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Nonlinear response scaling of the two-dimensionalXY spin glass
in the Coulomb-gas representation
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Laboratório Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais,

12201 Sa˜o Josédos Campos, Sa˜o Paulo, Brazil
~Received 7 April 1999!

Vortex critical dynamics of the two-dimensionalXY spin glass is studied by Monte Carlo methods in the
Coulomb-gas representation. A scaling analysis of the nonlinear response is used to calculate the correlation
length exponentn of the zero-temperature glass transition. The estimate,n51.3(2), is inagreement with a
recent estimate in the phase representation using the same analysis and indicates that the relevant length scale
for vortex motion is set by the spin-glass correlation length and that spin and chiralities may order with
different correlation length exponents.
ik
oc

e
r o
an
tio
ira
ar
d

of
n

ha
te
io
s
l-

c-

io
re

o

n
ca

t
m
e

as
th
rr
ira
a
th

or-
gas

an
and
es
ich
al
lass
w-
ex-
uld
gth
In
n

-
s
ural

ure-
n be
cur-

ter-
is
gth

he
nal
s
ase
ass
d.
e-
pin-

e
by

,
se
It is well known that vector spin glasses, such as theXY
spin glass, have a chirality order parameter with Ising-l
symmetry in addition to the continuous degeneracy ass
ated with global spin rotation.1 Chirality arises from
quenched in vortices due to frustration effects in each
ementary cell of the lattice which contains an odd numbe
antiferromagnetic bonds. The interplay between spin
chiral variables has always received considerable atten
because of the possibility of separate spin-glass and ch
glass ordering due to the freezing of spins and chiral v
ables, respectively.2–6 The possible separation of spin an
chiral variables also arises in the frustratedXY model with
weak disorder.7,8 While in three dimensions the existence
a finite-temperature transition is under curre
investigation,9–11 in two dimensions there is a consensus t
the transition only occurs at zero temperature. Associa
with the zero-temperature transition there is a correlat
length which increases with decreasing temperatures aj
}T 2n. However, the possibility of different spin- and chira
glass short-range correlation lengthsjs andjc with different
critical exponentsns andnc , has not been resolved satisfa
torily.

The first evidence that spin- and chiral-glass correlat
length exponents are different in two dimensions were
ported by Kawamura and Tanemura2 from domain-wall cal-
culations. Various estimates of these exponents give appr
mate values2–5 of ns;1 and nc;2 but the errorbars are
usually quite large and a single exponent scenario may
be ruled out which would be consistent with an analyti
work for a particular type of disorder distribution6 and more
recent numerical work12 on domain-wall scaling behavior a
zero temperature. These calculations are usually perfor
in a representation of theXYspin-glass model in terms of th
orientational angle of the two-componentXY spins. In this
representation, spin-glass order can be directly identified
long-range order in appropriate phase correlations, while
chiral variables are built from nearest-neighbor phase co
lations. In numerical simulations, the dynamics of the ch
variables are then determined by the phase variables
equilibration problems may prevent an adequate study of
vortex correlations in the system.
PRB 610163-1829/2000/61~1!/391~4!/$15.00
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An alternative approach which allows us to study the v
tex dynamics directly can be obtained from the Coulomb-
representation.13 Recently, Bokil and Young4 used Monte
Carlo simulations in the vortex representation to obtain
estimate of the chiral-glass correlation length exponent
found nc51.860.3. This agrees with previous estimat
within the errorbar. It also supports the scenario in wh
spin- and chiral-glass variables order with different critic
exponents if one accepts earlier estimates of the spin-g
exponentnc;1, obtained in the phase representation. Ho
ever, a determination of the spin-glass correlation length
ponent from simulations in the vortex representation sho
be of interest as it is not completely clear how such a len
scale shows up in the dynamical behavior of vortices.
particular, since theXY spin-glass model has currently bee
used as a model for granular high-Tc superconductors con
tainingp junctions,9,14,15which leads to quenched in vortice
even in the absence of external magnetic field, a nat
question arises as to which correlation length,js or jc , is
actually probed by transport measurements. In the meas
ments, the response of the vortices to an applied force ca
observed as the voltage response to an applied driving
rent which acts as a Lorentz force on the vortices.13,16 The
vortex response, or resistive behavior, is therefore de
mined by vortex mobility and the current-voltage scaling
expected to be controlled by the relevant divergent len
scale,13 which could be eitherjs or jc .

The question of the relevant correlation length for t
vortex response is also of interest for the three-dimensio
XY spin glass. Recent simulations of the vortex dynamic10

in three dimensions showed evidence of a resistive ph
transition at finite temperatures which was attributed to gl
ordering of chiralities while the spins remain disordere
This would be consistent with the scenario of a finit
temperature chiral glass transition in the absence of a s
glass transition which has been proposed previously9 from
calculations in the phase representation of theXY spin-glass
model. This interpretation, however, is only justified if th
relevant length scale for vortex dynamics is determined
the chiral-glass correlation lengthjc . On the other hand
since it is well known that vortex motion leads to pha
391 ©2000 The American Physical Society
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392 PRB 61ENZO GRANATO
incoherence, one expects that vortex dynamics should p
the spin-glass correlation lengthjs and therefore, the resis
tive transition should correspond instead to a spin-glass t
sition at finite temperatures. In fact, this is supported b
more recent domain-wall calculation suggesting a spin-g
transition at finite temperatures in three dimensions.11 The
present study of the vortex response in two dimensions m
help us to clarify this point as it is well known that in th
case both spin- and chiral-glass ordering only occurs at z
temperature and so the scaling analysis involves less
known parameters.

In the absence of a precise agreement among the va
studies of theXYspin-glass model, as mentioned above, a
in view of its relevance for vortex dynamics, the addition
numerical results presented below may help to settle s
issues.

In this work, we study the vortex critical dynamics of th
two-dimensionalXY spin glass by Monte Carlo methods
the Coulomb-gas representation.13 A scaling analysis of the
nonlinear response is used to calculate the correlation le
exponentn of the zero-temperature glass transition. The
timate,n51.3(2), is inagreement with a recent estimate
the phase representation17 using the same analysis and ind
cates that the relevant length scale for vortex motion is se
the spin-glass correlation lengthjs and that spin and chirali
ties may order with different correlation length exponents

We consider theXY spin glass on a square lattice defin
by the Hamiltonian

H5(̂
i j &

Ji j si•sj52J(̂
i j &

cos~u i2u j2Ai j !, ~1!

whereu i is the phase of a two-component classical spin
unit length,si5(cosui ,sinui), J.0 is a coupling constant
and Ai j has a binary distribution, 0 orp, with equal prob-
ability, corresponding to a coupling constantJi j 52J or J,
respectively, betweensi and sj spins. The sum is over al
nearest-neighbor pairs. This Hamiltonian also describes
array of Josephson junctions where there is a phase shiftp
across a fraction of the junctions as in models ofd-wave
ceramic superconductors.9,14,15

To study the vortex dynamics it is convenient to rewr
the above Hamiltonian in the Coulomb-gas representatio

Hcg52p2J(
r ,r 8

~nr2 f r !Grr 8
8 ~nr 82 f r 8!, ~2!

which can be obtained following a standard procedure18 in
which Eq.~1! is replaced by a periodic Gaussian model se
rating spin-wave and vortex variables. The Coulomb inter
tion is given byGrr 8

8 5G(r 2r 8)2G(0), whereG is the lat-
tice Green’s function:

G~r !5
1

L2 (
k

exp~ ik•r !

422 coskx22 cosky
, ~3!

andL is the system size.G8(r ) diverges as 2p lnuru at large
separationsr. The vortices are represented by integer char
nr at the sitesr of the dual lattice and the frustration effec
of Ai j by quenched random chargesf r given by the directed
sum ofAi j around the plaquette,f r5(Ai j /2p. The charges
be
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are constrained by the neutrality condition( r(nr2 f r)50.
For theXY spin glass, the chargesf r have a correlated ran
dom distribution of integer and half integer values. Oth
random distributions can represent different models. A u
form distribution describes the gauge glass model13,16 where
Ai j in Eq. ~1! is a continuous variable in the range@0,2p#
and an uncorrelated continuous distribution can describe
rays of superconducting grains with random flux7 or arrays
of mesoscopic metallic grains with random offset charge19

We study the nonequlibrium response of the vortices
the XY spin glass by Monte Carlo simulations of the Co
lomb gas under an applied electric field.13 An electric fieldE
represents an applied force acting on the vortices and g
an additional contribution to the energy in Eq.~2! as
( rEnrxr for E in thex direction. A finiteE sets an additiona
length scale13 in the problem since thermal fluctuation
alone, of typical energykT, leads to a characteristic lengt
l;kT/E over which single charge motion is possible. Thu
increasingE will probe smaller length scales. Crossover e
fects are then expected whenl is of the order of the relevan
correlation length for independent charge motion. As vor
motion leads to phase incoherence we thus expect tha
scaling behavior of the nonlinear response will probe
spin-glass correlation lengthjs of the original model and
allow an estimate of the thermal critical exponentns . This
dynamical approach complements previous equilibrium c
culations in the vortex representation of theXY spin glass
where only the chiral-glass correlation length was studie4

In the dynamical simulations, the Monte Carlo time
identified as the real timet and we take the unit of timedt
51 corresponding to a complete Monte Carlo pass thro
the lattice. A Monte Carlo step consists of adding a dipole
unit charges and unit length to a nearest-neighbor charge
(ni ,nj ), using the Metropolis algorithm. Choosing a neare
neighbor pairi , j at random, the step consists of changi
ni→ni21 andnj→nj11, corresponding to the motion of
charge by a unit length fromi to j. If the change in energy
is DU, the move is accepted with probabilit
min$1,exp(2DU/kT)%. The external electric fieldE biases the
added dipole, leading to a currentI as the net flow of charge
in the direction of the electric field if the charges are mobi
The currentI is calculated as

I ~ t !5
1

L (
i

DQi~ t ! ~4!

after each Monte Carlo pass through the lattice, whereL is
the lattice size andDQi(t)51 if a charge at sitei moves one
lattice spacing in the direction of the fieldE at time t,
DQi(t)521 if it moves in the opposite direction an
DQi(t)50 otherwise. Periodic boundary conditions a
used. Most calculations were performed forL532 and com-
pared to a smaller system ofL516 but size dependence wa
not significant in the temperature range studied. The cur
densityJ is defined asJ5I /L. The linear response is give
by the linear conductanceGL5 lim

E→0
J/E which can be

obtained from the fluctuation-dissipation relation as

GL5
1

2kTE dt^I ~0!I ~ t !& ~5!
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without imposing the external fieldE. In the calculations, the
integral is replaced by a sum of successive Monte Ca
sweeps through the lattice with the unit of timedt51. We
use typically 43104 Monte Carlo steps to compute averag
and 20 different realizations of disorder.

To analyze the numerical results we need a scaling the
of the nonlinear response near a second-order phase tr
tion. A detailed scaling theory has been described in
context of the current-voltage characteristics of vortex-gl
models13 but it can be directly applied to the present ca
Since the glass transition occurs atT50 with a power-law
divergent correlation lengthj}T2n and the external field
introduces an additional length scalel}kT/E, the dimen-
sionless ratioE/JGL can be cast into a simple scaling form13

in terms of the dimensionless argumentj/ l ,

J/EGL5F~E/T11n!, ~6!

where F is a scaling function withF(0)51. This scaling
form indicates that a crossover from linear behavior, wh
F(x);1, to nonlinear behavior, whenF(x)@1, is expected
to occur whenx;1 which leads to a characteristic fieldEc
}T11n at which nonlinear behavior sets in.

The nonlinear responseJ/E and an Arrhenius plot of the
linear conductanceGL are shown in Fig. 1. The data sho
the expected behavior for aT50 transition. The ratioJ/E in
Fig. 1~a! tends to a finite value for smallE, corresponding to
the linear conductanceGL in Fig. 1~b! with an activated be-

FIG. 1. ~a! Nonlinear conductanceJ/E as a function of tempera
ture T. ~b! Arrhenius plot for the temperature dependence of
linear conductanceGL .
lo
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havior. This activated behavior is consistent with a ze
temperature transition and finite correlation length at nonz
temperatures which leads to a finite energy barrierU for
vortex motion. In general, an energy barrier exponent16 c
can also be defined fromU;jc for a temperature-dependen
energy barrier. The pure Arrhenius activated behavior in F
1~b! is consistent with an exponentc;0. As can be seen
from Fig. 1~a!, there is a smooth crossover from linear b
havior, whenJ/E is roughly a constant, to nonlinear beha
ior for increasingE at each temperature which appears
smallerE for decreasing temperatures in agreement with
expected crossover behavior at a characteristic fieldEc
}T11n .

We now verify the scaling hypothesis of Eq.~6! and ob-
tain a numerical estimate of the thermal correlation len
exponentn using two different methods. Figure 2~a! shows
the temperature dependence ofEc defined as the value ofE
whereE/JGL starts to deviate from a fixed value of 2. Fro
the expected power-law behavior for the crossover fieldEc
}T11n we obtain a direct estimate ofn51.4(2) in a log-log
plot. From a scaling plot of the nonlinear response accord
to Eq. ~6!, n can also be obtained by adjusting its value
that the best data collapse is obtained as shown in Fig. 2~b!.
The data collapse supports the scaling behavior and prov
an independent estimate ofn51.3. From the two indepen
dent estimates we finally obtainn51.3560.2.

Our estimate ofn51.3560.2 from the scaling analysis o
the vortex response is consistent with previous estimate
the spin-glass correlation length exponentns obtained in the
phase representation of theXY spin glass.2,3,5 These calcula-

e

FIG. 2. ~a! Crossover fieldEc as a function of temperature.~b!
Scaling plotJ/EGL3E/T11n for n51.3.
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394 PRB 61ENZO GRANATO
tions give numerical estimates with comparable uncertain
ranging fromns51 to 1.2. It also agrees with a recent ca
culation in the phase representation of Eq.~1!, n51.1
60.2, using the same scaling analysis.17 This suggests tha
the relevant length scale for vortex dynamics is set by
spin-glass correlation length which determines short-ra
phase coherence. Since the chiral-glass correlation length
ponent has been estimated to be significantly larger, in
range2–4,12 nc51.8 to 2.6, it also supports the scenario
which the phase and chiral variables in theXYspin glass are
decoupled on large length scales and order with differ
correlation length exponents. However, as the errorbar
these estimates are significant large, a single crit
exponent6,12 may not be completely ruled out on pure n
merical grounds and further work will be necessary to co
pletely settle this issue.

It should be noted that the decoupled scenario for spin
chiral variables near the same transition temperature,
gested by our numerical results, does not contradict gen
arguments of renormalization-group theory22 which allows
for the possibility of nontrivially decoupled fixed points. I
fact, since the model has continuous and Ising-like symm
tries, one would expect that the effective Hamiltonian d
scribing the critical behavior could be written in terms of
disordered ferromagneticXY-spin model, with a zero-
temperature transition, coupled to an Ising spin-glass mo
representing phase coherence and chiral degrees of free
respectively. FerromagneticXY spin models with a zero
temperature transition do exist as, for example, in dilutedXY
models at percolation threshold.20,21Although the exact form
of the effectiveXY and Ising Hamiltonians and the couplin
term are not known, the continuous and discrete symme
e
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of the model are consistent with an energy density coup
of the form ( rEs(r )Ec(r ), whereEs and Ec are the local
energy densities for theXY spins and chirality, respectively
Such a coupling term is known to occur in the effecti
Hamiltonian of frustratedXY models with weak disorder.7

For a stable decoupled fixed point, the coupling term sho
be an irrelevant perturbation, corresponding to an eigenva
l522x,0 evaluated at the unperturbed fixed point, whe
2x is the correlation function exponent. Using the scali
relation22 x5221/n for the energy density correlations, an
the proposed numerical values for the correlation length
ponentsns51.3 andnc52, we find indeed thatl522xs
2xc,0 as required for a stable decoupled fixed point. If t
transition atT50 corresponds to a decoupled fixed po
then phase and chiral variables can order with different c
relation length exponents. These arguments, by no me
show that a decoupled transition is actually realized in
XY spin glass but it makes plausible the assumption of d
tinct divergent correlation lengths at the same transition te
perature used in our analysis of the numerical data.

Finally, our calculation for the two-dimensionalXY spin
glass, which indicates that vortex dynamics probe mainly
spin-glass correlation length rather than the chiral-glass
relation length, also suggests that the finite-temperature
sistive transition observed recently by Wengel and Youn10

in numerical simulations in the vortex representation of
three-dimensionalXY spin-glass model should be attribute
to spin-glass ordering. This is in fact consistent with mo
recent calculation11 indicating that the lower critical dimen
sion for spin-glass ordering may be just above 3.

This work was supported by Fundac¸ão de Amparo a` Pes-
quisa do Estado de Sa˜o Paulo, FAPESP~Proc. 99/02532-0!.
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