpendicular to the
line Earth-spacecraft) and yaw (the angle with the orbital plane). The motion of those angles
can be free or condrained (congtant, linear variations, forbidden regions for firing the thrusts,
etc.);

iv) Operation in on-off mode: It means that intermediate Sates are not dlowed. The thrusts are
ether & zero or maximum leve dl thetime,

The solution is given in terms of the time- higtories of the thrusts (pitch and yaw angles)
and fud consumed. Severad numbers of "thrugting arcs' (arcs with the thrusts active) are tested
for each maneuver.

Instead of time, the "range angl€' (the angle between the radius vector of the
gpacecraft and an arbitrary reference line in the orbita plane) is used as the independent

vaiadle

4 - FORMULATION OF THE OPTIMAL CONTROL PROBLEM
Thisisatypicd optima control problem, and it is formulated as follows:
Objective Function: M,
where M, isthe fina mass of the vehicle and it has to be maximized with respect to the
control u(.), where u(.) is any continuous function;
Subject to: Equations of motion, condraints in the sate (initid and find orbit) and
control (limitsin the angles of "pitch" and "yaw", forbidden region of thrusting and others);



And given: All parameters (gravitationd force fidd, initid vaues of the satellite

and others)

5- SUBOPTIMAL METHOD

In this gpproach (Prado, 1989; Biggs, 1978), a linear parametrization is used as an

approximation for the control law (angles of pitch (A) and yaw (B)):
A=Ay +A*(Xx-Xxg) (@)
B=By+B*(x-xg) 2
where Ay, B, A, B' are paraneters to be found, x is the instantaneous range angle and xg is
the range angle when the motor is turned-on.

These equations are the mathematica representation of the "a priori” hypothesisthat A
and B vay linearly with the "range angle’ x. This is done to explore the possbility of having a
mode easy to implement in terms of hardware devel opment.

Considering these assumptions, there is a set of sx variables to be optimized (start and
end of thrusting and the parameters Aq, By, A, B') for each "burning arc” in the maneuver.
Note that this number of arcsis given "apriori" and it isnot an "output” of the dgorithm.

By using parametric optimization, this problem is reduced to one of nonlinear

programming, which can be solved by severad standard methods.

6- OPTIMAL METHOD

This approach is based on Optima Control Theory (Bryson & Ho, 1975). First order
necessary conditions for alocal minimum are used. These eguations can give us the following
informetion:
a) One sat of differentid equations for the Lagrange multipliers. They are cdled "adjoint
equaions’. Together with the equations of motion they complete the set of differentid
equations to be integrated numericdly at each step;
b) The "Transversdity Conditions', that are the conditions to be sdisfied by the Lagrange
multipliers at the find time. Together with the condraints of the trandfer (dart in a point that
belongs to the initid orbit and finishes in a point that belongs to the find orbit) these end



conditions complete the set of boundary conditions to be satisfied. This problem is known as
the "Two Point Boundary Vdue Problem” (TPBVP), because there are boundary conditions
to be satisfied at the beginning and &t the end of the intervd of integration;

¢ Maximum Principle of Pontryagin. This principle says that the magnitude of the scdar
product of the Lagrange multiplier by the right- hand side of the equations of motion hasto be a
maximum. Working out the algebra involved we will end up with a condition for the angles of
"pitch" and "yaw" that can be solved to give ustheir numerica vaues a each time.

Then, the problem becomes a problem of nonlinear programming with finite
dimengion. This problem is then solved using the following agorithm:

i) Choose an egtimate for the initid and find "range angle’ (the variable that replaces the time
as the independent variable) and for the initid values of the Lagrange multipliers;

i) Integrate the adjoint equations and the equations of maotion smultaneoudy, obtaining the
indantaneous vaues of the "pitch® and "yaw" angles from the Maximum Principle of
Pontryagin;

iii) At the end of the maneuver, verify if the boundary conditions are satisfied. If they are not
sdtisfied update the initia vaues following the procedure described in the next session and go
back to step i. If the congtraints are satisfied the procedure is finished.

Thistrestment is caled hybrid approach (Biggs, 1979) because it uses direct searching
methods for minimization together with first order necessary conditionsfor aloca minimum.

With this approach, the problem is again reduced to parametric optimization, asin the
suboptima method, with the difference that the angle's parameters are replaced by the initia
vaues of the Lagrange multipliers, asthe varigbles to be optimized.

The main difficulty involved in this method is to find good firgt initid guesses for the
Lagrange multipliers, because they are quantities with no physical meaning. This problem can
be solved by using the method proposed by Biggs (1979). He proposes a transformation
cdled "adjoint-control”, where one guess control angles and its rates at the beginning of
thruging indead of the initid vaues of the Lagrange multipliers. A st of equdions is
developed that dlow to obtain the Lagrange multipliers from the vaues of the initid angles of
"pitch" and "yaw" and its rates. More details are available in Prado (1989) and Biggs (1979).



By performing this transformation it is eesier to find agood initid guess, and the convergence is
fagter. This hybrid gpproach has the advantage that, snce the Lagrange multipliers remain
congtant during the "ballidtic arcs' (arcs that have the thrusts inactive), it is necessary to guess
vaues of the control angles and its rates only for the firg "burning arc”. This transformation
reduces the number of varigbles to be optimized and, in consequence, the time of

convergence.

7-NUMERICAL METHOD

To solve the nonlinear programming problem, the gradient projection method was
used (Bazarra& Shestty, 1979; Luemberger, 1973).

It means that at the end of the numericd integration, in each iteration, two steps are
taken:
i) Force the system to satisfy the congtraints by updating the control function according to:

U, =u, - RET[RERET] 3

wheref isthe vector formed by the active congtraints,

i) After the condraints are satisfied, try to minimize the fuel consumed. Thisis done by making

astep given by:
ui+1:ui+a|3_| (4)
where:
_ )
4= 9% d ®)
d=-(1- R RET ' )Ra) ©)

where | is the identity matrix, d is the search direction, J is the function to be minimized (fue
consumed) and g is a parameter determined by a trid and error technique. The possible
sngularities in equations (3) to (6) are avoided by choosing the error margins for tolerande in
convergence large enough.

This procedure continues until |u; ,, - u;| < e in both equations (3) and (4), where e is

aspecified tolerance.



Thedgorithm was coded in single precison FORTRAN 1V, and the cdculations were
performed a INPE's Burroughs 6800 compuiter.

8- VALIDATION OF THE ALGORITHM
After deriving and coding the agorithm, severa smulations were performed to vaidate
the software. Two examples were used from Biggs (1978; 1979), one for the suboptima and
one for the optima method.
The detailed results are omitted here to save space, but they are available in Prado
(1989). The difference between the results found by the dgorithm developed and the literature
is usudly less than 3% for the parameters involved in the solution and less than 0.8% in fue

consumed, which isthe most important parameter.

9-SIMULATIONSFOR THE BRAZILIAN REMOTE SENSING SATELLITE
For this mission, two kinds d maneuvers will be necessary (in both phases the fue
used is Hydrazine):
i) Initid transfer phase, where the objective is to send the satdlite from the parking
orbit to the nomind orbit;
i) Station-keeping, where the objective isto keep the satdlite near the nomind orbit.
The transfer phase will occur, in the worst case, with the following data (Rama Rao,
1984):
i) Initid orbit: Semi-mgor axis of 6768.14, eccentricity of 0.00591, inclination of 97.44
degrees, ascending node of 67.27 degrees, agument of perigee of 97.66 degrees, mean
anomaly of 270 degrees,
i) And orbit: Semi-major axis of 7017.89, eccentricity of 0.000, inclination of 97.94 degrees,
free ascending node, free argument of perigee, free mean anomaly;
iii) Initid mass of 170 kg;
iv) Thrust level of 4.0 N.
The gation- keeping phase will correct the semi-mgor axis only, and this will occur

when its vaue gets 1.26 km below the nomind vaue (Carrara, 1988). Using these vaues, a



typica maneuver will increase the semi-mgjor axis from 7016.63 km to 7017.89 km and it will
keep the eccentricity in zero and the inclination in 97.94 degrees. The initid mass is 150 kg
and thethrust level is4.0 N.

Consdering these values, the solutions obtained (Prado, 1989) are compared with
Hohmann Transfer (Carrara & Souza, 1988; Carrara, 1988). Initidly, the suboptima method
was gpplied in the transfer phase, with 2, 4 and 8 "thrusting arcs' and no condraints in control.

Theresultsareshownin Table 1



Table1
Suboptimd initid transfer phase with 2, 4 and 8 "thrusting arcs'

Arc X5(Ceg) Xe{(Oen) An(deg) Bn(deg) A B Fud-kg
1 459.8 722.0 11.6 -60.4 0.028 0500 | -
2 963.4 1184.7 17.0 49.8 -0.110 -0.050 14.23
1 498.1 603.4 06 -25.7 0.019 0053 |
2 1025.4 1125.6 104 410 -0.159 0188 | -
3 1590.0 1697.8 33 -515 -0.009 0497 | -
4 2105.8 2206.6 10.2 402 -0.150 -0.183 12.16
1 527.4 576.9 11 -16.2 -0.001 0052 | e
2 10553 1105.4 6.6 36.0 -0.151 0110 |
3 1622.1 16728 23 -396 -0.004 0560 | -
4 21355 21876 63 352 -0.139 0 -
5 23273 23775 1.0 -16.0 0.010 0106 |
6 2855.4 2905.7 65 359 -0.151 0110 |
7 3422.2 34732 22 -39.3 -0.004 0562 | -
8 39356 3987.9 6.2 35.0 -0.14 -0.096 11.93

In a second set of amulations the same maneuvers were performed with the additiond
congraints that the control angles must be fixed (A' = B' = 0); and, in athird set, the constraint
Ag = 0 was added (only By is afree parameter for the control law). The objective isto know
how much more fue is required to compensate a more Smple implementation of the control
device and to stisfy the condraints of keeping some equipment (antennas, for example)
pointed toward Earth. To complete this study, the same maneuvers were smulated with the
optimal control approach. The result for the case with four "burning arcs' is shown in Figura 2.
This figure shows the contral (direction of the thrust) to be gpplied a each range angle to
obtain the maneuver with minimum consumption of fud. Smilar results are avalable for
maneuvers with two and eight “thrugting arcs', but they are not shown here to save space,
since they are al very smilar to each other. Table 2 shows the comparison in fuel expenditure
for dl cases studied. The vaue obtained by congdering a Hohmann Trandfer is about 12.00
kg of fud.

Table 2



Fud expenditure (kg) for dl maneuvers smulated

Method 2arcs 4arcs 8arcs
Suboptimal 14.23 12.16 11.93
Suboptimal (A=B =0) 21.38 17.05 12.87
Suboptima (A=B'=Ax=0) No solution found 17.96 13.44
Optimal 13.04 12.09 11.87

For the station-keeping phase, the suboptima and optima methods were applied with
no congraints in control, and with 1, 2, 3 and 4 "thrusting arcs' applied in different postions of
the orbit. The results showed that, due to the small magnitudesinvolved, thereis no difference
in dl methods tested. As an example, the results for the suboptima and optima methods with

1 "thrusting arc" are shown in Table 3.

Table3
Station-kegping with sub-optimal (top) and optima (bottom) methods (1 "thrugting arc”")

Arc Xg(deg) Xe(deg) Ap(deg) Bn(deg) A B Fud(kg) |
1 00 1.56 00 00 00 00 47.0

Arc X5(deg) Xe(deg) Aconst.) B(const.) Fuel(kg)
1 0.0 1.56 00 00 470

10 - CONCLUSIONS

Suboptima and optima control were explored to generate dgorithms to obtain
solutions for the minimum fud maneuvers required by the firs Brazilian Remote Sensng
Satdlite.

By comparing the results obtained by the agorithms developed and those found in the
literature (Biggs, 1978; 1979) it seems that optima and suboptima solutions do not exhibit
sgnificant differences in fud consumed, specidly when a large number of "thrusting arcs’ is
used.

Both methods have a good numerica behavior, but they can not be used in red time.
Process time (CPU) is short (1 to 3 minutes, in the Burroughs 6800 computer) for smple



maneuvers, but when severa congtraints and/or “thrusting arcs' are present the process time
can be large (more than one hour, in some cases).
Optimization techniques are not required when dation-keeping maneuvers are

considered.
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Figura2- Optima Control With 4 "Thrusting Arcs'. Fue Consumed: 12.09 kg.



