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Abstract. A linear mixing model was applied to coarse spatial resolution data
from the NOAA Advanced Very High Resolution Radiometer. The reflective
component of the 3-55-3-95 um channel was used with the two reflective channels
0-58-0-68 ym and 0-725-1-1pum to run a Constrained Least Squares model to
generate fraction images for an area in the west central region of Brazil. The
fraction images were compared with an unsupervised classification derived from
Landsat TM data acquired on the same day. In addition, the relationship
between the fraction images and normalized difference vegetation index images
show the potential of the unmixing techniques when using coarse spatial
resolution data for global studies.

1. Introduction

Assuming the atmospheric effect is constant, the radiation detected by any sensor
will be influenced by a mixture of the component surface materials (mixed pixels)
unless the target is composed of a single material (pure pixel). The radiometric
characteristics of the Local Area Coverage (LAC, 1-1kmpixels at nadir) of the
National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very High
Resolution Radiometer (AVHRR) are more affected by the mixed pixel problem
than finer spatial resolution satellite sensor imagery.

Efforts to address the problem of mixed pixels in these data is of increasing
importance as emphasis is being placed for providing global-scale monitoring
(Townshend 1992). Most investigations have compared the information content of
AVHRR data to fine spatial resolution data as from Landsat Thematic Mapper
(TM), for example Iverson ez al. (1989) and Cross (1990). Mixture modelling offers
an alternative. Quarmby et al. (1992) presented a linear mixture model for crop area
estimation using multi-temporal AVHRR channel 1 and 2 data. Cross ef al. (1991)
implemented a linear mixing model with the first four channels of AVHRR to
monitor tropical deforestation in Rondonia, Brazil and Ghana. Two thermal
infrared channels (3 and 4) were included because they were considered to contain
information for forest/non-forest discrimination. This implies that each cover type is
thermally distinct and the sensor response to the surface properties in question
behaves linearly with thermal emission.
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Thermal emission is governed by Planck’s equation, therefore a linear model
may not accurately represent the sensors radiometric response to a surface target.
This problem may be minimized by using all reflective bands as is done with
Thematic Mapper data or, as in the case of the AVHRR 3-75 um band which is a
mixture of reflected and emitted energy, use only the reflective component (Kaufman
and Nakajima 1992).

Several techniques (Smith er a/. 1985, Shimabukuro 1987, Adams er al. 1989) to
solve the mixture problem have been applied to fine spatial resolution data sets such
as Viking images of Mars (Adams er al. 1986); MSS (Multispectral Scanner System)
and TM data (Adams and Adams 1984, Shimabukuro 1987); and AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) data (Gillespie er al. 1990). All of the above
techniques produce similar results (Shimabukuro 1987) and their use is usually
dictated by an investigators personal preference.

We present a technique to apply mixture models to coarse spatial resolution
AVHRR data to generate vegetation, soil, and shade fraction images from the
proportion of each component within the pixels. Because of our familiarity with the
method, we chose to apply the Constrained Least Squares (CLS) method (Shima-
bukuro and Smith 1991) to an AVHRR image covering the central-western region of
Brazil. The validation of the model for this kind of data will be performed by
comparing the resulting fraction images with the classification derived from coinci-
dent Landsat/TM and AVHRR NDVI images.

2. Study site

The study site is located between 17° 50’ to 18° 20’ south latitude and 52° 40’ to
53°20" west longitude on the border of Goias, Mato Grosso and Mato Grosso do
Sul States. The site includes the Emas National Park comprising about 131000
hectares in which the ‘cerrado’ vegetation is well represented (Redford 1985, IBDF/
FBCN 1978). The site includes a number of small watercourses, the sources of two
tmportant rivers, riverine gallery forest and marshes, large areas of grassland (the
‘campos’), and some open woodland (the ‘cerrados’) consisting of small thinly
distributed trees seldom more than three metres high (Erize 1977). The surrounding
land of the Park is used for agriculture and cattle grazing.

3. Method
3.1. AVHRR 3-75 um reflective component

The AVHRR 3-75 um band signal is a mixture of thermal and reflected energy.
Typically the latter respresents less than 10 per cent of the signal for bare soil and
urban features and less than 3 per cent for green vegetation (Kerber and Schutt
1986, Schutt and Holben 1991, Kaufman and Remer 1993). The reflective compo-
nent may be approximated by assuming the emitted energy (brightness temperature)
in the adjacent thermal band (10-5 to 11-5 um) is related to the emitted energy in the
3-75um band at ambient temperature through the Planck Function as follows
(Kaufman and Nakajima 1992):

Ly=L;,+L,, (N
where:

L;=Total radiant energy measured by the satellite sensor at 3-75 um
L,,=The reflective energy at 3-75 um

L,,=The emissive ener
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L;,=The emissive energy at 3-75 um

The reflective and emitted components may be expanded according to:

Ly=p3F pu,/n+ R3(T)*(1—p) @)
where:

p5; = Reflectance in the 3-75 ym band

F_=3-75 band solar irradiance at the bottom of the atmosphere

u, = Cosine of the solar zenith angle

R4(T,)=Emitted radiance at 3-75um using the 11-0 um brightness computed
with the Planck Function

Solving for pj:
p3=(L3—R3(T3))/(Fopto/n— R3(T3)) €)

This formulation ignores the differential atmospheric transmission in both bands
and assumes the target surface is flat and the satellite sensors view direction is nadir.
The digital numbers are converted to brightness temperatures using the calibration
coefficients and Planck Function coefficients given in the NOAA-9 users Handbook
(Kidwell 1988).

3.2. Linear mixture model

The response of each pixel in any spectral wavelength was taken as a linear
combination of the responses of each component assumed to be in the mixed target.
Thus each image pixel contains information about the proportion and the spectral
response of each component within the ground resolution unit. The basic mixture
model may be formulated as:

ri:Zaij*xjﬁ-ei (4)
where:

r;=measured satellite sensor response for a pixel in spectral band i
a;;=spectral response of mixture component, j, for spectral band i
x;=proportion of mixture component, j, for a pixel

¢;=the error term for spectral band i.

L

Subject to:
Xx;=1 and x;=0 for all.

The Constrained Least Squares (CLS) method estimates the proportion of each
component inside the pixel by minimizing the sum of squares of the errors. A linear
constraint is added, since the sum of the proportions for any resolution element
must be one and the proportion values must be nonnegative. This method was
developed for three and four components assumed to be inside the pixel (Shimabuk-
uro 1987). In this study, the CLS method is discussed assuming three components
within the pixel. In addition, the error image for each spectral band and the mean
error image were generated. They are computed for each pixel as follows:

ERROR =SQRT (r;,—Xa;;x;)2=e;, and

ij

MEAN ERROR =(Z¢;)/m
where, m=number of spectral bands.
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Table 1. Spectral responses
re;

3.3. Approach
The CLS method was applied using TM and AVHRR data acquired on 29 July
1988. The imagery, centred on Emas National Park, covers approximately 100 by

100km and 560 by 560 km for TM and AVHRR respectively. For this study, only Channel r’

TM channels 3 (0-63-0-69 um), 4 (0-76-0-90 um), and 5 (1-55-1-75 um) were avail- .

able. The AVHRR, channels used were 1 (0-58-0-68 um), 2 (0-725-1+1 um), and the 5 >

reflective component of channel 3 (3-55-3-93 um). 3Refl 0-78
n=>50

The ‘pure pixel’ for e:
the image. The spectral r
estimated by regressing e
the TM fraction images
derived from the regressi
derived fraction images w
difference vegetation inde

B 'CERRADO"
B CAMPO CERRADO" CUT AREAS
B 'CAMPO LIMPO" W WATER/BURNED AREAS

M BARE SOIL 1

Figure 1. Land cover classification derived from Landsat TM data using unsupervised Figure 2. Colour composits
classification (K-means).
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3.3. Approach

The CLS method was applied using TM and AVHRR data acquired on 29 July
1988. The imagery, centred on Emas National Park, covers approximately 100 by
100 km and 560 by 560 km for TM and AVHRR respectively. For this study, only
TM channels 3 (0:63-0-69 um), 4 (0-76-0-90 um), and 5 (1-55 175 um) were avail-
able. The AVHRR, channels used were 1 (0-58-0-68 um), 2 (0-725-1-1 um), and the
reflective component of channel 3 (3-55-3-93 ym).

I

5 & o
# "'CERRADO" ¥ BARE SOIL 2

# 'CAMPO CERRADO" CUT AREAS
Bl CAMPO LIMPO" M WATER/BURNED AREAS
B BARE SOIL 1

Figure 1. Land cover classification derived from Landsat TM data using unsupervised
classification (K-means).

Table 1. Spectral response:
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Table 1. Spectral responses (or vegetation. soil. and shade for AVHRR channcls estimated
regressing with the TM fraction images.

DN
Channel 2 Vegetation Soil Shade
1 0-781 218 278 11-3
2 0-933 46-5 42-2 10-3
3Refl 0-782 59 84 0-0

n=>50

The *pure pixel’ for each mixture component in the TM scene was selected from
the image. The spectral responses for vegetation, soil, and shade for AVHRR were
estimated by regressing each AVHRR channel against the corresponding pixels in
the TM fraction images (Richardson er al. 1975). The spectral responses were
derived from the regression coefficients and used as inputs for the CLS model. The
derived fraction images were compared to the TM results, and related to normalized
difference vegetation index NDVI images for model validation.

e

Figure 2. Colour composite of fraction image (vegetation=red, soil =green, and shade=

blue) derived from AVHRR data.
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Table 1. Spectral responses for vegetation, soil, and shade for AVHRR channels estimated
regressing with the TM fraction images.

DN
Channel r? Vegetation Soil Shade
1 0-781 21-8 27-8 11-3
2 0-933 465 422 10-3
3Refl 0-782 59 84 00

The ‘pure pixel’ for each mixture component in the TM scene was selected from
the image. The spectral responses for vegetation, soil, and shade for AVHRR were
estimated by regressing each AVHRR channel against the corresponding pixels in
the TM fraction images (Richardson er al. 1975). The spectral responses were
derived from the regression coefficients and used as inputs for the CLS model. The
derived fraction images were compared to the TM results, and related to normalized
difference vegetation index NDVI images for model validation.

Figure 2. Colour composite of fraction image (vegetation=red, soil =green, and shade=
blue) derived from AVHRR data.
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LOW . HIGH

Figure 3. (A) NDVI, (B) vegetation, (C) soil and (D) mean error images derived from
AVHRR data over the study site.

4. Results and discussion

The unsupervised classifier, based on K-means, identified 13 clusters and were
rearranged into the following 7 classes according to ground truth reported by
Shimabukuro er al. (1991): Water and burned areas, ‘cerrado’, ‘campo cerrado’,
‘campo limpo’, bare soil 1, bare soil 2, and cut areas (figure 1). The spectral response
for shade was searched in water and burned areas classes based on similar low
spectral responses (Richardson er al. 1975, Adams et al. 1986, Shimabukuro 1987,
Gillespie ef al. 1990). The spectral responses for vegetation and soil were searched
inside the ‘cerrado’ and cut arcas classes, respectively.

The coefficient of determination, r?, and the spectral responses of the compo-
nents for the AVHRR channels are presented in table 1. The vegetation, soil, and

shade fraction images were
model for AVHRR data (fi
1), in general, there is a
fraction images is that th
component within the pixe
and shade=blue), yellow 1
bare soil.

There was a visual simil
and B). The NDVI values w
0900 for TM (n=75) an
agreement between the hi
clusters from the unsuper
performed on these data se
mean error images (figure
aggregates.

Figure 4. Vegetation fractior




from

vere

do’,
nse
low
087,
hed

pO-
and

Remote Sensing Letters 2237

shade fraction images were generated using these spectral responses in the mixture
model for AVHRR data (figure 2). Comparing to the TM classification result (figure
1), in general, there is a good agreement between them. The advantage of the
fraction images is that they contain physical information, i.e., amount of each
component within the pixel. For example, in figure 2 (vegetation =red, soil = green,
and shade =blue), yellow means that a pixel has some amount of vegetation and
bare soil.

There was a visual similarity of vegetation fraction and NDVI images (figure 3A
and B). The NDVI values were well correlated by the fraction images (r>=0-952 and
0-900 for TM (n=75) and AVHRR (n=90), respectively). Also there is good
agreement between the higher soil pixel values and the corresponding bare soil
clusters from the unsupervised classification. Note that cloud screening was not
performed on these data sets yet they are easily detected in the vegetation, soil and
mean error images (figure 3B, C, and D) as a vertical line of light coloured cell
aggregates.

LOwW HIGH 100 XM

Figure 4. Vegetation fraction image derived from AVHRR data covering a large area
around the study site.
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HIGH 140 KM

Figure 5. Soil fraction image derived from AVHRR data covering a large area around the
study site.

Figures 4 and 5 show the vegetation and soil fraction images, respectively,
derived from AVHRR data over a large area (512 by 512 pixels) around the study
site. Again the similarity between NDVT and vegetation fraction shows the potential
of extending the linear mixture technique well beyond the boundaries of the defining
components using coarse spatial resolution data. As stated previously, the disagree-
ment between these images for the cloudy pixels indicates a cloud screening
algorithm must be employed for most large area investigations. In addition, the soil
fraction image seems to be useful for tropical deforestation studies since it contains
information about bare soil proportion within the pixels. Also, the shade image
contains information that can explain the vegetation index response, especially for
the tropical forest which from the multi-layer structure has a high amount of shade.

5. Conclusions

As the information contained in the AVHRR remote sensing resolution elements
are mostly a mixture of several components, the linear mixing models appear to be a
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useful tool for image analysis. Further quantitative assessment of the pixel propor-
tions is required to fully interpret the results from mixture models. Rigorous
evaluation of the technique beyond the region of component definition is required to
apply the approach to coarse resolution data such as AVHRR.
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