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In this paper we present a pseudopolynomial algovithm for
linear diophantine equations based on the calculation of the rank of the
Mignosi's matrix. The use of a sufficient test that ensures the existence
of a solution which is based on Paoli's theorem is also emphasized.
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RESUMO

Neste trabalho apresenta-se um algoritmo pseudopolino
mial para equagdes diofantinas lineares baseado no caleulo do posto da
matriz de M'Lgnosz. Enfatiza-se o ugo de um teste suficiente que assegu
ra a existéncia de uma solugdo que ¢ baseado no teorema de Pacli.-
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f. INTRODUCTION

The diophantine equations appeared with Diophantus 2000
years ago and deal with the integer solution of the equation

N
Jz1 a() x ()0 6P,

where A{J), C(J), B and D are integers.

Several interesting problems are derived from this
general equation:

a) the famous Fermat's last theorem - "Are there three natural numbers
such that the equation X(1)Nex(2)N= BN is satisfied, Nz3, NeN?";

b) the Goodbach's conjecture - "Are there even numbers greater than or
equal to 4 that cannot be expressed as the sum of two prime
numbers?".

We analyse here the 1inear diophantine equation {(LDE),
that is, "Is there a natural N-tuple (X(1), X(2),..., X(N)) such

N
that } A(J)X(J)=B,
J=1

A(D), BeN, J=1,2,..., N?" (1)

This particular problem appears in a letter by Leibnitz
to Bernoulli in 1669 and has been the focus of study of several famous
mathematicians Tike Gauss, Cauchy, Sylvester, Hardy, Ramanujan and
others.

In pratical settings, LDEs appear in several models in a
great number of situations (the interested reader can refer to



Kluyver and Salkin, 1975); therefore, there is a great interest in
solving this problem in an efficient manner.

The best method known by these authors to solve this
probiem was proposed by Gilmore and Gomory (1966) and uses a dynamic
programming recursion that requires an 0(B) of memory requirements and
an O(NB)of computational time.

In a recent article, Yanasse and Soma (1985) presented
an algorithm that solves the knapsack problem and has an improved
performance as compared with the dynamic programming methods.

The present problem differs from the knapsack problem in
the sense that we are only interested whether the linear diophantine
equation (1)} has or does not have a solution.

A desirable algorithm would have, in the worst case, a
polynominal bounded computational time (O(p(N)), but since the LDE is
NP-complete {see Garey and Johnson, 1979) such an algorithm probably
does not exist unless P=NP.

In this paper we present a pseudopolynomial algorithm,
whose computational time is,in the worst case, limited to

N
O(N(B-A(1))- § A(J)) and the memory requirements is 0(B-A(1)} and
J=1

where, without loss of generality, we assume that
A(N) > A(N-1) > A(N-2) > ... > A(1) > 0 and B z A(1) + A(N).

This algorithm is based on Mignosi's matrix (Mignosi, 1908) and uses
also a sufficient test based on Paoli's theorem (Paoli, 1780).



2. THE ALGORITHM

As presented before we assume, without loss of
generality, that our dataare already sorted, that is

0 <« A(1) < A(2) < ... < A(N).

We also assume that there is no A(J), J=1,2,..., N such that B/A(J)
eN, otherwise the solution to the LDE is trivial. Also, we can assume
that B = A(1) + A(N) since, otherwise, we can reduce our problem to
one with N-1 variables since X{N)=0.

Before we initialize the algorithm, we perform an
0(N2) sufficient test based on Paoli's theorem to see if the LDE has

a solution. We next describe Paoli's theorem.

Paoli's theorem (Paoli, 1780)

Consider the equation
AX + BY= C. (2)

If the greatest commom divisor of A and B, GCD(A,B), is equal to | and
AB < C, then (2) has at least one nonzero natural solution.

Proof: See appendix A.

Let My & Gep(A(1), A(D)). (3)

Our test then becomes:

If there exists at least one pair of indices I and J,
I,Je{t,..0s N}, 15 J such that

M. . divides B (4)

1J



and

A(1).A(J) < B,

Mg

then
A(IIX(I) + A(J)X(J)=B

has at least one nonzero natural solution (by Paoli's theorem);

N
therefore 7 A(J)X(J)=B has a solution. We should choose the pairs
J=1

(1,d) in such a way that A(I).A(J) is nondecreasing.

In is clear that there are O(N2LOG N) operations to
perform this task.

It is convenient to observe at this point that if My,
does not divide B, then A(I)X(I)+A{J)X(J)=B has no solution. In the
case the sufficient test is not satisfied, we should have either one
of the following cases:

a) for all the pairs (I1,J), I, Jell,..., N}, I#J, My defined
as in 3 does not divide B;

b) there is a pair (I,d), I, Je{l,..., N}, I=£J where My divides
g ML, AQ) | g,

My

B an

In case (a), the LDE has no solution with only two
variables different from zero. This would suggest aggregating
coefficients three by there and solving a new problem with these new
additional coefficients. This approach is not explored further in this
present work.



In case {(b), A1) AQD) B suggests that a
M1
pseudopolynomial algorithm which is polynomial in B might perform weil
since B is not relatively large compared with some coefficients of the
equation (1).

Both in case (a) and (b), we suggest the use of the
algorithm proposed next, which is based on Mignosi's matrix (Mignosi,
1908).

Mignosi (1908) stated that the nuwber of solutions of a
LDE is given by

T o{1) o(2)... o(B-1) o(B) ]

-B+1 o(1)... o(B-2) o(B-1)
N
det . : : ' a1l

AN ] ]

det M l,

[we)

Sa(1) o o(2)
1 a(1)

where o(t)= § A(j)e(j) where 8(j)=

1 if A(j) divides t and
jed

0 otherwise,

J= {1,..., N}.

In Soma (1985), it is shown that one can use a BXB
matrix of the form
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in place of the matrix M, where v(A(j)} can take any positive real
value, for je{1,..., N}, and study the rank of H. If the rank of H is
equal to B then the LDE has at least one solution, otherwise the
equation has no solution.

To study the rank of a matrix, one can proceed in
several ways. Given the special structure of matrix H, the natural
idea is to add to the last cofumn a linear positive combination of
some other conveniently chosen column in order to eliminate all
possible nonzero elements with the exception of at most one. If the
whole column is zero that means that the rank of H is not B, otherwise
the rank of the matrix is B, since by an interchange of columns we can

get an upper triangular matrix with the whole diagonal different from
zero.

Consider a simple example:

IX: + dx, + 7)(3 = 11,

A matrix H associated with this LDE could be



0012003000 07

1001200 3000

100120030040

.19 012 00 30

12003

-to D

1090 1 200

2

1

-1 00

-t0 01 2

L I R |

‘100

-0

where

V(A(Z))= 2:
v(A(3})

= 3.

Adding to column 11 a positive linear combination of

column 8, we get:

column B

+

2 00 3 000D0C¢Q

1

0

0

2003003

-1 ¢ ¢

2 00 300
i

1

=1 0 0

20030

-1 0 ¢

20086 5
-1 001 201
1

-1 ¢ 01

0

2

-1 00

-1 0 0 1 2

-1 000

-1 00

-1 0 |

H=

Adding to column 11 two times column 7, the SEh element

of column 11 becomes zero. Going on with this reasoning, we finally

get

]

2°0 03000 2

0 1

[ 0

z oo 3000

1
100 t2003°¢00

-1 00

120030
-1 001

1900

2000

1201
-1t00 1270

-1 00

0
-1 000

-10 01

-1 D0

0]

H7=



By interchanging columns we can get an upper triangular
matrix of the form

(24 ¢ D 1 2 0 0 3 0 0 07
-1 001 200300D
4001 20DD 30

-1 00 1 200 3
1001200
W= 4004 20
-3 0 0y 2
10 0 1
=10 0
-1 0
L

whichimplies that the rank of H is 11 and, therefore, the LDE
3%1+ 4%+ 7X5=11 has a solution.

It is easily seen (see Soma, 1985) that one need not
exactly perform the addition of a multiple of a chosen column with the
last column. It is sufficient to keep in mind the position of the
nonzero elements of the last column and the new ones that are
generated by the additions.

Observe that 1if at any instant an element k of column B
has a value different from zero, this implies that

A(J)X(J)= B-k+l

I ~1=

J=1

has a solution (see Soma, 1985 for details).

With these observations in mind, one interesting way of

following operations:

- for a column y such that its iEb element has value-1 in
correspondence with the ith nonzero element of column B in
matrix H, we associate all positive values of column y to
column B and only these, as shown in the next illustration.
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- In a symmetric way we could choose line w and, in
correspondence with the positive elements of this Tine, with
the help of the -1 diagonal of the matrix, associate points
of column B that would gemerate the element in the wth Tine of
column B, as shown in the next illustration.

Observe that a combination of the two approaches would
result in a interesting procedure. We could start with y= B-A{1)+1
and w= A(1)+1.

There are several criteria to stop the algorithm:

a) if after any operation the first element of column B in matrix H
becomes nonzero, then the LDE has at least one solution;

b) if at any operation we hit a line in column B that is nonzero,
either by the first operation or the second oue, then the LDE has
at least one solution;
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c) ifwz [B/27] and y < r B/2 T with the 1&‘-’-t element of column B
zero, then the LDE has no solution. ([ A ] means ceiling of A).

It is true that if the 1St element of column B is
nonzero, then it is always possible to make the matrix H upper
triangular through elementary operations of columns, with all the
elements of the main diagonal different from zerc. Therefore, we can
immediately conclude that the rank of H is B. The criterion (a) is
based on this observation.

With respect to criterion (b), if we use the second
operation, we have that it is possible to find K(j) and J and reach

B~ ) A(j) ki),

Jed
where 0 5 K(j) = L'“fi; ] and J is a subset of {1,..., N}. Also, it is
Adj
possible to reach } A{i) K(i), where 0 ¢ K(i) < L-—%L—-J and I is a
iel A(i)

subset of {1,..., N} using the first operation. We have by the
criterion that

B- § A(3) K(G)= § A1) K{i) or § A(J) K(j)+ § A(i) K(i)=B.
Jded iel jed igl

Therefore the LDE has at least one solution.

Observe that if we go on with the operations and reach a
position where y <« [ B/2 7] and w » [ B/2 ], then the LDE has no
solution since all possible combinations that could give us a solution
were considered. This makes eriterion (c).

It is possible to run an algorithm with the first
operation (or the second operation) alone. In this case, the stopping
criteria have to be modified. If only the first operation is used,
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criterion (a) can be applied in the same way; criterion (b} and (c)
cannot be used. If at some time we have kglﬂill +1 of the

2 |
elements in column B different from zero, than we can stop. The LDE
has a solution. This is true because of the particular structure of
matrix H. Since using the first (second) operation alone we reached
half plus one of the relevant positions in column B, then if we use
the second (first) operation we would have reached also half plus one
of the relevant positions in column B, which implies that the

criterion (b) is achieved (implicitly).

The order of convergence can be shown to be
N

0({B-A(1)) N~ } A{J)) and the memory requirements is 0(B-A(1)). The
J=1

interest reader can refer to Yanasse and Soma {1985}).

3. FINAL COMMENTS

Althought the computational requirements of the
N
algorithm is O(N{B-A(1))-) A(J)) for any one of the procedures using
J=1

only the first or only the second or both operations, we think that a
better average performance will be attained with the combination of
the two operations since the algorithm has an improved chance of
stopping due to criterion (b).

It should be pointed out that if the A{(J)'s are prime
two by two, (or if GCD{A(1), A(2))=1). then B<A(1)A(2) and, in this
case, this pseudopolynomial algorithm is not as bad as it might
appear. We can rewrite the order of convergence of the algorithm in a
different form, only in terms of N, A(1) and A(2). We have that

N ‘
ONE-A(1))- ] AW)) < o(NAm.(A(z)-z)-(“—;iJ),
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since B<A{1)A(2), and

0 < A{1) < A(2) < ... < A{N), where A(J)=N.
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APPENDIX A

PAOLT'S THEOREM

The number w of positive integral solutions of ax+by=n,
where a and b are positive and relatively prime.

If ax+by=n has integral solutions, any common factor of
a and b must divide n and, hence, can be removed from every term. Let
henceforth a and b be relatively prime and positive. Let B denote the
least positive integer such that n-ag is divisible by b. There every
solution is given by:

Xx= B + bm, y= D2E

- Ell'n.

The values of m making x and y positive are 0, 1,..., E,

where E is the Targest integer less than (H;EB).

Thus there are w= E+1 sets of positive integral
sofutions x,y.

The previous explanation are not sufficient to
understand why the conditions AB<C and GCD{A,B)=1 are sufficient to
ensure a nonzero natural solution to the equation AX+BY=C. Let's
elaborate, therefore, a 1ittle further. Consider the following lemma.

Lemma 1: Let A and B be integers. Then AX = 1(MOD B) has solution
if and only if the GCD(A,B)-=1.

Proof : To check the previous statement Tet A and X' be integers.
Then AX'= 1(MOD B) is equivalent to AX'-BX"={ for some
integer X", that is, the GCD{(A,B}=1. On the other hand, if
the GCD(A,B)=1, the existence of X' such that AX'=1 (MOD B)
1s guaranteed by Euclides algorithm (see Sidki, 1975).

- At -
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Let's consider now the equation AX+BY=C. If we plot this

equation we have a Tine that cuts the X-axis in_% and the Y-axis in

%, as shown in Figure 1.

Figure 1 - Line AX+BY=C.

Letfs call these points A, and A,, respectively. The
distance between A, and A, is

On the other hand, AX+BY=C has integer solutions if the
GCD(A,B} divides C by Lemma 1.

Observe that if there is one integer solutionto AX+BY=C,
there will be infinitely many integer points in R? that also sdtisfy
this equation since

AX+BY=C,
n(AB—BA)=D:
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and, therefore, adding these two equalities we get a third equality
A(X+nB) + B(Y-nA)= C,
which is satisfied for any n=zR.

From this equality, ofie can also see that at distances
of

/ A2+B.2

on the line AX+BY=C there is at least one integer solution to this
equation. Therefore it s sufficient to have £%~> 1 to ensure an

integer solution in the segment A1 AZ‘

This completes the explanation.
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