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Nonlinear excitation of density f1nctnations in electron-magnon systems
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A nonlinear mechanism is suggested for exciting electron-magnon density fluctuation by means of a long-

wavelength radiation field in doped magnetic semiconductors. A calculation of the threshold field for this

phenomenon is presented in the microwave-frequency region.

I. INTRODUCTION

With the development of high-intensity radiation
sources in the microwave, infrared, and optical
spectra the study of the nonlinear interaction of
electromagnetic radiation with matter stimulated
considerable theoretical and experimental interest.
One area of interest is the nonlinear coupling of
radiation with spin waves' ' in magnetic materials.
In these experiments one applies a rf radiation to
pump spin waves, and one is usually interested in
the magnon-photon coupling and magnon-phonon
coupling. On the other hand, the electron-magnon
influence is often neglected. ' In the case of mag-
netic semiconductors, however, the electron-mag-
non interaction should also be taken into account.

As is well known, the electron-magon interaction
can influence considerab1y the magnon properties
in metals and semiconductors. ' It is therefore
natural to expect that external fields changing the
spectrum and the occupation number of the elec-
tron states will influence the spin-wave properties.
For instance, one knows that under the influence
of a fairly strong dc electric field the magnon
damping in ferromagnetic semiconductors may
change considerably in magnitude and even in sign.
The modification of the spin-wave damping in a
constant electric field has been discussed by sev-
eral authors. ' ' In Ref. 9 it was suggested that one
might possibly observe spin-wave amplification in
high-mobility magnetic semiconductors, such as
doped CdCr, Se„ in parallel pumping experiments
in which the sample is subjected to an additional
dc electric field. The extention of the above theory
to account for the effect of the rf radiation on the
amplification coefficient of the spin waves was la-
ter given elsewhere. " If, however, in these ex-
periments one lets the microwave power increase,
one would expect plasmons and magnons to be cou-
pled and excited nonlinearly via the electromag-
netic field in analogy with the radiation-induced
nonlinear plasmon-phonon coupling in doped semi-
conductors. "'"

In this paper we consider a system of interacting

electrons and magnons and study, within the ran-
dom-phase approximation, the excitation of reso-
nant density fluctuations of this system driven by
long-wavelength electromagnetic radiation. To
see how this excitation is possible, we will simply
assume that the radiation field can be represented
by an oscillatory homogeneous electric field. In
the linear approximation the field will cause the
electrons to oscillate, and a magnon of frequency
cu couples to electron density fluctuation at the
same frequency, ~. However, under the influence
of a strong external field we also obtain nonlinear
coupling to electron density fluctuations of fre-
quencies cu+n~„n=+1 ~2 cop being the fre-
quency of the oscillating external field. Similarly,
the electron density fluctuation couples, in turn, to
the magnon at frequency ~ as well as to magnons
of frequencies ~+n'ep. If, for simplicity, we as-
sume that our system supports only two modes,
the magnon mode at cu and a plasma mode at c0 Np,

we obtain a coupling mechanism in which the plas-
ma mode at x —~p is driven by the magnon and the
field at frequency ~„while the magnon mode is in
turn driven by the plasma mode and the field. Un-
der these conditions the two modes will simulta-
neously be excited by the energy supplied by the
external field. This becomes macroscopically ob-
servable when the growth rate determined from
the nonlinear mechanism overcomes the rate of
loss by collisions in the system.

II. FORMULATION

We consider a magnetic semiconductor as com-
posed of two subsystems, namely, that of the lo-
calized magnetic moments (say, d electrons of
paramagnetic atoms), which in the phenomenolog-
ical description is characterized by the magneti-
zation, and that of the conduction electrons (s elec-
trons), responsible for the transport and other
phenomena. The electronic band structure of these
ferromagnetic semiconductors has not been solved
to a reliable extent. "' Nevertheless, there is
evidence of the usual parabolic conduction band.
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Here c-, c are, repectively, the electron de-
p' p

struction and creation operators, e =Ssp2/2m is
the kinetic energy of the electron of momentum

Ip, Pg=4ne'/vk represents the electron-electron
intera, ction, bT„b&; are the magnon annihilation
and creation operators, respectively, Acing is the
unrenormalized magnon energy, and

(3d)

vg= (2wgpg /v)(2NS)'im(k, k /k2)

(k, = k„+ ik, ) represents the electron-magnon inter-
action. N is the number of localized spins and v is
the volume of the crystal. We have taken the quan-
tization axis as the s axis. The second term in

Eq. (1) represents the coupling of the electrons
with the radiation field where E,(t) =E,cos~,t rep-
resents its electric field. Also, we did not write

The total Hamiltonian for the system will com-
prise the s-electrons part, the exchange-coupled
spin part, and an interaction term. Since we are
interested in studying the system below the Curie
temperature, we shall introduce the magnon vari-
ables straightaway. Also, as our main objective
is the excitation of density fluctuations, in writing
down the interaction term we shall include only the
one which to lowest order couples electron den-
sity fluctuations to spin waves. " Thus, in the sec-
ond-quantization formalism, the Hamiltonian is
given by"'"

Ho+
85

0
P

where

E(p+k, p, t)=(cp(t)cp, y(t)). (4)

Here ( ' ) means the thermal average.
It follows from Eqs. (1), (2), and (4) that

the electron spin explicitly since the interaction
mechanism considered does not cause spin flip.

Before we proceed, however, it is now in order
a few comments about the Hamiltonian, Eqs, (1)-
(3). A more detailed discussion is given else-
where i5-is The conduction-electron —localized-
moments interaction comprise, in general, the
well-known s-d interaction, '7'" the interaction of
the electron magnetic moment with the magnetic
field of the spin waves" (dipolar interaction), and
the interaction of the electron currents with the
vector potential created by the oscillations of the
magnetization. " This last term can also be seen
to be the d-spin —s-orbit interaction (i.e., a spin-
orbit interaction). As the electron-photon and the
electron-plasmon interaction do not involve car-
rier spin flip, one should consider only the elec-
tron-magnon terms which do not also flip the car-
rier spin. Of the mechanisms mentioned above, it
can be seen that the only relevant electron-magnon
terms are the spin-orbit and the dipolar ones.
However, since the spin-orbit vertex depends on
k~p, "it turns out that it gives a vanishing contri-
bution. Hence, in dealing with the simultaneous
excitation of a plasmon and a magnon by the radia-
tion field, one may consider only the dipolar elec-
tron-magnon term which is given in Eq. (3d).

In order to determine the coupling of the external
field to possible density fluctuations, we use the
equation-of-motion method" starting from Eq. (1).
We shall assume that for t= -~ the external field
is absent and we have a system of noninteracting
electrons and magnons in thermal equilibrium, so
that for all k we have (b~), „=0. Then we con-
sider that the electron-magnon interaction and the
external field are set in operation in an adiabatic
manner, and by means of some external source
nonequilibrium magnons and density fluctuations
with wave vector k are excited, so that starting
from this instant, (bg(&)) 00 and (cp(t)cp+g(t)) 10.
It is the subsequent fate of the oscillations which
we intend to determine.

Define

N ' ' = (ep, g -ep)F(P+k, P, t)+Q PyNgi(t)[E(P+k —k', P, t) E(P+k, P+k', t)j-
k'

+ vg by t +vga b g t I' p+k —k', p t -I' p+ p+k', t
kt

+ k E,cos~,tE(p+k, p, 7),
Vl (do
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where

Ng(t) =QE(p+k, p, t).

Similarly the equation of motion for the magnon
coordinates is

(6)

+(P+k P t)=f.(p)bT o+f(p+k P, t) (8)

electron-magnon interaction only within the frame-
work of the random phase approximation.

To solve for E(p+k, p, t) we use perturbation
theory in the electron-magnon coupling but retain
Ep to all order s. We write

„.&bX(t)&+~X&bX(t)&=— T TN (t) (7)

In arriving at Eq. (5), the electron-electron cor-
relations (collisions) have been neglected; howev-
er, the self-consistent field of the electrons has
been taken into account. Also, we considered the

where f,(p), the zeroth-order solution, is the Fer-
mi distribution function and is time independent.
Similar procedure has been used elsewhere. " Sub-
stituting Eq. (8) into Eqs. (5) and (7), to first order
in the electron-magnon coupling, we get the closed
set of equations

st' ' = (~p+T -~p)f(P+k P t)+4'Xnl(t)[fo(P)-fo(P+k)l

+ [vg(bg(t)&+ vg(b g(t)&] [f,(p) —f,(p+k)] + (k E,)cosset, t f(p+k, p, t),
Pl %0

i, (bg(t)) + u)$(bg(t)) = — ng(t), (10)

ng(t) =Qf(p+k, p, t).
P

In order to solve Eqs. (9)—(11)we first use a transformation which eliminates the field from our equa-
tions. Def ining

f(p+k, p, t) =f(p+k, p, t) e '

with

(12)

2k EO,
Pl COp

we obtain the following kinetic equation for f:

zhbt +ep 6 p+~ p+ p t % 0 p 0 p+k pX t

= *"'"""[T&b~(t)&+ T&b'~(t»l [f.(p) -f.(p+k)1.

Similarly, the magnon variables obey

92',.&b~(t)&. ~&be(t)&=- '„'W(t) -""""',

where

(14)

(15)

PX(t) =Qf(P+k, P, t) (16)

py looking at Eq. (14) the physical mechanism for
density excitation via the field is now clear. It is
the difference between the oscillatory motions of
the electrons and the magnons in applied fields
which couple electron-density fluctuations at fre-
quency co with magnons at frequencies ~+s(do and

conversely.
The solution of Eqs. (14)-(16) is given in terms

of the Fourier spectra of f, and where

f(t) =f(&u)e ' ~+' " ' etc.

We define the following quantities:

~f.(p+k) -f.(p)

(17)

(18)
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e«((u) =1 —P»P» ((u), (19) e»-(&u+ s~,)p»-(~+ s&u, ) = IV»I'P» (&u + s&u, )

1»-(~) = „.

Here P»(~) is the electronic polarizability, e»-(e)
is the electronic dielectric function, and D»(~) is
the magnon propagator. Solving for p»-(ar) in Eq.
(14), we obtain

~»(~)p»(~) =P»(~) P J.(~)

x[v»a»(~ -n~, )+ v»a»(~ —n~, )].

J„A.J) „~

xD»-((u+n(u, )p»-((u+ l(o,),

(23)

(24)

which determine the eigenmodes and possible
growth rates for the electron-magnon system dri-
ven by the external oscillating field. In the limit
E, = 0(i. e. , a=0), only the s =0 component is rel-
evant, and we obtain the dispersion relation for the
oscillations of the electron-magnon system in the
absence of the external field.

Similarly, from Eq. (15) we get

D»(u)) = ' " D»-(+) Q J„(A)p»((u+n(u, ).
n

(22)

Finally, using Eqs. (21) and (22) we obtaih the fol-
lowing set of coupled equations:

III. NONLINEAR DISPERSION RELATION

Consider now the system in the two-mode ap-
proximation. Here we discuss the situation in
which the external field E, excites the two linear
modes, the plasmon and magnon. Let us solve Eq.
(23) for the ease that a& and &u —cu, are, respective-
ly, in the vicinity of the plasma and magnon fre-
quencies. We then obtain the coupled equations .

~»(~)p»(~) =
I V» I P»(~) g p J.(~)Ji-.(~)»(~+n~. )p»(~+ f~o»

n=0, -1 1=0,—1

(25)

~;(~ —~,)p»-(~ —~,) = IV„-I P»(&u —&u, ) g P J„„(~)J,„(X)D;(~+n&u,)p»(~+ l&u, ).
n=0, -1 t=0 —1

(26)

The solution of these coupled equations for nonvanishing density fluctuations p»(&u) and p»(e —w, ) is
given by the dispersion relation

f e» ((u) —[J,'(A) + J,'(A)] p,'[1 —e» (u))]» ((u)j fe«(~ —(u, ) —[J,'(A) + J,'(«)]p «[1 —e«((u —(u, )]D, (cv —(u, ))

x J o(A)p «[f«(M —(do) —e«((d)][D» ((d) + D» (I'u —(Vo)] = 0, (27)

For zero external field each of the brackets in Eq.
(27) when set equal to zero gives, respectively, the
dispersion in relation for a plasmon and a magnon.

In the long-wavelength case we obtain for E0 = 0
the relation

~ [(~2 + 3v 2 k2 ~2)2 ~ 4P 2 ~2]1/2 (30)

frequency ~„and magnon frequency ~2 given by

(a) (d(a)~ 2 2 2 ~(d

~2 ~4 Th 0 ~2 ~2 ~2
k

(29)

For the case p,'«u«', ~«2 and p«'&(~« —&u«)', we ob
tain the approximate solutions

where we have assumed a nondegenerate semicon-
ductor and taken the classical limit for the dielec-
tric function, which holds for microwave regions
even for temperatures of 10'K. Equation (29) de-
termines, respectively, the renormalized plasma

~2 = ~« —p« ~o~~~« —~«)

(31)

(32)

We next solve Eq. (27) in the regime k &ku(= ~P/~»),
which determines the limit for long-wavelength
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1 ekE, P~(u,
4 m((u, +(u, ) (a, (u )'/' ' (35)

Now as is well known from pa, rametric instability
theory ' that the excitation of the density fluctu-
ations becomes macroscopically obseravable when
the growth rate y exceeds the effective collision
frequency of the system (v, v,)' ', where v, and v,
are, respectively, the collision frequency of the
two linear modes. This entails in turn that insta-
bility occurs when the radiation field strength is
larger than a threshold value (E,),„given by

( )t0h ~l! I (~ ~ ) 1/2(~ T ) 1/2
4 m(e, ++,)

(36)

Therefore, radiation at frequency m, = ~, + ~, and
field Eo& (E,),„will exhibit an absorption. For a
typical sample of CdCr, Se~ with ~~=10" sec ',
cu'„=10" sec ', v» =3 XIO' cm/sec, m =10 "g,
and for k=10' cm '&kD we obtain a threshold field

(E,),„=10(cu r )
' '(&u ~ )

' ' V/cm. (37)

phenomena. Using Eqs. (18)—(20) in the long wave-
length, Eq. (27) reads, after some algebra,

(&u' —&u,') (uP —&u', ) [(&u —&u,)' —e,'] [(&u —&u,)' —u&,']

g2(g)P2~2(~2 ~2)2

(33)

where we have neglected terms of order kv»/~~,
kv»/~~, and already substituted in the right-hand
side of Eq. (33) the linear solutions, i. e.,
and ~ —~, = ~,. Here ~, and ~, a,re the eigenvalue
frequencies of the linear dispersion equation. To
get the mode-one growth rate, we substitute (d = ~,
+iy in Eq (33.). Assuming y&v, , 2v, we obtain

Irl =~, (&)J3, ~,/2(~, ~.)~'. (34)

In the long wavelength Eq. (34) reduces to

This relatively large threshold field at microwave
frequencies is due to the poor coupling between
electron and magnons for small wave numbers.
For realistic cases ~,T, - 10 and ~,T, - 100, so that
(E,),„ is of the order of 10' V/cm, which can be ob-
tained using pulse techniques.

IV. CONCLUSIONS

In this paper we have looked at possible nonlinea, r
excitation of density fluctuations in ferromagnetic
semiconductors when performing spin-wave-pump-
ing experiments. It was shown that, as the micro-
wave power increases we could, in principle, ex-
pect an absorption line at frequency e, = co, + v„ for
fields for the order of 10' V/cm. It is also clear
that the additional absorption of the radiation and
the excitation of plasmons and magnons is an on-
off phenomenon: No excitation is possible below

(E,),„, a,nd strong excitation exists for E, & (E,),„.
As there has been to the author's knowledge no di-
rect experimental studies of the phenomenon dis-
cussed in this paper, one would like to suggest
spin-wave -pumping experiments in high-power
level in order to obse rve the predic tions of this
theory. In particular, an experimental determina-
tion of (E,),„allows us to determine the plasmon
lifetime, and hence, the single-electron lifetime, "
provided the magnon lifetime is known.

In conclusion, we have calculated the density ex-
citation of electron-magnon system via radiation
as a realistic model for magnetic semiconductors
and found the threshold field to be of the order of
10' V/cm in the microwave region.
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