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ABSTRACT

This paper has the god of developing an
andyticd and a numericd dudy of the
perturbation caused in a spacecraft by a third
body involved in the dynamics. One of the
important gpplications of the present research is
to cdculae the effect of Lunar and solar
perturbations on high-dtitude Eath sadlites.
There is a gpecid interest to see under which
conditions a near-circular orbit remans near
circular. The 0 cdled "criticd angle of the third-
body perturbation,” that is a vdue for the
indination such that any near-circular orbit with
inclination below this vaue remains near-circular,
isdiscussedindetal.  The assumptions of our
modd are very smilar to the ones made in the
restricted three-body prablem: @ There are only
three bodies involved in the syslem: a main body
with mass m fixed in the origin of the reference
system; a masdess spacecraft in a generic orbit
around the main body and a third body in a
circular orbit around the main body in the plane
x-y; b) The motion of the spacecraft is supposed
to be a three-dimensona Keplerian orbit with its
orbitd eements disturbed by the third body.

The motion of the spacecraft is studied
under two different modds i) A double-
averaged andyticd modd with the disturbing
function expanded in Legendre polynomids; ii)A
full unaveraged three-body
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problem in three dimensons, without any
truncation or goproximaion. The double-
averaged models make the averages over the
short period of the spacecraft and the long
period of the digant third-body. Next, the
theory developed here is used to study the
behavior of a lunar satdllite, where the Earth is
the disturbing body. Severd plots show the
time-higtories of the Keplerian dements of the
orbitsinvolved.

THE MATHEMATICAL MODELS

This problem has been under sudy
before by severd researchers, like Costat,
Broucke?, Kozai*#%67, Giacaglia®, Kaula® and
Prado and Broucke?®.

This section derives the equaions
required by the mathematica models used during
the amulaions made in this research. It is
assumed that the main body with mass g is
fixed in the center of the reference system xy.
The perturbing body with massm' isin acircular
orbit with semi-mgjor axis a and mean mation n'
(given by the expression n*? a°= G[m, + m]).
The masdess spacecraft m is in a generic three
dimengond orbit which orbitd dements are: g,
e, i, w, Wand the mean mation is n (given by the
expression n’a’ = Gm,). In this situation, the
disturbing potentid that the spacecraft has from
the action of the disturbing body is given by:




m
- 2rr'Cos(S)

= 1
Jre+r? @

Usng the traditiond expanson in
Legendre polynomias (assuming that r' >>r) the

following expression can be found:

The next dep is to average those
quantities over the short period satellite as well
as with respect to the distant perturbing body.
The gtandard definition for average used in this

research is: Average of f = (f) :2—1ng(f JaMm
0

whee M is the mean anomdy, that is
¥ n proportiond to time.
R=—3& 83 0 P, (Cos(S)) ) The equations obtained for the first four
M-22l'g terms are:
2.2
(R,)= m?; [(2+ 36 Y3cos?(i) - 1)+ 15¢?sin 2(j)cos(2w) &)
(R;)=0 (4)
(R.) :;ETZ[M“ 720e? + 270e* +(320+ 16008? +600e* ICos(2i) + (560 + 2800 +1050e* )Cos(4) + .
+ (168082 +840¢" JCog2w) +44106* Cogaw) + (22402? +11208* Jco(2i)Cos(2w) +
+ (3920 e? +1960e* }305(44' )Cos(2w) + 5880 e* Cos(2i)Cos(4w) + 1470 e *Cos (4i )Cos(4w)J ®)

The equations were developed up to
the order 8, but they are too long to be shown
here.

After (R,) =R,
<§3> =Rs and <ﬁ4> = R4, the next step is to
obtain the eguaions of motion of the
oacecraft. They come from the Lagrange's
planetary equations in the form that depends on
the derivatives of the disturbing function R with
respect to the Keplerian eements. Those

equations are not developed here, due to space
limitations.

caculating

THE FIRST INTEGRALSC, AND C,
Two important fird integrds of the
double-averaged model of second order are C,
and C,. They are given by the expressions.

C, =(1- €?)cos?(i) (6)

_egeg_ Sn?(i)Sn? (w)—
[

()

C, can be recognized as the square of
the zcomponent of the angular momentum and
C, is a combination of C, and the law of
conservetion of energy of the sysem. The
proof that they are congtant is omitted here to
save space, but they can be obtained by direct
derivation of equations 6 and 7 with respect to
time. From those equationsiit is dso possible to
seethat 0 £ C,£1and -0.6 £ C, £ -04. An
important consequence of the fird integrd C;
comes directly from the eguation 6. The
inclination and eccentricity aways vay in



opposite directions, when the indination is in
the first quadrant, to keep C, congtant. Those
fird integrals are dso important in defining the
properties of the system.

RESULTS
In this section some results are shown
related to the third body perturbation problem.
This section is divided in severd sub-sections
to show clearly severd aspects of the problem.

The Near-Circular Orbits and the Critica
Inclination

One of the most important properties
of the third body perturbation is the existence
of a critica vauefor the inclination between the
perturbed and the perturbing body. This critical
inclination is rdated to the dtability of near-
circular orbits. The problem consdered here is
to discover under what conditions a spacecraft
that garts in a near-circular orbit around the
main body remains in a near- circular orbit after
some time. The answer for this question
depends on the initid inclination ,. Thereis a
specific critica vaue such that if the inclination
is higher than that the eccentricity increases and
the near-circular orbit becomes very dliptic.
Alternatively, if the indination is lower than this
critical vaue the orbit stays nearly circular.

The problem consdering an exact
circular orbit (e = 0.0) is Sudied separately in
the next section. The problem of near-circular
orbits is consdered very important because
usudly a spacecrat that is nomindly in a
circular orbit has perturbations from other
sources that makes its eccentricity to move way
from the nomind vaue 0.0.

In the double-averaged second-order
modd this critical Situation occurs when Cosg (i)
= 0.60 (i = 39.2315 degree). The behavior of
the indlination and the eccentricity with time is
studied for near-circular orbits covering alarge

range of initid inclination (0° < i, £ 80°). Figs.
1 and 2 show the results. For those smulations
the initid orbit used dways have Keplerian
elementsa= 0.1, ¢ =0.01, w=W=0. The
sysem of primaries is the Eath-Moon. The
initid indination i, vary as shown in the figures.
Remember that the time is defined such that the
period of the disturbing body is 2p. In that way
1000 units of time in those figures correspond
to about 160 orbits of the disturbing body. The
mathematicd modes used in those smulations
have order four. The Figs. are divided in three
parts: values of | below the critica vaue (i) <
35°), in the region of the critica value (38° <,
< 43°) and above the critica vaue (i > 47°).
Fig. 1 shows the behavior of the inclination.
The region below the criticad vaue is not
shown, because the indination remans
constant.
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Fig. 2 (Cont.) - Time-Higtory for the
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The results show that for vaues of the
initid indination , below the critica angle (i, <
35°) the eccentricity oscillates with avery small
amplitude (less then 0.025 in most of the cases)
that decreases fast when i, decreases. The
inclination remains condant in this Stuation. For



vaues of i, around the critica value (3% <, <
43°) it is possble to see that the eccentricity
oscillates with a larger amplitude (about 0.35)
that increases with the increese of i,. The
inclination has a very characteristic behavior in
this region of §. For vaues of i, dightly below
the criticad angle the indination says close to |,
with an osdillation of smdl amplitude and large
period. For vaues of i, dightly above the
critical vdue the indingtion dats a i,
decreases until the criticd vdue and then it
returns to its origind vaue . For vaues of |
well above the criticd vadue (, 3 47°) the
eccentricity oscillaieswith increasing amplitudes
that goes close to 1.0. The inclination keeps its
characterigic  behavior of darting a |,
decreasing to the criticd vaue and then
returning to its origind vaue . The figure so
shows that this behavior repeats itsdf in an
endless cycle. The time required to reach the
critical vaue decreases when i, increase. Those
results show thet the critical angleis not asharp
separation between stable and unstable near-
crcular orbits This region has a gradud
trangdtion where the eccentricity oscillates with
an amplitude that increases fagt with iy, reaching
the vadue 1.0 only in the case i, = 90°.

The practicd application of those
results is that only near-circular orbits with
inclination lower then the criticd vadue ae
gable in the long range, since above this vaue
the orbit looses its characteristics of near-
dreulaity.

Figs. 3 and 4 reproduces the same
sudy for the case of alunar satdlite. The initid
orbital elements used are: a = 0.01, g, = 0.0,
w=W = 0. Theinitid inclination i,, has the same
values used for the Earth's sadlite studied
before. The results are Smilar to the ones
obtained in the previous case. The differences
ae i) the Keplerian dements of the lunar
sadlite oscillaes fagter than the Earth's

satdlite; ii) the maximum vaues reached by the
eccentricities ae a litle smdler in dl the
gtudions, iii) The minimum reached by the
incdination are a little higher for the lunar
saelite, specidly when the indindtions are
closer to the critica value.
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Findly, we studied both cases in the
region close to the criticd angle under the
modd given by the redricted three-body
problem, that has no gpproximation or
truncation of any type. The rewult is the
exisence of short period terms, that adds an
oscillation following the lines given by the
truncated models, initidly. After some time the
behavior becomes completely oscillatory with a
very fast period.
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The Circular Orbits

Directly from the equations of motion
for the double-averaged second order model it
is possible to identify the existence of circular
solutions for this problem. It means that, in the
ided case of an orbit that doats with
eccentricity zero, its eccentricity remains aways
zero. This occurs because the right-hand sde
of the equation for the time derivative of the
eccentricity is zero (it is proportiond to the
eccentricity). Another property of those orbits
is that the inclination is aso congtant for the
same reason (the time derivative of the
inclination is proportiond to the square of the
eccentricity).

This is not true for high order models.
The expressions for the equations of motion
have terms that are independent of the
eccentricity that generate a term with the
eccentricity  in  the denominator for the

expression for % Thisfact does not alow the

right-hand sde of those equations to vanish.



The same occurs for the indination, since its

variation aso depends on the derivative %
w

The evolutions of these two quantities
(eccentricity and inclination) were studied under
the full-unaveraged three-body problem. The
results show that the circular solutions with
congant inclination do not exist in this more
redisic mode. The eccentricity oscillates with
a lage amplitude The indclination remans
congtant most of the time, but from time to time
it decresses to the vdue of the criticd
indination and then it returns to its initid vaue.
The minimums in indingion occur in the same
time with the maximums in eccentricity. The
figures are not shown here to save space.

The generd concluson is that the
circular solutions with congant indination
appear due to the truncation of the Legendre
polynomid in terms of second-order and it is
not a physica phenomenon.

The Equatoria Orbits

Ancther property of this system that
comes directly from the inspection of the
equations of moation is the exigence of
equatoria orhits. It means that if an orbit sarts
with i, = O, the inclination and eccentricity
remain congtant and the orbits remain in the
equatorial plane. In the second-order model
this property is evident from the equations of
motion. If j = 0, then the right-hand sides of

the expressons for % and % are dso zero,

because they are proportional to Sin?(i) and
Sin(2), respectively.

The high order models has terms in
Sin(i) in the denominator of the expressions for
E and ﬂ This is due to the existence of
dt dt

severd terms independent of the inclination in

the expresson for 1R , Which is part of those
w
expressions.

The numericd integration of the full-
unaveraged mode shows the exigence of
equatoria solutions aso in this more generd
modd. The inclination remains zero dl the time
and the eccentricity has only a short period
oscillation with very smdl amplitude.

Frozen Orbits

From the equations of motion for the
second-order averaged mode it is possible to
detect the existence of a new family of specid
orbits. They ae the orbits caled "Frozen
Orbits" This family is composed by the orbits
that have de :ﬂ = aw =0, what means that

dt dt dt
the eccentricity, indination and argument of
periapse are constants.

From the equaions of mation it is
possble to derive the conditions for this
Stuation. They are: Sin(2w) = 0, Cos(2w) = -
1. It implies that w = 90° or w = 270°. From
the eguation %N =0 one more condition is

avalable Itis

5Cos?(i)- 1+€?- 5{1- & - Cos’(i))=0 b
b e*=1- %Cosz(i) )

From the equation 8 the condition
Cos? (i) < 3/5 isobtained. This condition setsa
minimum vaue for the indination. Those
conditions are vdid only for the second-order-
averaged modd. When submitted to the fourth-
order averaged modd a frozen orbit is
destroyed and it shows oscillations in dl the
three orbital eements.



CONCLUSIONS

This paper deveops mathematical
modes to sudy the third-body perturbation:
the double-averaged in severd orders and the
full unaveraged three-body problem.

The results show in detail the behavior
of the orbits with respect to theinitid inclination
and the rule of the citicd indlination in the
dability of near-circular orbits. They show that
this criticd vaue is atrangtion region where the
eccentricity has an oscillation that increases in
amplitude.

It is dso shown the exigence of
equatoria solutions and the nonexistence of
circular solutionsin the unaveraged problem.

The "Frozen Orbits' found in the
double-averaged second-order mode  are
dudied in the fourth-order modd. It is shown
tha they have ther Kepleian dements
disturbed by an oscillation.

The study of a lunar satdllite completes
the paper. It showed that smilar results are
obtained, but the Keplerian dements of the
lunar satdllite oscillates faster and shows higher
minimum for the indinaion and smdler
maximum for the eccentricity.
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