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ABSTRACT 

This paper has the goal of developing an 
analytical and a numerical study of the 
perturbation caused in a spacecraft by a third 
body involved in the dynamics. One of the 
important applications of the present research is 
to calculate the effect of Lunar and solar 
perturbations on high-altitude Earth satellites. 
There is a special interest to see under which 
conditions a near-circular orbit remains near 
circular. The so called "critical angle of the third-
body perturbation," that is a value for the 
inclination such that any near-circular orbit with 
inclination below this value remains near-circular, 
is discussed in detail.  The assumptions of our 
model are very similar to the ones made in the 
restricted three-body problem: a) There are only 
three bodies involved in the system: a main body 
with mass m

0
 fixed in the origin of the reference 

system; a massless spacecraft in a generic orbit 
around the main body and a third body in a 
circular orbit around the main body in the plane 
x-y; b) The motion of the spacecraft is supposed 
to be a three-dimensional Keplerian orbit with its 
orbital elements disturbed by the third body.
 The motion of the spacecraft is studied 
under two different models: i) A double-
averaged analytical model with the disturbing 
function expanded in Legendre polynomials; ii)A 
full unaveraged three-body 
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problem in three dimensions, without any 
truncation or approximation.  The double-
averaged models make the averages over the 
short period of the spacecraft and the long 
period of the distant third-body. Next, the 
theory developed here is used to study the 
behavior of a lunar satellite, where the Earth is 
the disturbing body. Several plots show the 
time-histories of the Keplerian elements of the 
orbits involved. 
 

THE MATHEMATICAL MODELS 
 This problem has been under study 
before by several researchers, like Costa1, 
Broucke2, Kozai3,4,5,6,7, Giacaglia8, Kaula 9 and 
Prado and Broucke10. 
 This section derives the equations 
required by the mathematical models used during 
the simulations made in this research. It is 
assumed that the main body with mass m0 is 
fixed in the center of the reference system x-y. 
The perturbing body with mass m' is in a circular 
orbit with semi-major axis a' and mean motion n' 
(given by the expression n a G m m' ' '2 3

0= + ). 

The massless spacecraft m is in a generic three-
dimensional orbit which orbital elements are: a, 
e, i, ω, Ω and the mean motion is n (given by the 
expression n a Gm2 3

0= ). In this situation, the 
disturbing potential that the spacecraft has from 
the action of the disturbing body is given by: 
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 Using the traditional expansion in 
Legendre polynomials (assuming that r' >> r) the 
following expression can be found: 
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 The next step is to average those 
quantities over the short period satellite as well 
as with respect to the distant perturbing body. 
The standard definition for average used in this 

research is: Average of f = ( )∫π
=

π2

0

dMf
2

1
f , 

where M is the mean anomaly, that is 
proportional to time. 
 The equations obtained for the first four 
terms are1: 
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 The equations were developed up to 
the order 8, but they are too long to be shown 
here. 

After calculating R R2 2= , 

R R3 3=  and R R4 4= , the next step is to 

obtain the equations of motion of the 
spacecraft. They come from the Lagrange's 
planetary equations in the form that depends on 
the derivatives of the disturbing function R with 
respect to the Keplerian elements. Those 
equations are not developed here, due to space 
limitations. 
 

THE FIRST INTEGRALS C   1 AND C   2 
 Two important first integrals of the 
double-averaged model of second order are C1 
and C 2. They are given by the expressions: 
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 C1 can be recognized as the square of 
the z-component of the angular momentum and 
C2 is a combination of C1 and the law of 
conservation of energy of the system. The 
proof that they are constant is omitted here to 
save space, but they can be obtained by direct 
derivation of equations 6 and 7 with respect to 
time. From those equations it is also possible to 
see that 0 ≤ C1 ≤ 1 and -0.6 ≤ C1 ≤ -0.4. An 
important consequence of the first integral C1 
comes directly from the equation 6. The 
inclination and eccentricity always vary in 



  

opposite directions, when the inclination is in 
the first quadrant, to keep C1 constant. Those 
first integrals are also important in defining the 
properties of the system. 
 

RESULTS 
 In this section some results are shown 
related to the third body perturbation problem. 
This section is divided in several sub-sections 
to show clearly several aspects of the problem.  
 
The Near-Circular Orbits and the Critical 
Inclination 
 One of the most important properties 
of the third body perturbation is the existence 
of a critical value for the inclination between the 
perturbed and the perturbing body. This critical 
inclination is related to the stability of near-
circular orbits. The problem considered here is 
to discover under what conditions a spacecraft 
that starts in a near-circular orbit around the 
main body remains in a near-circular orbit after 
some time. The answer for this question 
depends on the initial inclination i0. There is a 
specific critical value such that if the inclination 
is higher than that the eccentricity increases and 
the near-circular orbit becomes very elliptic. 
Alternatively, if the inclination is lower than this 
critical value the orbit stays nearly circular. 
 The problem considering an exact 
circular orbit (e = 0.0) is studied separately in 
the next section. The problem of near-circular 
orbits is considered very important because 
usually a spacecraft that is nominally in a 
circular orbit has perturbations from other 
sources that makes its eccentricity to move way 
from the nominal value 0.0. 
 In the double -averaged second-order 
model this critical situation occurs when Cos2(i) 
= 0.60 (i = 39.2315 degree). The behavior of 
the inclination and the eccentricity with time is 
studied for near-circular orbits covering a large 

range of initial inclination (0° < i0 ≤ 80°). Figs. 
1 and 2 show the results. For those simulations 
the initial orbit used always have Keplerian 
elements a = 0.1, e0 = 0.01, ω = Ω = 0. The 
system of primaries is the Earth-Moon. The 
initial inclination i0 vary as shown in the figures. 
Remember that the time is defined such that the 
period of the disturbing body is 2π. In that way 
1000 units of time in those figures correspond 
to about 160 orbits of the disturbing body. The 
mathematical models used in those simulations 
have order four. The Figs. are divided in three 
parts: values of i0 below the critical value (i0 < 
35°), in the region of the critical value (38° < i0 
< 43°) and above the critical value (i0 > 47°). 
Fig. 1 shows the behavior of the inclination. 
The region below the critical value is not 
shown, because the inclination remains 
constant. 
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Fig. 1 - Time-History for the Inclination. 
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Fig. 1 (Cont.) - Time-History for the 
Inclination. 
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Fig. 2 - Time-History for the Eccentricity. 
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Fig. 2 (Cont.) - Time-History for the 
Eccentricity. 

 
 

 The results show that for values of the 
initial inclination i0 below the critical angle (i0 < 
35°) the eccentricity oscillates with a very small 
amplitude (less then 0.025 in most of the cases) 
that decreases fast when i0 decreases. The 
inclination remains constant in this situation. For 



  

values of i0 around the critical value (39° < i0 < 
43°) it is possible to see that the eccentricity 
oscillates with a larger amplitude (about 0.35) 
that increases with the increase of i0. The 
inclination has a very characteristic behavior in 
this region of i0. For values of i0 slightly below 
the critical angle the inclination stays close to i0 
with an oscillation of small amplitude and large 
period. For values of i0 slightly above the 
critical value the inclination starts at i0, 
decreases until the critical value and then it 
returns to its original value i0. For values of i0 
well above the critical value (i0 ≥ 47°) the 
eccentricity oscillates with increasing amplitudes 
that goes close to 1.0. The inclination keeps its 
characteristic behavior of starting at i0, 
decreasing to the critical value and then 
returning to its original value i0. The figure also 
shows that this behavior repeats itself in an 
endless cycle. The time required to reach the 
critical value decreases when i0 increase. Those 
results show that the critical angle is not a sharp 
separation between stable and unstable near-
circular orbits. This region has a gradual 
transition where the eccentricity oscillates with 
an amplitude that increases fast with i0, reaching 
the value 1.0 only in the case i0 = 90°. 
 The practical application of those 
results is that only near-circular orbits with 
inclination lower than the critical value are 
stable in the long range, since above this value 
the orbit looses its characteristics of near-
circularity. 
 Figs. 3 and 4 reproduces the same 
study for the case of a lunar satellite. The initial 
orbital elements used are: a = 0.01, e0 = 0.01, 
ω = Ω  = 0. The initial inclination i0 has the same 
values used for the Earth’s satellite studied 
before. The results are similar to the ones 
obtained in the previous case. The differences 
are: i) the Keplerian elements of the lunar 
satellite oscillates faster than the Earth’s 

satellite; ii) the maximum values reached by the 
eccentricities are a little smaller in all the 
situations; iii) The minimum reached by the 
inclination are a little higher for the lunar 
satellite, specially when the inclinations are 
closer to the critical value. 
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Fig. 3 - Time-History for the Inclination for a 
Lunar Satellite. 

 



  

 Finally, we studied both cases in the 
region close to the critical angle under the 
model given by the restricted three-body 
problem, that has no approximation or 
truncation of any type. The result is the 
existence of short period terms, that adds an 
oscillation following the lines given by the 
truncated models, initially. After some time the 
behavior becomes completely oscillatory with a 
very fast period. 
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Fig. 3 - Time-History for the Eccentricity for a 
Lunar Satellite. 
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Fig. 3 (Cont.) - Time-History for the 
Eccentricity for a Lunar Satellite. 

 
 

The Circular Orbits 
 Directly from the equations of motion 
for the double-averaged second order model it 
is possible to identify the existence of circular 
solutions for this problem. It means that, in the 
ideal case of an orbit that starts with 
eccentricity zero, its eccentricity remains always 
zero. This occurs because the right-hand side 
of the equation for the time derivative of the 
eccentricity is zero (it is proportional to the 
eccentricity). Another property of those orbits 
is that the inclination is also constant for the 
same reason (the time derivative of the 
inclination is proportional to the square of the 
eccentricity). 
 This is not true for high order models. 
The expressions for the equations of motion 
have terms that are independent of the 
eccentricity that generate a term with the 
eccentricity in the denominator for the 

expression for 
de

dt
. This fact does not allow the 

right-hand side of those equations to vanish. 



  

The same occurs for the inclination, since its 

variation also depends on the derivative ∂
∂ω
R4 . 

 The evolutions of these two quantities 
(eccentricity and inclination) were studied under 
the full-unaveraged three-body problem. The 
results show that the circular solutions with 
constant inclination do not exist in this more 
realistic model. The eccentricity oscillates with 
a large amplitude. The inclination remains 
constant most of the time, but from time to time 
it decreases to the value of the critical 
inclination and then it returns to its initial value. 
The minimums in inclination occur in the same 
time with the maximums in eccentricity. The 
figures are not shown here to save space. 
 The general conclusion is that the 
circular solutions with constant inclination 
appear due to the truncation of the Legendre 
polynomial in terms of second-order and it is 
not a physical phenomenon. 
 
The Equatorial Orbits 
 Another property of this system that 
comes directly from the inspectio n of the 
equations of motion is the existence of 
equatorial orbits. It means that if an orbit starts 
with i0 = 0, the inclination and eccentricity 
remain constant and the orbits remain in the 
equatorial plane. In the second-order model 
this property is evident from the equations of 
motion. If i0 = 0, then the right-hand sides of 

the expressions for de

dt
 and di

dt
 are also zero, 

because they are proportional to Sin2(i) and 
Sin(2i), respectively. 
 The high order models has terms in 
Sin(i) in the denominator of the expressions for 
de

dt
 and di

dt
. This is due to the existence of 

several terms independent of the inclination in 

the expression for ∂
∂ω
R4 , which is part of those 

expressions. 
 The numerical integration of the full-
unaveraged model shows the existence of 
equatorial solutions also in this more general 
model. The inclination remains zero all the  time 
and the eccentricity has only a short period 
oscillation with very small amplitude. 
 
Frozen Orbits 
 From the equations of motion for the 
second-order averaged model it is possible to 
detect the existence of a new family of special 
orbits. They are the orbits called "Frozen 
Orbits." This family is composed by the orbits 

that have de

dt

di

dt

d

dt
= = =

ω
0, what means that 

the eccentricity, inclination and argument of 
periapse are constants. 
 From the equations of motion it is 
possible to derive the conditions for this 
situation. They are: Sin(2ω) = 0, Cos(2ω) = -
1. It implies that ω = 90° or ω = 270°. From 

the equation d

dt

ω
= 0 one more condition is 

available. It is: 
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 From the equation 8 the condition 
Cos i2 3 5( ) <  is obtained. This condition sets a 
minimum value for the inclination. Those 
conditions are valid only for the second-order-
averaged model. When submitted to the fourth-
order averaged model a frozen orbit is 
destroyed and it shows oscillations in all the 
three orbital elements.  
 



  

CONCLUSIONS 
 This paper develops mathematical 
models to study the third-body perturbation: 
the double -averaged in several orders and the 
full unaveraged three-body problem. 
 The results show in detail the behavior 
of the orbits with respect to the initial inclination 
and the rule of the critical inclination in the 
stability of near-circular orbits. They show that 
this critical value is a transition region where the 
eccentricity has an oscillation that increases in 
amplitude. 
 It is also shown the existence of 
equatorial solutions and the non-existence of 
circular solutions in the unaveraged problem. 
 The "Frozen Orbits" found in the 
double-averaged second-order model are 
studied in the fourth-order model. It is shown 
that they have their Keplerian elements 
disturbed by an oscillation.  
 The study of a lunar satellite completes 
the paper. It showed that similar results are 
obtained, but the Keplerian elements of the 
lunar satellite oscillates faster and shows higher 
minimum for the inclination and smaller 
maximum for the eccentricity. 
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