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*Abstract In this paper the problem of sending a spacecraft 
from Low Earth Orbit (LEO) to the Moon with minimum fuel 
consumption is considered. The goal is to find the control to be 
used to perform the tasks involved in the mission that 
minimizes the fuel expenditure required. The first part of this 
paper deals with impulsive maneuvers, where the control 
consists in the application of two impulsive thrusts that 
changes instantaneously the velocity of the spacecraft, and 
obtain a set of values for the fuel expenditure and trip time for 
several trajectories. The second part considers the use of low-
thrust trajectories, where the control consists of chosen the 
instants to start and to stop the application of a finite thrust, as 
well as the direction of this thrust at every instant of time. The 
results showed that large savings in fuel consumption could be 
obtained by using low thrust trajectories for the Earth-Moon 
part of the mission. A first analysis for the behavior of the orbit 
around the Moon, including predictions for the frequency and 
fuel expenditure for the maneuvers to keep the orbit close to 
the nominal trajectory, is also included. 

1 INTRODUCTION 
The establishment of a manned lunar base is certainly one of 
the next big step of the mankind in its journey to the space. To 
accomplish this goal, a more detailed study of the Moon, 
including its mineral resources and physical properties, has to 
be done. It is in this context that the Lunar Polar Orbiter 
mission appears. It is constituted by one or two spacecrafts in 
Moon's polar orbit, to make measurements in the Moon's 
surface and neighborhood. The data obtained will be used for 
several important tasks, like: site selection of the lunar base; 
improvements of trajectory calculation around the Moon, study 
of possible mineral exploitation, etc. 

The objective of this paper is to make a preliminary study of 
the possible trajectories to be used to go to the Moon. It is 
assumed that the spacecraft begins its trip in Low Earth Orbit 
(LEO) of about 200 kms above the surface of the Earth and that 
the equations given by the Two-Body non-perturbed dynamics 
are valid for each phase of the mission. This dynamics assumes 
that the only force acting in the satellite is the gravitational 
force of the Earth, and that the Earth can be considered a point 
of mass (Bate, 1973, chapter 1). Two scenarios are studied: in 
the first one a single spacecraft will orbit the Moon; and in the 
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second one the main spacecraft will have a sub-satellite in a 
higher orbit. It is assumed that this dynamical system can be 
studied with the assumptions that the only forces involved are 
the gravitational ones of the bodies involved and the thrust of 
the space vehicle. The final orbit around the Moon is assumed 
to be polar. A more detailed study, including the velocity 
variation required in each phase and an analysis of the effects 
of the errors involved in the final orbit around the Moon is also 
presented for one of the trajectories. 

Special attention is given to the difference in fuel consumption 
obtained by using two options of thrust for the Earth-Moon 
transfer: Infinite (using Hohmann Transfer, like shown in Bate, 
1973, pages 163-166) and Low Thrust (using optimal control 
theory, like in Biggs, 1979 and Prado and Rios-Neto, 1989). 
For the low thrust maneuver, the Euler-Lagrange equations are 
used to generate a set of differential equations that are 
numerically integrated to obtain the final orbit. The difficulty 
caused by a lack of initial values for all variables in the same 
point (Two Point Boundary Value Problem) is treated by 
making iterations in the initial values of the Lagrange 
multipliers, using the gradient projection method (Bazaraa and 
Shetty, 1979). 

2 IMPULSIVE MANEUVERS 
In this case it is assumed that an infinite thrust acting during a 
negligible time can change the velocity of the spacecraft 
instantaneously. It is also assumed that the spacecraft will leave 
the Earth from a circular parking orbit with an altitude of 200 
km. The main goal is to obtain the values of the velocity 
increment, trip time and mass of fuel required for many 
trajectories, to select one of them for a more detailed analysis. 
The two scenarios considered here are (International Space 
University, 1989): 

1) A single mission with the spacecraft in a circular orbit 
around the Moon with an altitude of 100 km and 90 
degrees of inclination; 

2) A double mission with the two spacecrafts in different 
orbits: 

� The main spacecraft in a circular orbit around the Moon 
with an altitude of 100 km and 90 degrees of inclination; 
and 

� A sub-satellite (with no engines to perform maneuvers) in a 
elliptical orbit around the Moon with semi-major axis of 
3000 km, eccentricity of 0.37, argument of periapsis of 0.25 
degrees West and inclination of 90 degrees. 
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Using the above described "Two-Body model" approximation 
(Bate, 1973, chapter 1) for the Earth-spacecraft system, it is 
possible to obtain the trip time for different trajectories, all of 
them assumed to be elliptical with periapsis of 6570 km. The 
results are shown in Table 1 and Fig. 1 shows a sketch of the 
trajectories. The eccentricity is calculated by the equation 

a
r

1e p−=  (Bate, 1973, chapter 1), where a is the semi-major 

axis and rp is the periapsis distance (6570 km) of the orbit. The 
trip time is half of the period of the orbit, and it is calculated 

from 
µ

π=
2/3aT  (Bate, 1973, chapter 1), where µ is the 

gravitational parameter of the Earth (the product of the mass of 
the Earth by the universal gravitational constant). 

Table 1  - Orbital parameters and trip time for different 
trajectories to the Moon 

Orbit Semi-major axis 
(km) 

Eccentricit
y 

Trip Time in hr. 
(days) 

  1    500000   0.986   58.5 (2.43)  
  2    400000   0.983   61.0 (2.54)  
  3    300000   0.978   67.0 (2.80)  
  4    250000   0.974   73.9 (3.08)  
  5    230000   0.971   77.0 (3.21)  
  6    220000   0.970   83.2 (3.47)  
  7    200000   0.967  100.0 (4.17)  
  8    195485   0.966  119.6 (4.98)  

Using the impulsive approximation for the control, it is 
possible to evaluate the velocity increment necessary to send 
the spacecraft into Lunar Transfer Orbit (LTO). Four different 

orbits were chosen for detailed calculations: 2, 6, 7 and 8. The 
results are shown in Table 2. The apoapsis distance (ra) is 

calculated by the equation ( )e1ara +=  (Bate, 1973, chapter 
1) and the velocity increments are calculated by 

pp

a

rar
r

V µ−
µ

=∆  (International Space University, 1989). 

Table 2  - Velocity increment for LTO 
Orbit Apoapsis distance (km) ∆V (km/s)       
  2     793430      3.18 
  6     433430      3.14          
  7     393430      3.13          
  8     384400      3.11          

Then, the patched conic method (Bate, 1973) is used to 
calculate the maneuver to insert the spacecraft into the Moon’s 
orbit. It divides the trajectories in two parts: a) The first leg 
neglects the effect of the Moon and the Hohmann method can 

be used to transfer the spacecraft from its original parking orbit 
to an orbit that crosses the Moon's path; b) When the spacecraft 
reaches a position where the Moon's gravity field dominates its 
motion (sphere of influence of the Moon), the Earth's effects 
are neglected and the orbit is studied as a Keplerian lunar orbit. 
Using this approximation, the spacecraft arrives at the sphere 
of influence of the Moon with hyperbolic excess velocity, that 
is a velocity so high that does not allow the spacecraft to stay 
in orbit around the Moon. Then, it is necessary to apply a 
retrograde impulse to decrease its velocity to achieve an elliptic 
lunar orbit. Using the basic equations from the Two-Body 
model described above for the Moon-spacecraft system, it is 
possible to obtain the velocity of the spacecraft with respect to 
the Moon (assumed to be in circular orbit around the Earth) 
and the velocity decrement required. At this point it is 
necessary to consider the maneuvers in two scenarios, because 
the velocity decrement depends on how many spacecrafts are 
in the mission. If there is only one spacecraft, it is possible to 
assume that with small mid-course corrections it can achieve a 
hyperbolic arrival at the Moon with the desired periapsis 
altitude (1840 km) and orbit inclination (90 degrees). Then it is 
necessary to apply only one impulse, at the periapsis, to obtain 
the desired circular orbit. The velocity decrements are shown in 
Table 3. The mathematical expression to obtain the values is: 

rr
2

VV mm2 µ
−

µ
−=∆ ∞ , where µm is the gravitational 

parameter of the Moon, V∞ is the velocity of the spacecraft 
with respect to the Moon when the approaching starts and r is 
the radius of the circular final orbit around the Moon. 

Table 3  - Velocity decrement to insert one probe into 
Moon's orbit 

Orbit     ∆V (km/s)   
2     1.07 
6     0.91               
7     0.88               
8     0.79               

If there are two spacecrafts, it will be necessary to use a more 
complex maneuver, because the sub-satellite has no engine. In 
this case, the insertion into Moon's orbit will be done with both 
spacecrafts together, in the orbit desired for the sub-satellite. 
After the separation of the two spacecrafts, the primary 
spacecraft will be transferred to its final orbit. Assuming that 
the insertion is performed at the periapsis of the elliptical orbit 
of the sub-satellite and that, after separating from the sub-
satellite, the main spacecraft will be transferred to its final orbit 
using a bi-impulsive Hohmann Transfer, the results for the ∆V 
required can be calculated. They are shown in Table 4, where 
∆Vi is the velocity decrement for lunar insertion of both 
spacecrafts together and ∆Vt is the total ∆V to transfer the main 
spacecraft to its final orbit. The insertion is performed at the 
periapsis of the elliptical orbit because this is the point that 
requires the minimum amount of fuel. The velocity decrement 
for this phase of the mission is given by: 

s

m

ps

m

ps

m2

a2r
2

r
2VV µ−µ−µ−=∆ ∞ , where rps is the 

radius of the periapsis of the orbit of the sub-satellite and as is 
the semi-major axis of this orbit. 

The Hohmann transfer is the solution for a bi-impulsive 
transfer between two circular and coplanar orbits. It was 

Moon’s
Orbit

Parking
Orbit

1 2 3 4 5 6 7 8

Fig. 1 – Sketch of the orbits showed in Table 1. 
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created by Hohmann (1925). It is the most used result in orbital 
maneuvers. The transfer is as follows: 

a) In the initial orbit a 
( )

( ) 1
1rr

rr2
VV

0f

0f
00 −

+
=∆  (where 

r0 (rf) is the radius of the initial (final) orbit and V0 is the 
velocity of the spacecraft when in its initial orbit) is applied in 
the direction of the motion. With this impulse the spacecraft is 
inserted into an elliptical orbit with periapsis r0 and apoapsis 
rf; 

b) The second impulse is applied when the spacecraft is at the 
apoapsis. The magnitude is 

( ) f0
0f

0f rr
1rr

21VV
+

−=∆  and it circularizes the 

orbit. 
Table 4  - Velocity decrement to insert two probes in 

Moon's orbit 
Orbit ∆Vi (km/s) ∆Vt (km/s) 
2 0.78 0.29 
6 0.63 0.29 
7 0.60 0.29 
8 0.50 0.29 

The total consumption (launch from Earth and insertion around 
the Moon) for both approaches (∆V1 for a single mission and 
∆V2 for a double mission) are summarized in Table 5. To 
consider errors in the models involved and midcourse 
corrections, 10% was added to the ∆Vs. 

Table 5  - Total ∆∆∆∆V for both missions 
Orbit ∆V1 (km/s)    ∆V2 (km/s)    
2    4.68       4.68       
6    4.45       4.47       
7    4.41       4.42       
8    4.30       4.30       

With the total ∆Vs obtained, it is possible to calculate the fuel 
mass required for the mission. Three different values for the 
specific impulses (Isp) were assumed and 10% was added to 
include the mass of the hardware required for storage (Burke, 
1989). The results are shown in Tables 6 (single mission) and 7 
(double mission). In this last case, the difference in mass 
between the set of the two spacecrafts and the main spacecraft 
itself was neglected, since the mass of the sub-satellite will be 
very small. The equation used to convert ∆V into mass of fuel 
is 













 ∆−−=− )
gI
Vexp(1mmm
0sp

0f0
, where Isp is the specific 

impulse of the fuel used, g0 is the acceleration due to Earth’s 
gravity at sea level and m0 is the initial mass of the spacecraft. 

Table 6  - Mass of fuel required for a single mission 
Isp(s)  \  Orbit 2   6   7   8   
240 6.95 6.20 6.07 5.75 
290      4.61  4.17  4.09  3.90  
340      3.38  3.08 3.03  2.90  

Table 7  - Mass of fuel required for a double mission 
Isp(s)  \  Orbit 2   6   7   8   
240      6.95  6.26  6.10  5.75  
290      4.61  4.20  4.11  3.90  
340      3.38  3.12  3.04  2.90  

It is possible to have some alterations in the trajectory for many 
reasons. If it is necessary to change the orbit during the mission 
or, if a different parking orbit (or no parking orbit) around the 
Earth is used, the optimal trajectory may change. However, 
these results are still valid because these alterations do not 
affect the ∆V, trip time or mass of fuel consumed by a 
significant amount. The literature (Cornelisse, 1980) also 
confirms these values. 

The benefits of a short trip time are that it requires less time of 
tracking and has more safety (because there is some excess in 
velocity to compensate errors). The price to be paid for these 
benefits is that it requires more fuel. Considering these facts 
and the data available it is necessary to find the most 
economical orbit inside the range of safety, based on previous 
experience. Following a suggestion from Burke (1989), orbit 6 
was considered to be a good choice for a more detailed study. 

3 TRAJECTORY ANALYSIS 
With one nominal trajectory found, it is necessary to make a 
more detailed analysis of all the maneuvers involved. This 
analysis should include ∆V estimation, timing for mid-course 
corrections and predictions of the effects of the errors in 
direction and magnitude of the impulses applied in each phase 
of the mission. The same approach of studying two different 
scenarios (one or two spacecrafts) will be used. 

The first part of the analysis is about the mid-course 
corrections. After the launch, it is necessary to wait some time 
to make an accurate orbit determination and then apply the first 
impulse to correct the trajectory. According to the study done 
by the Jet Propulsion Laboratory (JPL, 1976), this first 
maneuver (that is used to correct errors during the launch 
phase) is expected to require about 40 m/s in ∆V (80 m/s in the 
worst case) and should be done about 10 hours after launch. 
The same document estimates that, with this first correction, 
the errors in the periapsis altitude of the final orbit around the 
Moon will be between 500 and 800 km, which is unacceptable, 
due to the high risk of having a collision with the Moon (the 
nominal periapsis altitude is only 100 km). Then, it is 
necessary to make one or two more corrections to obtain an 
acceptable value for this error. In the following calculation it is 
assumed that a second correction will occur between 20 h and 
40 h after launch and the magnitude will be between 5 and 15 
m/s, depending on the errors left by the first maneuver. The 
third maneuver is scheduled to occur about 20 h before the 
insertion (64 h after launch) and the range in magnitude 
expected is between 5 and 10 m/s. In spite of the small 
magnitude involved, this maneuver is very important to avoid a 
collision with the Moon and to obtain the maximum efficiency 
of the impulse applied during the orbit insertion. 

To have an idea of the errors involved, the errors in periapsis 
altitude after the third maneuver will be calculated. It is 
assumed that the maneuver will take place on the incoming 
asymptote of the lunar approach hyperbola. In this moment, the 
velocity of the spacecraft relative to the Moon (Vr) is 
(assuming a 3.47 days trip): 

 Vr = 2E  = 1058 m/s (1) 

which corresponds to the following set of orbital parameters: 

 a = 
2E

- mµ
 = -4377.7 km  (2) 
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 e = 
a
r-1 p  = 1.42 (3) 

 b = -a ( ) 2
12 1-e  = 4415.4 km   (4) 

where E is the total energy by mass of the spacecraft (km2/s2), 
a is the semi-major axis of the lunar approach hyperbola (km), 
µm is the gravitational parameter of the Moon (4903 km3/s2), e 
is the eccentricity, rp is the altitude of periapsis (km), and b is 
the parameter of impact (km), as shown in Fig. 2. 

Assuming errors of 0.5 degrees in pointing, 0.5% in velocity 
increment, 0.1 m/s resolution, 7 m/s in magnitude for the 
maneuver, and that the impulse will be applied normal to the 
velocity (to obtain maximum change in periapsis altitude and 
to represent the worst case for periapsis error propagation) we 
have, for the total errors expected in velocity increment (δ∆Vn) 
(JPL, 1976). 

   δ∆Vn = ( ) ( )( )[ ] 2
1

n
22

n
2 sinV+R+Vp δα∆∆  = 0.122 m/s (5) 

where p is the proportional error in velocity (0.5%), ∆Vn is the 
velocity increment to be applied in the maneuver (7 m/s), R is 
the resolution (0.1 m/s), and δα is the precision in pointing (0.5 
degree). This error in the normal direction will cause an error 
in the impact parameter (δb) approximately equal to: 
δb = r∆Vsin(δB) = 38800sin(0.122/1058) = 4.47 km (6) 

where δB is the angular error in Vr (δ∆Vn/Vn) and r∆V is the 
distance (from the Moon) where the maneuver is performed 
(38800 km, for 64 h after launch maneuver). This error can be 
expressed in terms of the error in eccentricity by: 

  δe = 
ea
bb

2
δ

 = 0.00073 (7) 

which means, in terms of error in periapsis altitude (δrp): 

  δrp = -aδe = 3.17 km (8) 

There is still another source of error, because a change in the 
magnitude of Vr represents an energy error that can be obtained 
by: 

  δa = 
r

r
V

Va2 δ
 = 0.51 km (9) 

This small component contributes in the variation of the 
periapsis altitude with: 
  δrp = -δa(e-1) = 0.21 km (10) 

Then, the total error is: 

  δrp = 0.21+3.17 22  = 3.18 km    (11) 

This value is very good, if it is considered that the nominal 
altitude of the periapsis is 100 km. It is also interesting to 
consider, only for safety reasons, the effect of 3σ errors (σ is 
the standard deviation), since the calculations performed before 
considered errors of 1σ. Repeating the calculations, the result 
is an error in periapsis altitude of 9.53 km, which is still very 
comfortable. 

After this, it is necessary to study in more detail the effects of 
the errors in the orbit insertion impulse. It is assumed that the 
impulse will occur in the nominal orbit, since errors due to the 
last maneuver can be corrected before the insertion, if 
necessary. 

According to the assumption that the trip time is 3.47 days, the 
velocity increment for orbit insertion is about 0.91 km/s. The 
error in magnitude of the velocity after insertion can be 
assumed to be proportional to the velocity increment to be 
applied, and a typical value is about 0.5% (Burke, 1989). This 
error can be transformed into error in semi-major axis by using 
the equation: 

  δa = 
E

VaVcδ
 = 10.26 km (12) 

where δV is the error in the velocity after insertion (km/s), Vc 
is the circular velocity at 100 km (1.63 km/s), and E is the total 
energy by mass of the spacecraft (km2/s2). Then, the maximum 
error in rp is 20.52 km (remember that 2a = ra + rp) in case of an 
overburn. If an underburn occurs, the error will cause an 
increase of the apoapsis radius, and this error can be corrected 
very easily with the low thrust available. The pointing error 
also causes a loss in ∆V proportional to the cosine of the error 
angle. Assuming 0.5 degree error, we have: 
 δ∆V = (1-cos(δα))∆V = 0.035 m/s (13) 

which is very small compared with the 4.56 m/s due to the 
proportional error assumed, but corroborates with an error of 
78.9 m (using equation 12). 

The pointing errors are also very important in post-insertion 
periapsis altitude. For a 0.5 degree pointing error the altitude 
error is about 8 km (JPL, 1976). If an error of 3σ is considered 
(1.5 degrees), the new value for the periapsis altitude error is 
about 24 km. 

Another important source of error is the mass of the spacecraft, 
which is not very well known due to the uncertainty in the 
mass of fuel consumed in the mid-course maneuvers. To 
transform this mass error to a velocity increment error (δ∆V) it 
is necessary to use the equation: 

   δ∆V =
0

0sp0

m
mIg δ

  (14) 

b Vr
rp

Moon

Spacecraft
approaching

 
Fig. 2 - Geometry of the Trajectory to the Moon. 
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where g0 is the gravity acceleration on the Earth's surface (9.8 
m/s2), Isp is the specific impulse of the combination fuel/motor 
used (290 s), δm0 is the error in mass (kg), and m0 is the total 
mass of the spacecraft. 

Assuming a total error of 50 m/s in the velocity increment for 
mid-course corrections, the corresponding δ∆V is about 2.84 
m/s. This error in ∆V implies an error of 6.4 km in semi-major 
axis and 12.8 km in the periapsis altitude (in case of overburn). 
In case of a 3σ error, this result changes from 12.8 km to 38.4 
km. Then, considering all errors described, the total error is 
(for 1σ case): 

  δrp = 12.8+8+0.0789+20.52 2222  = 25.47 km (15) 

For the 3σ case, the equation (15) gives the value 76.4 km. 
This means that a collision with the Moon is very improbable, 
even if an underburn technique (a technique of designing the 
motor to apply an impulse slightly smaller than the nominal 
value, and corrects the final orbit later) is not used. In the 
double mission (two spacecrafts), the insertion will be done in 
a higher altitude, which means that there is no necessity for 
studying the errors involved to avoid a collision with the 
Moon. 

4 LOW-THRUST TRAJECTORY 
This study was done with the objective of comparing the 
differences in fuel consumption for an Earth-Moon transfer 
with the use of a engine of low thrust. 

The spacecraft is supposed to be in a planar Keplerian motion 
controlled only by the thrust, whenever it is active. A Keplerian 
motion is a trajectory obtained when only the gravitational 
force of a point of mass is included in the dynamical system. It 
can be circular, elliptic, parabolic or hyperbolic. This thrust is 
assumed to have the following characteristics: 

i. Fixed magnitude; 
ii. Constant Ejection Velocity of the gases eliminated by 

the engine; 
iii. Free angular motions; 
iv. Operation in on-off mode. 

The solution is given in terms of the time-histories of the thrust 
(pitch angle), fuel consumed and duration of the propelled 
phase. The time-history of the thrust is a plot that shows the 
direction of the thrust in every instant that it is on. It is the 
control of the satellite. 

4.1 Formulation of the Optimal Control 
Problem  

This is a typical optimal control problem, and it is formulated 
as follows. 

Objective Function to be minimized: J = m0 – mf = X4, 
the difference between the initial and final mass of the 
spacecraft, that represents the fuel consumed. 

This objective function has to be minimized with respect to the 
control u(.), that is the time to start and to stop the engine and 
the pitch angle of the thrust at every instant of time (α: [t0,tf]→ 
R, α∈ C1 in [t0,tf]), since the magnitude of the thrust is assumed 
to be constant and the maneuver is planar (β = 0 in the 
equations below).

 

 

This system is subject to the following equations of motion: 
 dX1/ds = f1 = SiX1F1 (16) 
 dX2/ds = f2 = Si{[(Ga+1)cos(s)+X2]F1+νF2sin(s)} (17) 
 dX3/ds = f3 = Si{[(Ga+1)sin(s)+X3]F1 -νF2cos(s)} (18) 
 dX4/ds = f4 = SiνF(1-X4)/(X1W) (19) 
 dX5/ds = f5 = Siν(1-X4)m0/X1 (20) 
 dX6/ds = f6 = - SiF3[X7cos(s)+X8sin(s)]/2 (21) 
 dX7/ds = f7 = SiF3[X6cos(s)-X9sin(s)]/2 (22) 
 dX8/ds = f8 = SiF3[X9cos(s)+X6sin(s)]/2 (23) 
 dX9/ds = f9 = SiF3[X7sin(s)-X8cos(s)]/2 (24) 

where: 
 Ga = 1 + X2cos(s) + X3sin(s) (25) 
 Si = (µ X1

4)/[Ga3m0(1-X4)] (26) 
 )cos()cos(FF1 βα=  (27) 

 )cos()(FsinF2 βα=  (28) 

 )(FsinF3 β=  (29) 

and F is the magnitude of the thrust, W is the velocity of the 
gases when leaving the engine, ν is the true anomaly of the 
spacecraft. 

In those equations the state was transformed from the 
Keplerian elements (a = semi-major axis, e = eccentricity, i = 
inclination, Ω = argument of the ascending node, ω = argument 
of periapsis, ν = true anomaly of the spacecraft), in the 
variables Xi, to avoid singularities, by the relations: 
 X1 = [a(1-e2)/µ]1/2 (30) 
 X2 = ecos(ω-φ) (31) 
 X3 = esin(ω-φ) (32) 
 X4 = (Fuel consumed)/m0 (33) 
 X5 = t = time (34) 
 X6 = cos(i/2)cos((Ω+φ)/2)  (35) 
 X7 = sin(i/2)cos((Ω-φ)/2)  (36) 
 X8 = sin(i/2)sin((Ω-φ)/2)  (37) 
 X9 = cos(i/2)sin((Ω+φ)/2)  (38) 
 φ = ν +ω - s.  (39) 

and s is the range angle of the spacecraft.  

The number of state variables defined above is greater than the 
minimum required to describe the system, which implies that 
they are not independent and relations between than exist, like: 

1XXXX 2
9

2
8

2
7

2
6 =+++ . This system is also subject to the 

constraints in state, because five of the the Keplerian elements 
of the initial and the final orbit are fixed: a, e, i, ω, Ω. All the 
parameters (gravitational force field, initial values of the 
satellite, etc...) are assumed to be known. 

The equations for the Lagrange multipliers (pi) are (adjoint 
equations): 
 












−−+−= ∑

=

9

1j
554411jj

1

1 fpfpfpfp4
X
1

ds
dp  (40) 
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The condition that comes from the Principle of Pontryagin can 
be written as: 

Extremize ∑
=

9

1i
ii fp  with respect to α. 

This condition can be converted to give equations (using the 
values of fi and making the derivatives with respect to α equal 
to zero) that are used to give the value of α at every instant. 
The result is: 
 sin(α) = q2/S’ (49) 
 cos(α) = q1/S’ (50) 

where: 
 2

2
2
1 qq'S +±=  (51) 

 
( ) ( )[ ] ( ) ( )[ ]ssin1GaXpscos1GaXpXpq 3322111 ++++++=

  (52) 
 
 ( ) ( )scosGapssin Gapq 322 −=  (53) 

This problem can be solved by using the basic approach used 
in optimal control theory. First order necessary conditions for a 
local minimum are used to obtain the Euler-Lagrange equations 
and the optimal control angles at each range angle, leading to a 
"Two Point Boundary Value Problem" (TPBVP), where the 
difficulty is to find the initial values of the Lagrange 
multipliers (Prado and Rios-Neto, 1989). The range angle (s) is 
the angle that the line between the spacecraft and the center of 
the Earth makes with an arbitrary reference direction in space. 
It replaces the time as the independent variable in this problem. 
The treatment given here is the hybrid approach of guessing a 
set of values for the initial Lagrange multipliers, integrating 
numerically the Euler-Lagrange equations and then search for a 
new set of values for the initial Lagrange multipliers, based on 
a nonlinear programming algorithm. With this approach, the 
problem is reduced to parametric optimization with the initial 
values of the Lagrange multipliers as variables to be optimized. 

The method proposed by Biggs (1979) was used here, the 
"adjoint-control" transformation is performed to allow us to 
guess the control angles and its rates at the beginning of 
thrusting, instead of the initial values of the Lagrange 
multipliers. It is constituted by a set of equations that can be 
solved for the Lagrangian multipliers as a function of the 
control angles and its rates at the beginning of thrusting. With 
this, it is easier to find a good initial guess, and the 
convergence is faster. 

4.2 Numerical Method 
To solve the nonlinear programming problem, the well-known 
gradient projection method was used (Bazaraa and Shetty, 
1979). The algorithm was coded in single precision (48 bits) 
FORTRAN IV, and the calculations were performed in a 
VAX/VMS computer. 

5 RESULTS 
The low thrust propulsion system was studied only for the 
Earth-Moon trajectory and not for the lunar insertion phase. 
This is done because the insertion phase has to be performed in 
a short time, because the spacecraft has a high velocity with 
respect to the Moon and it will escape if a control is not used 
soon. The satellite is supposed to leave the Earth from a 
circular orbit with semi-major axis of 6570 km and to go to an 
orbit with eccentricity of 0.97 and semi-major axis of 220000 
km, that is the Lunar Transfer Orbit desired (Orbit 6 in Table 
1). This transfer is considered to be planar, because this is the 
less expensive case (in terms of fuel consumed) and it can be 
obtained with an adequate choice of the launch time. Two 
values were considered for the mass of the satellite after the 
low thrust maneuver: 150 and 180 kg. These values are 
compatible with a final mass of 100 and 120 kg in lunar orbit, 
respectively. The motor/fuel combination is supposed to have a 
specific impulse of 3500 s, and a thrust magnitude of 200 and 
20 N was simulated. Figs. 3 to 6 show the optimal control 
(pitch angle) for all combinations studied. Table 8 shows the 
fuel consumption and the duration of the propelled phase for all 
cases. 

Table 8 - Fuel consumed and duration of the propelled 
phase for all trajectories simulated 

Mission E-M (kg) Ins. (kg) Total (kg) Time (h)  
Impulsive 1 205.78 31.40 237.18 0.00             
Impulsive 2 247.69 38.16 285.85 0.00       
L. T. 1 22.46 31.40 53.86 10.70       
L. T. 2 14.85 31.40  46.25 0.71 
L. T. 3 27.12 38.16 65.28 12.92 
L. T. 4 18.26 38.16 56.42 0.87 

Impulsive 1: Single mission using an impulsive engine with 
specific impulse of 340 s; 

Impulsive 2: Double mission using an impulsive engine with 
specific impulse of 340 s; 
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L. T. 1: Single mission using an engine with 20 N and specific 
impulse of 3500 s, and assuming a mass of 150 kg for the 
spacecraft after the Low-Thrust maneuver; 

L. T. 2: Single mission using an engine with 200 N and specific 
impulse of 3500 s, and assuming a mass of 150 kg for the 
spacecraft after the Low-Thrust maneuver; 

L. T. 3: Double mission using an engine with 20 N and specific 
impulse of 3500 s, and assuming a mass of 180 kg for the 
spacecraft after the Low-Thrust maneuver; 

L. T. 4: Double mission using an engine with 200 N and 
specific impulse of 3500 s, and assuming a mass of 180 kg for 
the spacecraft after the Low-Thrust maneuver; 

E-M: Fuel consumed for the Earth-Moon trajectory; 

Ins.: Fuel consumed for the lunar insertion, assuming an engine 
with specific impulse of 340 s; 

Total: Total mass of fuel required (Earth-Moon trajectory + 
lunar insertion). 

Time: Duration of the propelled arc; 
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Fig. 3 - Pitch angle (deg) X Range angle (deg) for Low 

Thrust 1 maneuver. 
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Fig. 4 - Pitch angle (deg) X Range angle (deg) for Low 

Thrust 2 maneuver. 
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Fig. 5 - Pitch angle (deg) X Range angle (deg) for Low 

Thrust 3 maneuver. 
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Fig. 6 - Pitch angle (deg) X Range angle (deg) for Low 

Thrust 4 maneuver. 

6 STATION-KEEPING IN LUNAR ORBIT 
The purpose of this section is to talk briefly about the effects of 
the disturbing forces on the final orbit of the spacecraft, and 
design the maneuvers needed to keep the orbital parameters 
within an acceptable range of values. It will be assumed that 
the orbit around the Moon will be circular with a nominal 
altitude of 100 km. 

The Moon does not have atmospheric drag, and (at an altitude 
of 100 km) the disturbances caused by the Earth, the Sun and 
other external sources can be neglected, since the effects of the 
first three spherical harmonic terms of the gravity field of the 
Moon (JPL, 1976) are much larger. These assumptions 
simplify the problem but do not solve it, because there is not 
enough information available about the gravity field of the 
Moon to allow an accurate prediction of the behavior of the 
LPO's orbital parameters. The models currently available are 
based on the motion of the spacecrafts that were sent to the 
Moon previously. These models can make accurate predictions 
only for a spacecraft moving near the positions mapped. 

Scientists at JPL compared three different models of the lunar 
gravity field (Sjogren, 1971; Liu and Lang, 1972; Ferrari, 
1975). Their conclusion is that different models give different 
behaviors and we can only estimate the motion of the lunar 
polar orbiter (JPL, 1976). Unfortunately, only spacecrafts with 
low inclination and/or high altitudes were used for gravity 
mapping, so there are no good models for a low polar orbit. 

Using the models available, the main conclusion is that a near 
circular orbit will become more elliptical, but will retain the 
value of its semi-major axis. This means that the apoapsis 
altitude increases by the same amount that the periapsis 
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decreases (JPL, 1976). With this information, it is necessary to 
define a limit for the periapsis altitude, where the station-
keeping maneuver must be performed to avoid a collision with 
the Moon. Following the same values used in the JPL 
document (JPL, 1976) (based in the model developed by Liu 
and Lang, 1972) the value of 50 km will be used. This choice 
implies that one maneuver needs to be performed every 70 
days, since this is the time required for the periapsis altitude to 
reach the critical value of 50 km. 

With the aforementioned assumptions, the typical station 
keeping maneuver is to transfer the spacecraft from an 
elliptical orbit (periapsis altitude of 50 km and apoapsis 
altitude of 150 km) to a circular orbit with an altitude of 100 
km. This can be performed by using the bi-impulse Hohmann 
Transfer, described previously in this paper. The first impulse 
is applied at the apoapsis to rise the periapsis to an altitude of 
100 km. This first impulse requires a ∆V of 11.20 m/s. The 
second impulse is retrograde, applied at the periapsis, to 
decrease the apoapsis altitude to 100 km. This impulse requires 
a ∆V of 10.90 m/s. So, the total ∆V required is 22.10 m/s per 
maneuver. Then, since four maneuvers are necessary for one 
full year of operation, the total ∆V required is 88.40 m/s. If an 
additional 5% is added to compensate for the non-impulsive 
characteristic of the thrust, the final result will be about 93.0 
m/s per year. 

If  the mass of the spacecraft is assumed to be 100 kg, the 
required mass of fuel can be calculated by the equation 
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sp
f , and they are shown in Table 

9, for three kinds of fuel (including the 5% extra added to the 
∆Vs). 

Table 9 - Mass of fuel required for station keeping 
Fuel Isp (s) Mass (kg/maneuver) Mass (kg/year) 
Hydrazine 235   1.01 4.04 
Bi-prop A 290   0.82 3.28 
Bi-prop B 310   0.77 3.08 

7 CONCLUSIONS 
This paper showed the basic parameters for several trajectories 
to send, insert and keep a spacecraft in lunar orbit. The 
numerical results also showed that: with the error parameters 
used, there is no necessity to use an underburn technique for 
lunar insertion; the use of low thrust maneuver for the Earth-
Moon trajectory can make very large savings in fuel 
expenditure; a total ∆V of less than 100 m/s, divided into four 
maneuvers, is enough for station-keeping during one year of 
operation. 
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