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ABSTRACT

Motivated by present indirect evidences that galaxies are surrounded by dark

matter halos, we investigate whether their physical properties can be described

by a formulation of the virial theorem which explicitly takes into account the

gravitational potential term representing the interaction of the dark halo with

the barionic or luminous component. Our analysis shows that the application

of such a “two-component virial theorem” not only accounts for the scaling

relations displayed, in particular, by elliptical galaxies, but also for the observed

properties of all virialized stellar systems, ranging from globular clusters to

galaxy clusters.

Subject headings: galaxies: elliptical – galaxies: kinematics and dynamics –

galaxies: structure – galaxies: fundamental parameters - galaxies: halos – dark

matter – cosmology: theory
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1. Introduction

It is expected on very fundamental grounds that the state of equilibrium of self-

gravitating, time-averaged stationary stellar systems should be well described by the virial

theorem. In fact, elliptical galaxies, for instance, show a remarkable homogeneity, expressed

by a very tight kinematical-structural relationship, the so-called “Fundamental Plane” (FP,

Djorgovski & Davis 1987, Dressler et al. 1987). Since it is believed that these galaxies

represent equilibrium systems, their interconnected physical properties should reflect their

virialized condition. However, the FP is significantly “tilted” relatively to the relations

expressed by the virial theorem applied to a family of homologous objects. The nature of

this discrepancy is controversial and has been extensively debated in the literature (e.g.

Graham & Colless 1997, Ciotti, Lanzoni & Renzini 1996, Pahre, Djorgovski & de Carvalho

1998 and references therein).

The FP “problem” can be stated as follows. The virial theorem, applied to a stationary

self-gravitating system states that 2K + W = 0, where K is the kinetic energy and W is

the potential energy of the system. This may be re-written as 〈v2〉 = GM/rG, where rG

is the gravitational radius, defined by rG = GM2/|W |, 〈v2〉 is the mean square velocity

of the particles, G is the gravitational constant, and M is the total mass of the system.

These physical quantities may be translated to observational ones through the definition of

some kinematical-structural coefficients (Cr, Cv) which may or may not be constants among

galaxies: σ2
0 = Cv〈v2〉 and re = CrrG ; Ie =

(

M/2

πr2
e

) (

M
L

)−1

. M/L is the mass-luminosity

relation for the system; re its effective radius, that is the radius which contains half of its

total luminosity: L(< re) = Ltot/2; σ0 its central projected velocity dispersion, that is the

mean square projected velocity of stars at the galaxy center (measured inside a slit of finite

projected width); and Ie = L(< re)/πr2
e , is the mean surface brightness inside re in linear

units. Inserting these equations into the virial relation one finds: re = Cfpσ
2
0
I−1
e , where Cfp
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depends on the mass-luminosity relation and on the coefficients defined above (Cr, Cv). In

contrast, what one observes is that re ∝ σA
0
IB
e , with A ∼ 1.53, B ∼ −0.79, for elliptical

galaxies observed in the near-infrared (Pahre, Djorgovski & de Carvalho 1998). The reasons

for the deviation of the observed relationship as compared to the virial theorem are not well

established. One may postulate a systematic variation of the structural coefficients (galaxies

would form a non-homologous family of objects: Capelato, de Carvalho & Carlberg (1995,

1997); Hjorth & Madsen 1995), or yet a systematic trend of the mass to light ratio with

galaxy mass: M/L ∝ Mα (e.g. Dressler et al. 1987).

However, it should be noted that elliptical galaxies, as any other collapsed structures,

are probably surrounded by massive dark matter halos. The observed FP relations, on

the other hand, arise from the observed (i.e., barionic) component of these systems. It

seems thus natural to ask how the equilibrium state of the barionic component under the

influence of its massive halo would modify the simple one component virial theorem. In

fact, attempts to construct two-component models can be found in the recent literature.

For instance, Ciotti, Lanzoni & Renzini (1996) indicate that the FP tilt could be explained

by massive extended dark matter halos embedding the luminous matter of galaxies with the

following caveat: a non-realistic fine-tuning of the luminous-to-dark matter distributions

would be required in order to explain the small scatter of the FP correlations. On the other

hand, preliminary results of Kritsuk (1997) suggest that the FP for ellipticals and, also,

the observed deviation of dwarf spheroidal galaxies from it, may follow from the dynamical

equilibrium condition in the framework of a two-component model.

Attempting to visualize the physical properties of virialized stellar systems of various

scales into an integrated framework (the κ-space, c.f. Bender, Burstein & Faber 1992),

Burstein et al. (1997) (hereafter BBFN97) concluded that globular clusters, galaxies, groups

of galaxies and clusters of galaxies also show systematic trends in their observed properties,
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populating what they called a “cosmic metaplane” in their parameter space. This

metaplane, also tilted wrt the simple virial expectation, was interpreted as a combination

of FP-like tilts associated to the various stellar systems, possibly reflecting their different

stellar population and dissipation histories. However, under this interpretation, a fine-tuning

mechanism for the variation of M/L with mass, for every stellar system, had also to be

invoked in order to preserve the striking appearance of the metaplane (see also Schaeffer et

al. 1993). Also, their analysis made evident a “zone of exclusion” (ZOE) where no stellar

system could be found. This raises the question of which formation process would generate

such a trend and the mechanisms responsible for producing the metaplane itself.

In this Letter we tackle these questions by starting from the hypothesis that self-

gravitating stellar systems in the universe are embedded in dark halos. As a consequence,

the strict virial theorem must be replaced by a new equilibrium equation which takes

explicitly into account the gravitational potential produced by the massive halo in which

is embedded the luminous component. With this assumption, we present an alternative

model which may naturally explain the issues discussed above. Our paper is organized as

follows: in Section 2, we discuss the virial theorem for two-component systems; in Section

3, we apply it to observational data; and in Section 4, we discuss some of the implications

of our results.

2. The Two-Component Virial Theorem

The scalar virial theorem for the barionic component of a stellar system (component-2),

in steady-state equilibrium embedded in its dark matter halo (component-1), may be

readily deduced from the Jeans equation by assuming that, in addition to its self-potential,

it is also subjected to the external potential produced by the dark matter (see e.g. Binney

& Tremaine 1987; see also Limber 1959, Spitzer 1969, Smith 1980). In this case a new
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term is added to the gravitational energy of the system due to the interaction of the

two components. Assuming spherical symmetry we may write the gravitational energy of

luminous component, W2, as:

W2 = −G
∫

∞

0

ρ2(r)M2(r)

r
dV − G

∫

∞

0

ρ2(r)M1(r)

r
dV (1)

where Mµ(r) is the total mass of the µ-component, within the radius r. If we now further

assume that the dark matter halo - component-1 - is more extended than the barionic

component, having a not too steep density profile within the interior region containing

the luminous component, then we may approximate the second integral, which gives the

interaction energy, by:

W21 ≡ −G
∫

∞

0

ρ2(r)M1(r)

r
dV ∼ −4π

3
ρ0,1G

∫

∞

0

ρ2(r)r
3

r
dV = −4π

3
ρ0,1GM2〈r2

2〉 (2)

where ρ0,1 is the mean density of the dark matter halo within the region containing the

luminous component and

〈r2

2
〉 ≡

∫

r2ρ2(r)dV
∫

ρ2(r)dV
(3)

Thus, the virial theorem for the collapsed barionic component, 2K2 + W2 = 0, may be

written as:

〈v2

2〉 =
GM2

rG,2
+

4π

3
Gρ0,1〈r2

2〉 (4)

where rG,2 is the gravitational radius of the second component.

We see that in the presence of an extended dark matter halo the virial theorem

gets an extra term on its right hand side, which accounts for the interaction with the

extended dark matter halo (this is also known as the “Limber effect”). As we will see in

the next section, this term is essential for our understanding of the systematic trends of the

observed properties of the stellar systems we discussed before. In terms of the observational

quantities the modified virial theorem writes as:

σ2

0
= C∗(Iere + br2

e) where C∗ = 2πGCrCv

(

M

L

)

2

(5)
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and

b =
2

3

R

Cr

(

M

L

)−1

2

ρ0,1 with R =
〈r2

2〉
r2
e

(6)

Notice that in these equations all the structural coefficients as well as M/L refer to the

barionic component. Parameter b has dimension of a luminosity density whereas C∗ has

dimension of a less intuitive quantity (i.e., GM/L).

Eq.(6) is specially interesting, since it relates the parameter b to the central density of

the dark matter halo. We numerically analyzed various equilibrium models (specifically,

Jaffe, King and Sersic models, c.f. Binney & Tremaine 1987, Ciotti 1991, Ciotti & Lanzoni

1997) and found that CrCv ∼ 0.2, whereas R/Cr varies significantly, depending on the

models: R/Cr ∼ 10 − 25 for King or Jaffe models and ∼ 10 − 60 for the Sersic models.

We adopted R/Cr ∼ 20 as a typical value. It is important to stress that for galaxies this

approximation can introduce a factor of 2 difference in the parameter b.

3. Applying the Two-Component Virial Theorem

We will apply the two-component virial theorem (2-VT) in the context of the κ-space

parameter framework. This will allow us to directly compare the 2-VT predictions with

the extensive data provided by BBFN97. In this coordinate system the FP is seen edge-on,

projected on the (κ1, κ3) plane, and the two-component virial theorem (Eq. (5)) can be

expressed as :

κ3 =
log C∗

√
3

+
1√
3

log (1 + b10ω) (7)

where

ω ≡ (κ1 −
√

3κ2)/
√

2 = − log Ie/re (8)

that is, ω is measuring the central luminosity density of the stellar systems.
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¿From Eqs. (7) and (8) we see that the 2-VT defines a surface in the κ-space which

main characteristics may be best viewed through the curve defined by its intersection with

the (κ3, ω) plane, perpendicular to the (κ1, κ2) plane. A brief analysis of Eq. (7) shows that

it intercepts the κ3-axis at log C∗/
√

3. If there were no dark halo, b = 0, recovering the

usual 1-component virial theorem, κ3 = cte. Departure from this horizontal line at a given ω

depends on the term b10ω and thus on the density of the dark halo. For b10ω >> 1 it tends

to a straight line with a fixed slope of 1/
√

6 intercepting the κ3-axis at log(C∗b)/
√

3. That

is, the 2-VT predicts an asymptotic, characteristic, fixed tilt relatively to the 1-component

virial theorem. Notice that, within a factor depending on the structural coefficients of the

barionic component, the value of the mean central density of the dark matter halo is given

by this intercept.

In Figure 1a, we plot the data on the κ-space, projected on (κ1, κ3) plane for

self-gravitating stellar systems spanning all scales, from globular clusters to rich galaxy

clusters, using data presented in BBFN97. The two-component virial theorem curves,

given by C∗ = 8.28 and b = 200, are shown in dotted-line for the various ranges of the κ

parameters. This figure shows the striking compatibility of the “cosmic metaplane” with

the theoretical predictions of the two-component virial theorem - specifically, the fixed

asymptotic tilt relatively to the strict virial theorem.

We establish the 2-VT relation (Eq. (7)) by assuming two different hypothesis about

the mass-luminosity relation of the barionic component: (a) that its value is about the

same as found for the globular clusters, which seems reasonable since these systems are very

well described by the 1-component virial theorem, that is b10ωglob clust << 1 (see Bellazzini

1998); and (b) by adjusting the value of the κ3 intercept (that is, (M/L)2), to a maximum

value still giving a reasonable fit to the groups and clusters of galaxies. In doing that we

were attempting to take into account the presence non-stellar barionic mass and also for
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remaining galactic dark halos in these systems.

We find for case (a) (M/L)2 ∼ 1.6 (C∗ = 8.28), a value which agrees fairly well with

those for globular clusters (e.g. Pryor & Meylan 1993). For case (b), C∗ = 39.2, gives

(M/L)2 ∼ 7.4. The central densities of the dark matter halos were estimated after adjusting

the b parameter. For the galaxies (ellipticals) we found ρ0,1 ∼ 2.3× 10−2 M⊙/pc3 (b = 200),

whereas for the elliptical dominated groups and clusters of galaxies, ρ0,1 ∼ 5.8×10−6 M⊙/pc3

(b = 0.20, for case (a) and b = 0.004, for case (b)). The corresponding values for the spiral

galaxies and for the spiral dominated groups are about a factor 2 – 3 smaller due to the

fact that these systems appear slightly displaced towards larger values of ω.

In Figure 1b we clearly see that the points do not fill the space continuously. On the

contrary, they are arranged in some bands defined by specific values of κ3, which are related

to specific values of w through Eq.(7). The parameter w rules the luminosity density in

the systems and hence it is associated with their dissipation histories and the epoch when

the collapse happened (i.e. the density fluctuation spectrum). Thus, in the context of a

hierarchical clustering scenario, smaller systems collapse before and are more concentrated,

presenting higher luminosity densities (w more negative); while larger objects, collapsed

later, present lower luminosity densities (w more positive). The scatter in the perpendicular

direction to w probably reflects a change in mass which produces the bands seen in Figure

1b. The gaps between different objects on the (κ1, κ2) plane were firstly noted by BBFN97,

but now we have quantified this feature by the parameter w. A full account of the role of

the parameter w is beyond the scope of the present Letter.
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4. Discussion

This work is based on the hypothesis that self-gravitating, equilibrium stellar systems

in general possess an extended dark matter halo. In order to describe their equilibrium

state, a modified, two-component virial theorem must be taken into account which predicts

the existence of a fundamental surface. We found a remarkable compatibility of this

hypothesis with the observed properties of a great range of stellar systems. Particularly, the

“cosmic metaplane”, first discussed by BBFN97 as an ensemble of interrelated fundamental

planes, is shown to reasonably follow the fundamental surface here derived.

Furthermore our analysis reinforces the view that the FP relations should arise as a

correction to the observed (luminous) parameters relations for the presence of the dark

(unseen) matter surrounding these systems. However, as pointed out by Ciotti, Lanzoni &

Renzini (1996), this does not completely solve the FP problem, since a fine-tuning of the

dark-to-luminous matter distributions is required in order to explain the small scatter of the

FP correlations. Although no such a mechanism has been proposed or known up to now,

there is at least one piece of evidence that it may exist, as evidenced by the extremely small

scatter of the FP solutions displayed by the end products of hierarchical merger simulations

discussed by Capelato, de Carvalho & Carlberg (1995, 1997). This would suggest that

indeed the fine-tuning mechanism is related to the hierarchical scenario of formation of

galaxies. Alternatively, an explanation for the FP, avoiding fine-tuning of any type, is given

by our model which includes a small curvature in the FP correlation. However, giving the

clustering scale represented by elliptical galaxies, the scatter of the FP should be known

with much higher accuracy.
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– 11 –

acknowledge fellowships from FAPESP under grants 96/03052-4 and 97/13277-6,

respectively. This work was partially supported by CNPq and PRONEX-246.



– 12 –

REFERENCES

Bellazzini, M., 1998, New Astron. 3, 219.

Bender, R., Burstein, D., & Faber, S. M., 1992, ApJ, 399, 462.

Binney, J. & Tremaine, S., 1987, “Galactic Dynamics”, Princeton Series in Astrophysics.

Burstein, D., Bender, R., Faber, S. M., & Nolthenius, 1997, AJ, 114, 1365.

Capelato, H.V., de Carvalho, R.R., Carlberg, R.G., 1995, ApJ, 451, 525.

Capelato, H.V., de Carvalho, R.R., Carlberg, R.G., 1997, in “Galaxy Scaling Relations”, p.

331, L.N. da Costa & A. Renzini Eds., Springer-Verlag.

Ciotti,L., 1991, A&A, 249, 99.

Ciotti,L., Lanzoni,B., Renzini, A., 1996, MNRAS, 282, 1.

Ciotti,L., Lanzoni,B., 1997, A&A, 321, 724.

Djorgovski, S. G. & Davis, M., 1987, ApJ, 313, 59.

Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R.L., Faber, S., Terlevich, R.J., Wegner,

G., 1987, ApJ, 313, 42.

Graham, A., Colless, M., 1997, MNRAS, 287,221.

Hjorth, J., Madsen, J., 1995, ApJ, 445, 55.

Kritsuk, A.G., 1997, MNRAS, 284, 327.

Limber, D.N., 1959, ApJ, 130, 414.

Pahre, M. A., Djorgovski, S. G. & de Carvalho, R. R., 1998, AJ, 116, 1591.



– 13 –

Pryor, C., & Meylan, G., 1993, ASP Conf. Ser. Vol. 50, Structure and Dynamics of Globular

Clusters, ed. S. Djorgovski & G. Meylan, p. 357.

Schaeffer, R., Maurogordato, S., Cappi, A., Bernardeau, F., 1993, MNRAS, 263, L21.

Smith Jr., H., 1980, ApJ, 241, 63

Spitzer,L., 1969, ApJ, 158, L141.

Fig. 1.— Projection in the κ-space of the data presented by BBFN97. The symbols are

as follow: open circle - groups dominated by elliptical galaxies ; closed circle - elliptical

galaxies; open square - spiral galaxies; closed square - clusters of galaxies; star - globular

clusters; open triangle - groups dominated by spiral galaxies. Panel (a) shows κ1×κ3, where

the dotted lines indicate the variation of κ2 from -2.5 to 5.0. For both projections the 2-VT

model is constrained by C⋆ = 8.28 and b = 200. Panel (b) displays the projection κ1 × κ2,

where the dotted lines represent different values of κ3 as indicated.
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