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ABSTRACT 

In tropical ecology studies, forest classification is a key issue. Although there is no widely 
accepted forest classification criterion, it is well known that texture is an important factor 
to discriminate forest types and other land cover, particularly when using radar images. 
The two-dimensional autocorrelation function (ACF-2D) seems to characterize better the 
SAR textures, but its direct estimation is not precise in general. Autoregressive moving 
average (ARMA) modelling for time series is a method used to obtain better estimates of 
the spectral density function (SDF), with less training data. In this paper is proposed and 
tested a method for SAR texture sample classification based on two-dimensional ARMA 
modelling. Fifteen samples of primary forest and five samples of non-forest (pasture and 
agricultura' crops) were collect from SAREX data (C-band, HH polarization, 6m res-
olution, 7 looks) in the Tapajós National Forest (Flona) region in Pará state, Brazil. 
Two-dimensional AR models (a subset of ARMA models) were estimated for each one 
of the samples. Euclidian distances were computed between the model coefficient vector 
of the samples and the average coefficient vector for the two classes (defined here as the 
class vectors). The coefficient vectors formed two perfect clusters, corresponding to each 
one of the classes, in a non-linear mapping of the coefficient space. This result demon-
strated that these classes can be discriminated by using this method. Similar procedure 
was tested using the angle between sample vectors and the class vectors, and clusters were 
also observed. 

1 INTRODUCTION 

Texture is an important factor to discriminate forest types and other land cover, particularly when using 
radar images. However there is no widely accepted mathematical definition for texture which comprises ali 
types of texture that can be found in nature. Traditional texture measures, like concurrence matrix derived 
features and structural approaches have failed to characterize texture in synthetic aperture radar (SAR) images 
adequately because of the strong influence of the speckle noise. Other commonly used features, like the coefficient 
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of variation, although well fitted for the SAR theory, can not gather ali the texture information, being considered 
a simple roughness measure. 

The two-dimensional autocorrelation function (ACF-2D) seems to characterize better the SAR textures, but 
its direct estimation is no t precise in general. Distance of ACF-2D has been successfully proposed as a tool 
to classify SAR texture samples (Dutra, 1990), but it needs a large amount of training data to have a good 
estimation of the involved ACFs. Autoregressive-moving average (ARMA) modelling is a method normally 
used to obtain better estimates of the spectral density function (SDF), with less training data. Due to the 
possibility of choosing different types of models and the method of order estimation, ARMA modelling provides 
more flexible assumptions than the implicit one that unobserved data outside the window is zero, used in the 
traditional ACF estimates. 

The use of ARMA models does also have other advantages, like the use of fewer coefficients to represent a 
particular AGF structure and the direct use of the model for simulation. In this paper is proposed and tested 
methods for SAR texture sample classification based on two-dimensional ARMA models (ARMA-2D). The the-
ory and methods for estimating ARMA-2D models are not still fully developed, being available only methods for 
estimating two-dimensional Autoregressive (AR-2D). An approximation to two-dimensional ARMA modelling 
is achieved by considering the texture samples as seasonal one-dimensional ARMA process by concatenating 
rows of the image data. 

2 ARMA MODELS FOR UNIVARIATE TIME SERIES 

A time series can be described by a sequence of random variables yi, y2, • • • , yN These series are modelled 
as being generated by a sequence of independent shocks sample values of a white noise process with zero 
mean and cr,2„ variance, which is the input of a linear filter that characterizes the process. This filter is defined 
by the equation: 

Eakwi_k+Epi yi_i +it 	 (1) 
k=0 	j=1 

where ft is the expected value of yi. 

This is called an autoregressive-moving average model of order p and q (ARMA(p,q)); ao is normally set 
to one. Specialized models are derived from eq. (1); for q = O an autoregressive model of order p (AR(p)) is 
obtained and for p = O (no regressive terms), a moving average model of order q (MA(q)) is defined. Note that 
these models are causal, because the output, given certain initial conditions, depend only on the past values of 
the random process and past shocks. 

Preliminary estimation of model parameters are obtained, from existing training data, by examing the plots 
of the autocorrelation function (FAC) and the partial autocorrelation function(FAP) to help decide the model 
()niers. A non-interative method is used (Box and Jenkins, 1970) to determine a first set of model coefficients 
which is'used as initial guess to an iterative maximum likelihood approach. 
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3 THE ESTIMATION OF TWO-DIMENSIONAL ARMA MODELS USING 
CONCATENATION 

Univariate ARMA models can be generalized to generate two-dimensional random fields, by considering 
proper support regions on the plane. The notion of past is ill defined for the plane -and it is replaced by 
the recursive computability notion (Dudgeon and Mersereau, 1984). A two dimensional model is recursively 
computable if one uses a support region which permits direct filtering or synthesis (obtaining y i  from wi) and 
inverse filtering or analysis (obtaining wi from yi) in only one pass. The most used support regions are the 
so called non symmetrical half plane support (NSHP) and the quarter plane (QP) support (Kay, 1988). The 
estimation of two-dimensional ARMA models, either using NSHP support, also known as unilateral ARMA 
models (UARMA), or using QP support (QARMA) are not trivial, being available (Marple, 1987) only least 
squares or the so called Yule-Walker estimates solution for the QAR models (Therrien, 1989). 

Trying to overcome the problems found for estimating true two-dimensional models, one assumes images as 
a two-dimensional separable process or an image is linearized through the concatenation of rows or columns. 
In these cases unidimensional methods can be readily applied, in spite of the inaccuracies implied by the given 
hypothesis. In this paper, SAR images are linearized by concatenating stacked portions of image rows. A 
non-zero coefficient at lag multiple of the size of the row (or column) would correspond to a pixel contiguous to 
the pixel being generated (Dutra, 1990). 

The methodology can be briefly described by the following steps: 

1. Obtain data from the training areas by concatenating segments of rows or columns. 

2. Remove the average value of data and plot the autocorrelation function (ACF) and partial autocorre-
lation function (PAF). Keep the lag whose ACF value falis into confidence interval as initial maximum 
value for q. Keep the lag whose PAF value falis into confidence interval as a intial maximum value 
for p. 

3. Obtain preliminary estimates of ARMA(p, q), AR(p), MA(q). Eliminate models that result non-
causal or non invertible by sistematically reducing p and/or q for the three types of models. 

4. By using confidence intervals for the coefficients eliminate those which are non-significant, which will 
not be considered for the next steps. 

5. Submit the models to maximum likelihood estimation. Keep the mode' with smaller number of 
coefficients. This is the parsimony principie which considers that a better model is a simpler one. 
Smaller models also result in smaller filters which have better performance crossing region boundaries. 

Note that the original two-dimensional nature of data will quickly reveal the models support regions. 

4 ESTIMATION AND CLASSIFICATION OF FOREST TEXTURE MODELS 

To test the methodology fifteen test sites were selected from Tapajós National Forest (Flona) in Brazilian 
Amazônia and five test sites were selected from regrowth areas beside Flona. Tapajós National Forest is a 
forest reserve under the administration of the Brazilian Institute of the Environment (IBAMA). Its geographic 
coordinates are: S 02°40' to S 04°10' and W 54°45' to W 55°00'. The forest localization is shown in figure 1. 

The estimations were initially restricted to UAR models that were estimated for ali twenty training sites, 
using the methodology given in the previous section. Figure 2 presents the average models for the forest and 
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Figure 1: Tapajós National Forest localization. 

non-forest classes. 1f ARMA models are good descriptors for texture, ali models for the same class should cluster 
in the coefficient space. Due to high dimensionality of the coefficient space, a non-linear mapping using distances 
between each training pattern and the average model (Therrien, 1989) was used to visualize the distribution of 
model patterns in the feature space. 

Table 1 presents the calculated distances between the model vectors and the average model vectors. (DF 

represents the average model vector for forest, (1)i are the model vectors for the forest training arcas, qiNF is 
the average model vector for non-forest, being W vectors for non-forest training areas. Table 2 presents the 
calculated angles between training vectors and the average vectors. Angle in this context is also a measure of 
how model vectors are similar. 

Figure 3 plots the distances of ali training vectors to non-forest average vector ou the vertical axis and the 
distances to the average forest model vector on the horizontal axis. Figure 4 plots the angles of training vectors 
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Figure 2: Average UAR models for (a) Forest and (b) Non-Forest. 

to the same average vectors. It is dear from the plots that distances between vectors have better performance. 

From figure 3 is seen that vector distances to forest model vector would be enough to separate forest from 
non-forest, while with angles, the two features are needed to separate regions, although one non-forest vector 
can not be linearly separated. 
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Figure 3: Distances between the model vectors and average mode' vectors. Figure 3: Distances between the model vectors and average mode' vectors. 
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WNF 

41 0.132 0.390 
(1) 2 0.201 0.178 
(11,3 0.164 0.323 
(D4 0.174 0.298 
(I)5 0.206 0.211 

0.217 0.288 
(I)7 0.163 0.398 
(1)8 0.113 0.243 

' (Dg 0.153 0.332 
(I)10 0.227 0.475 
4)11 0.082 0.258 
4)12 0.208 0.457 
4)13 0.143 0.357 
4) 14 0.117 0.273 
4) 15 0.126 0.335 

41 1 0.290 0.127 
IP 2 0.364 0.127 
W3 0.415 0.187 
41 4 0.276 0.121 
gi 5 0.267 - 0.175 

Table 1: Distances between the model vectors and average model vectors. 

5 CONCLUSIONS AND FUTURE WORK 

ARMA modelling is shown to be a potencially good tool to characterize and discriminate SAR textures. 
Although no maximum likelihood estimators are available to estimate true two-dimensional ARMA models, 
simplifications, in this case, transforming two-dimensional process into one dimensional by concatenation, can 
be used to determine aproximate two-dimensional ARMA models. Succesfull test were made with UAR models 
to discriminate different SAR textures. Future work will be focused into testing other SAR textures and types of 
models for modelling and discrimination. Separable ARMA estimation will be used to access its performance as 
texture descriptor and discriminatory properties. Also ARMA modelling provides a good theorectical framework 
to develop statistical texture descriptors. 
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Table 2: Angles between the model vectors and average model vectors. 

(I)  F 41  N F 

' ' 4'1 4.659 9.260 
4•2 7.181 9.052 
(1) 3  8.509 12.274 
(1) 4 8.980 11.242 
4.5 9.150 9.761 
(1)6 11.161 11.902 
4) 7 7.294 12.272 
(1)8 5.208 7.890 
(1)9 7.922 13.389 
(Dio 6.530 9.441 
4'11 3.959 S.884 
4'12 6.603 10.175 
4) 13 6.601 9.329 
4) 14 5.640 10.236 
4) 15  6.280 9.990 

Wi. 6.289 8.590 
11/ 2 11.765 8.215 

17.451 '. 12.680 
x11 4 10.266 7.224 
Ti 11.827 9.202 
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