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Vortex critical dynamics of the two-dimension&l spin glass is studied by Monte Carlo methods in the
Coulomb-gas representation. A scaling analysis of the nonlinear response is used to calculate the correlation
length exponenw of the zero-temperature glass transition. The estimatel.3(2), is inagreement with a
recent estimate in the phase representation using the same analysis and indicates that the relevant length scale
for vortex motion is set by the spin-glass correlation length and that spin and chiralities may order with
different correlation length exponents.

It is well known that vector spin glasses, such asXhe An alternative approach which allows us to study the vor-
spin glass, have a chirality order parameter with Ising-liketex dynamics directly can be obtained from the Coulomb-gas
symmetry in addition to the continuous degeneracy assocrepresentation® Recently, Bokil and Yourfused Monte
ated with global spin rotatioh. Chirality arises from Carlo simulations in the vortex representation to obtain an
guenched in vortices due to frustration effects in each elestimate of the chiral-glass correlation length exponent and
ementary cell of the lattice which contains an odd number ofound ».=1.8+0.3. This agrees with previous estimates
antiferromagnetic bonds. The interplay between spin andvithin the errorbar. It also supports the scenario in which
chiral variables has always received considerable attentiospin- and chiral-glass variables order with different critical
because of the possibility of separate spin-glass and chiraéxponents if one accepts earlier estimates of the spin-glass
glass ordering due to the freezing of spins and chiral variexponentr.~1, obtained in the phase representation. How-
ables, respectivel§.® The possible separation of spin and ever, a determination of the spin-glass correlation length ex-
chiral variables also arises in the frustratéd model with  ponent from simulations in the vortex representation should
weak disordef:® While in three dimensions the existence of be of interest as it is not completely clear how such a length
a finite-temperature transition is under currentscale shows up in the dynamical behavior of vortices. In
investigatiom, **in two dimensions there is a consensus thatparticular, since th&Y spin-glass model has currently been
the transition only occurs at zero temperature. Associatedsed as a model for granular high-superconductors con-
with the zero-temperature transition there is a correlatiortaining 7 junctions?***®which leads to quenched in vortices
length which increases with decreasing temperatureg as even in the absence of external magnetic field, a natural
«T ~". However, the possibility of different spin- and chiral- question arises as to which correlation lengghor &, is
glass short-range correlation lengthsand &, with different  actually probed by transport measurements. In the measure-
critical exponentss and v, has not been resolved satisfac- ments, the response of the vortices to an applied force can be
torily. observed as the voltage response to an applied driving cur-

The first evidence that spin- and chiral-glass correlatiorrent which acts as a Lorentz force on the vortite®. The
length exponents are different in two dimensions were revortex response, or resistive behavior, is therefore deter-
ported by Kawamura and Tanemtifeom domain-wall cal- mined by vortex mobility and the current-voltage scaling is
culations. Various estimates of these exponents give approxéxpected to be controlled by the relevant divergent length
mate values™® of vs~1 and v.~2 but the errorbars are scale!® which could be eitheg; or &, .
usually quite large and a single exponent scenario may not The question of the relevant correlation length for the
be ruled out which would be consistent with an analyticalvortex response is also of interest for the three-dimensional
work for a particular type of disorder distributidband more XY spin glass. Recent simulations of the vortex dynaMlics
recent numerical wor¥ on domain-wall scaling behavior at in three dimensions showed evidence of a resistive phase
zero temperature. These calculations are usually performegansition at finite temperatures which was attributed to glass
in a representation of the€Y spin-glass model in terms of the ordering of chiralities while the spins remain disordered.
orientational angle of the two-componeXy spins. In this This would be consistent with the scenario of a finite-
representation, spin-glass order can be directly identified astamperature chiral glass transition in the absence of a spin-
long-range order in appropriate phase correlations, while thglass transition which has been proposed previdulsym
chiral variables are built from nearest-neighbor phase correzalculations in the phase representation of Xespin-glass
lations. In numerical simulations, the dynamics of the chiralmodel. This interpretation, however, is only justified if the
variables are then determined by the phase variables anélevant length scale for vortex dynamics is determined by
equilibration problems may prevent an adequate study of ththe chiral-glass correlation lengtf,. On the other hand,
vortex correlations in the system. since it is well known that vortex motion leads to phase
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incoherence, one expects that vortex dynamics should prokae constrained by the neutrality conditidh(n,—f,)=0.
the spin-glass correlation leng#y and therefore, the resis- For the XY spin glass, the chargds have a correlated ran-
tive transition should correspond instead to a spin-glass trardom distribution of integer and half integer values. Other
sition at finite temperatures. In fact, this is supported by aandom distributions can represent different models. A uni-
more recent domain-wall calculation suggesting a spin-glasform distribution describes the gauge glass mbtéiwhere
transition at finite temperatures in three dimensithghe Aj; in Eq. (1) is a continuous variable in the ran§®,2r]
present study of the vortex response in two dimensions magind an uncorrelated continuous distribution can describe ar-
help us to clarify this point as it is well known that in this rays of superconducting grains with random flor arrays
case both spin- and chiral-glass ordering only occurs at zerof mesoscopic metallic grains with random offset charges.
temperature and so the scaling analysis involves less un- We study the nonequlibrium response of the vortices in
known parameters. the XY spin glass by Monte Carlo simulations of the Cou-
In the absence of a precise agreement among the variolsmb gas under an applied electric fiéfdAn electric fieldE
studies of theXY spin-glass model, as mentioned above, andepresents an applied force acting on the vortices and gives
in view of its relevance for vortex dynamics, the additionalan additional contribution to the energy in E) as
numerical results presented below may help to settle somg,En,x, for E in thex direction. A finiteE sets an additional
issues. length scal&® in the problem since thermal fluctuations
In this work, we study the vortex critical dynamics of the alone, of typical energkT, leads to a characteristic length
two-dimensionalXY spin glass by Monte Carlo methods in |~kT/E over which single charge motion is possible. Thus,
the Coulomb-gas representatibhA scaling analysis of the increasingE will probe smaller length scales. Crossover ef-
nonlinear response is used to calculate the correlation lengtiects are then expected wheis of the order of the relevant
exponentr of the zero-temperature glass transition. The escorrelation length for independent charge motion. As vortex
timate, v=1.3(2), is inagreement with a recent estimate in motion leads to phase incoherence we thus expect that the
the phase representatidrusing the same analysis and indi- scaling behavior of the nonlinear response will probe the
cates that the relevant length scale for vortex motion is set bgpin-glass correlation lengtls of the original model and
the spin-glass correlation lengé and that spin and chirali- allow an estimate of the thermal critical exponent This
ties may order with different correlation length exponents. dynamical approach complements previous equilibrium cal-
We consider theXY spin glass on a square lattice defined culations in the vortex representation of th& spin glass
by the Hamiltonian where only the chiral-glass correlation length was stuflied.
In the dynamical simulations, the Monte Carlo time is
identified as the real timeand we take the unit of timdt
=1 corresponding to a complete Monte Carlo pass through
the lattice. A Monte Carlo step consists of adding a dipole of
where 6; is the phase of a two-component classical spin ofynit charges and unit length to a nearest-neighbor charge pair
unit length, s;=(cosé;,siné), J>0 is a coupling constant, (n; n;), using the Metropolis algorithm. Choosing a nearest-
andA;; has a binary distribution, 0 orr, with equal prob-  neighbor pairi,j at random, the step consists of changing
ability, corresponding to a coupling constahf=—J orJ,  n,—n;—1 andn;—n;+1, corresponding to the motion of a
respectively, betwees; ands; spins. The sum is over all charge by a unit length fromto j. If the change in energy
nearest-neighbor pairs. This Hamiltonian also describes ag AU, the move is accepted with probability
array of Josephson junctions where there is a phase shift of min{1 exp(-AU/KT)}. The external electric fiel& biases the
across a fraction of the junctions as in modelsdefiave  added dipole, leading to a currdras the net flow of charges
ceramic superconductorg**® in the direction of the electric field if the charges are mobile.
To study the vortex dynamics it is convenient to rewrite The currentl is calculated as
the above Hamiltonian in the Coulomb-gas representation

H:<i2j> JijSi'Sj:_JGEj) COiai_aj_Aij), (1)

1
Heg=2723Y ()Gl (np—f), (@ (O=F 2 2Q(® @

r,r’
after each Monte Carlo pass through the lattice, where
the lattice size and Q;(t) =1 if a charge at site moves one
lattice spacing in the direction of the field at time t,
AQ;(t)=—1 if it moves in the opposite direction and
AQ;(t)=0 otherwise. Periodic boundary conditions are
used. Most calculations were performed kor 32 and com-
. pared to a smaller system bf=16 but size dependence was
explik-r) (3y  not significant in the temperature range studied. The current
4—2 cosky—2 cosky’ densityJ is defined as)=1/L. The linear response is given
by the linear conductanc& =lim__ J/E which can be

which can be obtained following a standard procetfuie
which Eq.(1) is replaced by a periodic Gaussian model sepa
rating spin-wave and vortex variables. The Coulomb interac
tion is given byG' ,=G(r—r')—G(0), whereG is the lat-

!
tice Green’s function:

1
GN=5 2

andL is the system sizeG'(r) diverges as z In|r| at large ) ) o ,
separations. The vortices are represented by integer charge8Ptained from the fluctuation-dissipation relation as
n, at the siteg of the dual lattice and the frustration effects
of Aj; by quenched random charggsgiven by the directed

1
sum ofA;; around the plaquettd, =3 A;;/2m. The charges Gtsz d{H(O)I(1) ®
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FIG. 2. (a) Crossover fieldE; as a function of temperaturé)
FIG. 1. (a) Nonlinear conductanc#E as a function of tempera- Scaling plot)/EG, X E/T**” for v=1.3.
ture T. (b) Arrhenius plot for the temperature dependence of the

linear conductance, . havior. This activated behavior is consistent with a zero-

temperature transition and finite correlation length at nonzero

without imposing the external fiel. In the calculations, the {€mperatures which leads to a finite energy bartiefor
integral is replaced by a sum of successive Monte Carl¢Ortéx motion. In general, "’l‘p” energy barrier expotfert
sweeps through the lattice with the unit of tirde=1. We  ¢an also be defined froitd ~ £ for a temperature-dependent

use typically 4< 10* Monte Carlo steps to compute averages®Nergy barrigr. The pure Arrhenius activated behavior in Fig.
and 20 different realizations of disorder. 1(b) is consistent Wlt.h an exponemt~0. As can b_e seen
To analyze the numerical results we need a scaling theor{fom Fig. 1(@), there is a smooth crossover from linear be-
of the nonlinear response near a second-order phase tran8@Vvior, whenJ/E is roughly a constant, to nonlinear behav-
tion. A detailed scaling theory has been described in thdor for increasingE at each temperature which appears at
context of the current-voltage characteristics of vortex-glas§mallerE for decreasing temperatures in agreement with the
modelg? but it can be directly applied to the present case.exfﬁc"ed crossover behavior at a characteristic fteld
Since the glass transition occurst0 with a power-law =T " . . )
divergent correlation lengtli=T 7 and the external field e now verify the scaling hypothesis of E@) and ob-
introduces an additional length scdlekT/E, the dimen- tain a numerical estimate of the thermal correlation length

sionless ratic/JG, can be cast into a simple scaling fdfm ~ €xponenty using two different methods. Figuréa shows
in terms of the dimensionless argumeit, the temperature dependencekyf defined as the value @&

whereE/JG, starts to deviate from a fixed value of 2. From
JIEG, =F(E/T*"Y), (6)  the expected power-law behavior for the crossover figld
«T1*¥ we obtain a direct estimate of=1.4(2) in a log-log
where F is a scaling function withF(0)=1. This scaling plot. From a scaling plot of the nonlinear response according
form indicates that a crossover from linear behavior, wherto Eq. (6), » can also be obtained by adjusting its value so
F(x)~1, to nonlinear behavior, whdR(x)>1, is expected that the best data collapse is obtained as shown in . 2
to occur whenx~1 which leads to a characteristic fielf ~ The data collapse supports the scaling behavior and provides
=T at which nonlinear behavior sets in. an independent estimate of=1.3. From the two indepen-
The nonlinear responsFE and an Arrhenius plot of the dent estimates we finally obtain=1.35-0.2.
linear conductanc&, are shown in Fig. 1. The data show  Our estimate oby=1.35+0.2 from the scaling analysis of
the expected behavior for=0 transition. The ratid/E in  the vortex response is consistent with previous estimates of
Fig. 1(a) tends to a finite value for smdll, corresponding to  the spin-glass correlation length exponegiobtained in the
the linear conductand®, in Fig. 1(b) with an activated be- phase representation of the spin glass>° These calcula-
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tions give numerical estimates with comparable uncertaintiesf the model are consistent with an energy density coupling
ranging fromv =1 to 1.2. It also agrees with a recent cal- of the form =,E4(r)E.(r), whereEg and E. are the local
culation in the phase representation of Hd), v=1.1  energy densities for thXY spins and chirality, respectively.
+0.2, using the same scaling analy<igThis suggests that Such a coupling term is known to occur in the effective
the relevant length scale for vortex dynamics is set by thdlamiltonian of frustratedXY models with weak disordefr.
spin-glass correlation length which determines short-rangE©r @ stable decoupled fixed point, the coupling term should
phase coherence. Since the chiral-glass correlation length eR€ an irrelevant perturbation, corresponding to an eigenvalue
ponent has been estimated to be significantly larger, in thd =2~ x<0 evaluated at the unperturbed fixed point, where
rangé=+12 »,=1.8 to 2.6, it also supports the scenario in 2X is th2e correlation function exponent. Using the scaling
which the phase and chiral variables in ¥ spin glass are relatior?? x=2—1/» for the energy density correlations, and

decoupled on large length scales and order with differen&he proposed numerical values for the correlation length ex-

: onentsy,=1.3 andv.=2, we find indeed thak =2—xg
correlation length exponents. However, as the errorbars T <0 as required for a stable decoupled fixed point. If the

these estimates are significant large, a single Critica{ransition atT=0 corresponds to a decoupled fixed point

exponerft'? may not be completely ruled out on pure nu- hen oh d chiral Pe I P’ o dift P

merical grounds and further work will be necessary to comhen phase and chiral variables can order with different cor-

pletely settle this issue. relation length exponents. Thgse arguments, by_ no means,
It should be noted that the decoupled scenario for spin an r:(og\;)itr?Ztlaassd?)zctnftplriglséznsgggit;ISe iﬁ?ig&ﬁ}iﬁgg (')rf] (;?Se_

chiral variables near the same transition temperature, sug- . ; "

gested by our numerical results, does not contradict gener jnet divergent porrelatlon 'ef‘gths at the same transition tem-

perature used in our analysis of the numerical data.

arguments of renormalization-group theSryvhich allows . . . . .

for the possibility of nontrivially decoupled fixed points. In Flnally,_ our c_alculatlon for the two-dw_nensmnh(h( spin

fact, since the model has continuous and Ising-like symmegle.lss’ which |nd|ca_tes that vortex dynamics prope mainly the

tries, one would expect that the effective Hamiltonian de_spln—_glass correlation length rather than .the chiral-glass cor-
! relation length, also suggests that the finite-temperature re-

scribing the critical behavior could be written in terms of a > " " 3
disordered ferromagneticXY-spin model, with a zero- §|st|ve transition observed recently by Wengel and Yaoting

- : ; n numerical simulations in the vortex representation of the
temperature transition, coupled to an Ising spin-glass mode ) ; . :
P P g spin-g }Rree-dlmensmna}(Y spin-glass model should be attributed

representing phase coherence and chiral degrees of freedom, . . S ) )
respectively. Ferromagneti¥Y spin models with a zero- 0'spin-glass ordering. This is in fact consistent with more
temperature transition do exist as, for example, in dilo¢¥d recent calculatiott indicating that the lower critical dimen-
models at percolation threshdi@?* Although the exact form ~ S'O" for spin-glass ordering may be just above 3.

of the effectiveXY and Ising Hamiltonians and the coupling  This work was supported by Fundacde Amparo éPes-
term are not known, the continuous and discrete symmetrieguisa do Estado de 8&Paulo, FAPESRProc. 99/025320
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