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Abstract.

An inverse hydrologic optics problem is solved using a re-
cent intrinsic regularization scheme coupled to a standard Ant
Colony System (ACS). The regularization scheme pre-selects
candidate solutions based on their smoothness, quantified by
a Tikhonov norm. The Chlorophyll profile is reconstructed
from radiance experimental measurements in the ocean water
for several depths and single wavelength. Vertical profiles of
the absorption and scattering coefficients are estimated from
the Chlorophyll profile by means of bio-optical models. The
inverse problem is formulated as an optimization problem
and iteratively solved by an ACS using the radiative trans-
fer equation as direct model. An objective function is given
by the square difference between computed and experimental
radiances at every iteration. Each candidate solution corre-
sponds to a discrete Chlorophyll profile. The radiative transfer
equation is solved using the Laplace transform discrete ordi-
nate (LTSN) method. A parallel implementation of the Ant
Colony System is used and executed in a distributed mem-
ory machine. Test results show the suitability of the proposed
method.

1 INTRODUCTION

In the last decades, the development of inversion method-
ologies for radiative transfer problems has been an impor-
tant research topic in many branches of science and engineer-
ing [16, 13]. The direct or forward radiative transfer problem
in hydrologic optics, in the steady state, involves the determi-
nation of the radiance distribution in a body of water, given
the boundary conditions, source term, inherent optical prop-
erties (IOPs), as the absorption a and scattering b coefficients,
and the scattering phase function. The corresponding inverse
radiative transfer problem arises when physical properties,
internal light sources and/or boundary conditions must be
estimated from radiometric measurements of the underwater
light field.
In previous works, we tried to establish a general method-

ology to separately tackle the reconstrution of internal
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sources [29], IOP estimation [30, 8, 9, 10], the identifica-
tion of boundary conditions [5, 7, 24], or even a joint in-
version scheme [30]. In these works, the inverse model is an
implicit technique for parameter and/or function estimation
from “in situ” (local) radiometric measurements. The algo-
rithm is formulated as a constrained nonlinear optimization
problem, in which the direct problem is iteratively solved for
successive approximations of the unknown parameters. Iter-
ation proceeds until an objective-function, representing the
least-square fit of model results and experimental data added
to a regularization term, converges to a specified small value.
An overview of this technique, as well as a survey of the re-
sults, can be found in Campos Velho et al. [4] or [6].
This work presents a methodology to reconstruct vertical

profiles of the absorption and scattering coefficients in nat-
ural waters from in-situ radiance measurements in several
depths and single wavelength. The inverse problem is iter-
atively solved using the radiative transfer equation (RTE) as
direct model. A former work [30] employed a step-by-step re-
construction methodology, estimating a and b in an alternate
manner. A deterministic optimizer was employed to solve the
associated inverse problem. In the current work, bio-optical
models [17] are employed to correlate the Chlorophyll con-
centration to a and b. At every iteration, the inverse solver
generates a candidate solution that is a set of discrete Chloro-
phyll concentration values. The inverse problem is formulated
as an optimization problem and iteratively solved using the
radiative transfer equation as direct model. An objective func-
tion is given by the square difference between computed and
experimental radiances at every iteration.
At each iteration, the RTE is solved using the candidate

set of a and b values by the Laplace transform discrete ordi-
nate (LTSN) method [1, 25, 26]. The associated optimization
problem is solved by an Ant Colony System (ACS) [12] im-
plementation. The main contribution of this work is to apply
a recent intrinsic regularization scheme that pre-selects can-
didate solutions based on their smoothness, quantified by a
Tikhonov norm. This scheme was proposed in a crystal growth
inverse problem to reconstruct the diffusion coefficient [22].
A subsequent Chlorophyll candidate profile is generated and
iterations proceed. As hundreds of iterations are typically de-
manded, a parallel implementation of the ACS is used and
executed in a distributed memory machine. The code was par-
allelized using the Message Passing Interface (MPI) commu-
nication library [20]. The parallelization scheme distributes



the pre-selected candidate solutions of the current iteration
among the processors.
Test results show the suitability of the proposed method

using noiseless and noisy data. The reconstructed profiles have
good agreement to the exact curves. Parallel performance was
also evaluated.

2 SOLVING THE RADIATIVE
TRANSFER EQUATION

The Radiative Transfer Equation (RTE) models the transport
of photons through a medium [27]. Light intensity is given by
a directional quantity, the radiance I, that measures the rate
of energy being transported at a given point and in a given
direction. Considering a horizontal plane, this direction is de-
fined by a polar angle µ (relative to the normal of the plane)
and a azimuthal angle ϕ (a possible direction in that plane).
At any point of the medium, light can be absorbed, scattered
or transmitted, according to the absorption (a) and scatter-
ing (b) coefficients and to a scattering phase function that
models how light is scattered in any direction. An attenua-
tion coefficient c is defined as c = a + b and the geometrical
depth is mapped to a optical depth τ that imbeds c. Assum-
ing a plane-parallel geometry, and a single wavelength, the
unidimensional integral-differential RTE, can be written as:
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where µ ∈ [−1, 1] and ϕ ∈ [0, 2π] are the cosine of the inci-
dent polar angle θ and the incident azimuthal angle, respec-
tively. $0(τ) = b(τ)/c(τ) is the single scattering albedo. The
scattering phase function Θ(µ, ϕ;µ′, ϕ′), gives the scattering
beam angular distribution, mapping the incident beam direc-
tion (µ, ϕ) to the scattered direction (µ′, ϕ′), and the source
term is S(τ, µ, ϕ). The heterogeneous medium, in this case
offshore ocean water is then modeled as a set of R homoge-
neous finite layers. Boundary conditions are defined between
regions, at the surface (incident light) and the bottom of the
water. Each layer is denoted as being a region r of the multi-
region domain:

$0(τ) = $r r = 1, 2, . . . , R (2)

There are several resolution methods, most of them adopt-
ing the Chandrasekhar’s decomposition on the azimuthal an-
gle [11] that generates L integral-differential equations, each
one with no dependence on ϕ. For the discrete ordinate
method, the above equations are approximated by a coloca-
tion method, where the µ integral is computed by the Gauss-
Legendre quadrature formula. This yields a set of Nµ differen-
tial equations for each azimuthal mode. Each set (discretized
RTE) is solved by the LTSn method [1], that generates a sys-
tem of equations of order R×Nµ. In the considered test cases,
R = 10, Nµ = 50 and there is no dependence on ϕ (L = 1).
This work employs a bio-optical models to correlate the

absorption and scattering coefficients of each region to the

chlorophyll concentration. These coefficients are assumed to
be constant in each region. Therefore discrete values ar and
br can be estimated for each region from the discrete values
Cr.
Usually, chlorophyll profiles can be represented according

Gaussian distributions [17]. A particular profile, correspond-
ing to the Celtic Sea was considered:
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where z is the depth in meters and C is given in mg/m3. This
profile can be shown in section 6 of this work, termed exact

profile. A bio-optical model was formulated by Morel [18] for
the absorption coefficient,

ar =
[

aw + 0.06 ac C0.65
r

]

[

1 + 0.2 e−0.014(λ−440)
]

(4)

where aw is the pure water absorption and ac is a nondimen-
sional, statistically derived chlorophyll-specific absorption co-
efficient, and λ is the considered wavelength, while another
was awg formulated by Gordon and Morel [14] for the scatter-
ing coefficient,

br =

(

550

λ

)

0.30 C0.62
r (5)

The considered Celtic Sea profile refers to a type of water
that present a high concentration of phytoplankton in com-
parison to organic particles [19]. The values of aw and ac

depend on the wavelength and can be found in tables [17].

3 ANT COLONY SYSTEM

The Ant Colony System (ACS) is a method that employs a
meta-heuristic based on the collective behaviour of ants chos-
ing a path between the nest and the food source [12]. Each ant
marks its path with an amount of pheromone and the marked
path is further employed by other ants as a reference. As an
example of this, the sequence in Fig. 1 shows how ants, trying
to go from point A to point E (a), behave when an obstacle
is put in the middle of the original path, blocking the flow
of the ants between points B and D (b). Two new paths are
then possible, either going to the left of the obstacle (point H)
or to the right (point C). The shortest path causes a greater
amount of pheromone to be deposited by the preceding ants
and thus more and more ants choose this path (c).
In the ACS optimization method, several generations of

ants are produced. For each generation, a fixed amount of
ants (na)is evaluated. Each ant is associated to a feasible path
and this path represents a candidate solution, being composed
of a particular set of edges of the graph that contains all
possible solutions. Each ant is generated by choosing these
edges on a probabilistic basis. This approach was succesfully
used for the Traveling Salesman Problem (TSP) and other
graph-like problems [2]. The best ant of each generation is
then choosed and it is allowed to mark with pheromone its
path. This will influence the creation of ants in the further
generations. The pheromone put by the ants decays due to
an evaporation rate. Finally, at the end of all generations, the
best solution is assumed to be achieved.
A solution is composed of linking ns nodes and in order to

connect each pair of nodes, np discrete values can be choosen.
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Figure 1. Ants overcoming an obstacle in the trail (from
Dorigo et al [12]).

This approach was used to deal with a continuous domain.
Therefore, there are ns × np possible paths [i, j] available.
Denoting by ρ the pheromone decay rate and τ0 the initial
amount of pheromone, the amount of pheromone τij at gen-
eration t is given by:

τij(t) = (1− ρ)τij(t) + τ0, (6)

In this work, τ0 is calculated as sugested in [3] using an eva-
lutation Q of the function to be optimized obtained with a
greedy heuristics:

τ0 = 1/(ns ∗Q), (7)

The probability of a given path [i, j] be choosed is then

Pij(t) =
[τij(t)]

α [ηij ]
β

∑

l{[τil(t)]
α [ηil]

β}
(8)

where l ∈ [1, np] and ηij is the visibility/cost of each path, a
concept that arises from the TSP, where the cost is the in-
verse of the distance of a particular path. The above equation
assumes that all paths are possible for any ant, but the TSP
does not allow this assumption. The parameters α and β are
weights that establish the trade-off between the influence of
the pheromone and the visibility in the probability of each
path.
However, there is a further scheme for the choice of a path

for a new ant. According to a roulette, a random number in
the range [0, 1] is generated for the new ant and it is compared
with a parameter q0 chosen for the problem. If the random
number is greater than this parameter, the path is taken ac-
cording to Pij . If not, the most marked path is assigned.
In the current work, the inverse problem is iteratively

solved, being formulated as an optimization problem, solved
by the parallel implementation of an ACS. The code was par-
allelized using calls to the Message Passing Interface (MPI)
communication library [20]. At each iteration, candidate so-
lutions are distributed among processors in order to be eval-
uated.

4 INVERSION SCHEME

This work formulates the inverse problem according to an
implicit approach, leading to an optimization problem [15].

p is the set of parameters to be estimated, in this case, the
R discrete values of the chlorophyll concentration C at op-
tical depths τ taken at the upper interface of the regions.
Thus pr = C(τr) for r = 0, 1, ..., R − 1. Experimental data
are the discrete radiances I(τr, µi) for r = 0, 1, ..., R and
i = 1, 2, ..., Nµ. The objective function J(p) is given by the
square difference between experimental (exp and model ra-
diances plus a regularization term. As radiance intensity de-
cays exponentially with depth, a depth correction factor (not
shown here) must be employed to weight the influence of the
depth-depend radiances [31]. The R discrete values of the con-
centration are estimated from (R+ 1)×Nµ radiance values.

J(p) =

Nµ
∑

i=1

R
∑

r=0

[

Iexp(τr, µi)− Ip(τr, µi)
]2
+ γ Ω[p] (9)

Ω[p] is the regularization function, that is weighted by a regu-
larization parameter γ. For instance, the 2nd order Tikhonov
regularization [32] is defined by

Ω[p] =

R−1
∑

i=2

(pi+1 − 2pi + pi−1)
2 (10)

The regularization term is required for noisy data due to the
ill-posedness nature of inverse problems. Then, small changes
in radiance data cause big changes in the concentration pro-
file. There are some criteria for the choice of γ, but an optimal
value can be difficult to adjust, as it requires a choice criteria
(Morozov discrepancy principle, L-curve, etc. [5]) that may
demand many executions of the inverse solver. A value too
small may yield a profile with fluctuations, while the opposite
makes the profile flat.
In the current work, a ACS based inverse solver with a re-

cent implicit regularization scheme [22] is proposed and em-
ployed without the explicit regularization (γ = 0). Since here
is an a priori information about the smothness of the solution
profile, such knowledge is included in the generation of the
candidate solutions, by means of pre-selecting the smoother
ants.
This information can be used as an alternative for the vis-

ibility ηij of each path. First, an overpopulation of ants is
generated, making α = 1 and β = 0 in Equation 8 and af-
ter, a certain fraction containing the smoother ants/paths is
selected. Thus the visibility is assumed to be associated to
the smoothness of the path. The criteria choosen to select
the paths according to the their smoothness was precisely the
2nd order Tikhonov norm, that is normally used as a regu-
larization function. Actually, a kind of pre-regularization is
performed, and the usual regularization term is not required.
It was difficult to find an ACS visibility/cost criteria in this

problem since it does not belong to the TSP class and this is-
sue lead to choice of the smoothness for theensemble of paths
of each ant. It can be shown that the ACS has poor perfor-
mance compared to other stochastic optimization algorithms
when no visibility information can be defined. In addition,
the proposed strategy leads to a reduction of the number of
evaluations of the objective function and therefore improves
the performance since the direct model demands a significant
amount of processing time.
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5 PARALLELIZATION SCHEME

In the employed implicit approach, the inverse solver (the
ACS) generates sucessive candidates solutions that are eval-
uated by the direct model (the LTSN solver). Two levels of
parallelization can be devised, corresponding to the inverse
and to the direct models, and it is possible to have both.
Concerning the parallelization of the LTSN solver, one or

more dimensions (R, Nµ, L) can be chosen to divide the do-
main among processors. Data dependencies preclude the dis-
tribution among processors of radiance calculations accord-
ing to polar angles or regions. Therefore, a straightforward
approach is to assign to each processor a radiance calcula-
tions corresponding to a particular azimuthal angle, since each
one can be independently computed. This was employed in a
previous work [28] with good parallel performance. However,
here, L = 1 and this scheme is not possible.
The inverse solver can also be parallelized. In the case

of an evolutive algorithm, such as a genetic algorithms or
ACS, most schemes divide the population in several sub-
populations/colonies that evolve independently, except for
the migration with specific policies and topologies (island
model, stepping-stone model, etc.) [23]. An alternative, termed
global parallelization, consider a single population/colony be-
ing evolved, but its individuals/ants distributed among pro-
cessors, thus dividing the evaluation of the population. This
scheme is adopted here. The ACS requires that the objective
function (the RTE) be evaluated for the pre-selected ants.
Therefore, each ant is assigned to a processor, that executes
the LTSN solver.
According to the Amdahl’s law [21], parallel performance of

the code is limited by the sequential part of the code, that de-
pends on the choice of the parallelization scheme. The parallel
performance is usually evaluated by two quantities, the speed-
up and the efficiency. Speed-up is the ratio of the sequential
to the p-processor parallel execution time, while efficiency is
defined as the speed-up divided by the number of processors
p.

6 NUMERICAL RESULTS

Similarly to other stochastic optimization algorithms, the tun-
ing of parameters in the ACS has a big influence in the re-
sults. This implementation required adjustment of parameters
like ρ, the pheromone decay rate and q0, used in the roulette
scheme. Other parameters may influence the quality of the so-
lution, like the the number of np possible paths between each
pair of the ns nodes, the number of ants na, or the maximum
number of iterations mit. These values are shown in Table
1, and refer to the chosen test cases. In these cases, 15 was
found as the minimum number of pre-selected ants that yield
a good solution. The parallel inverse solver was tested for a

Table 1. Ant Colony System parameters

seed ns np na mit ρ q0
33 10 3000 90 500 0.03 0.0

multi-region (R = 10) offshore ocean water radiative transfer
problem with azimuthal symmetry using both noiseless and

noisy data. In the test cases, synthetic data was used to simu-
late the experimental values of the Celtic sea case, mentioned
in section 2. No “classical” regularization was used (γ = 0),
but smoothness-based pre-selection was performed in the gen-
eration of the ants using the 2nd order Tikhonov norm.
The reconstructed profiles shown good agreement with the

exact solution. Figure 2 presents the exact Chlorophyll con-
centration profile and the reconstructed profiles from noiseless
and 5% noisy data, using na = 90 and pre-regularization.
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Figure 2. Exact Chlorophyll profile and reconstructed profiles
using pre-regularization from noisy and noiseless data.

Figure 3 presents the same test case, using noiseless data,
but comparing the reconstructed profiles for the proposed
methodology (pre-regularization, na = 90) and for the ACS
without regularization using na = 15 (15 ants, i.e. an equiva-
lent number of evaluations of the objective function). Figure
4 presents the same test case, but using na = 90 for the ACS
without regularization.
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Figure 3. Exact Chlorophyll profile and reconstructed profiles
with pre-regularization and without regularization (15 ants) from

noiseless data.

Performance results are shown in Table 2. It can be noted
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Figure 4. Exact Chlorophyll profile and reconstructed profiles
with pre-regularization and without regularization (90 ants) from

noiseless data.

that the efficiency decays as the number of processors in-
crease. This is due to the time spent in the sequential part of
the code, that remains constant, as the time of the parallel
part tends to decay with the increase of the number of proces-
sors. Better values can be expected without azimuthal sym-
metry, since the fraction of time corresponding to the parallel
part increases. These results were obtained for a population
of 90 ants, but the pre-regularization reduces the number of
evaluations since only 15 of these ants are selected at every
iteraction/generation of the ACS. In the usual scheme, the
90 ants have to be evaluated and the sequential time of the
reconstruction is 2323.05 seconds, or 3 times the sequential
time that appears in that table (756.98 seconds). The time
did not scaled down by 6 times (or 90/15) as the evaluation
of the ants represents only a part of the total execution time.

Table 2. Speed-up and efficiency for p processors

p Time (s) Speed-up Efficiency

1 756.98
3 286.78 2.64 0.880
5 202.20 3.74 0.749
15 118.53 6.38 0.426

7 FINAL REMARKS

This work presents an innovative application of a recent in-
verse methodology. The inverse solver employed a modified
meta-heuristics, that combines a standard ACS algorithm and
an intrinsic regularization. Concerning the direct model, the
RTE was solved by the LTSN method. A pre-regularization
scheme was applied to the ACS in order to include a pri-

ori information in the generation/selection of the ants. This
scheme was used in a previous work [22] in which no good re-
sults were obtained with the usual regularization scheme, i.e.,
the objective function as given by equation 9. In the test cases
presented here, results that present good agreement with the

exact solution were obtained using the proposed method In
the case of the standard scheme, the ACS without regulariza-
tion, good reconstructions are also obtained, but the inverse
solutions are less smoother than the proposed ACS. This fea-
ture is magnified in the presence of noise in the data. In addi-
tion, the proposed scheme significantly reduced the processing
time, as fewer evaluations of the objective function had to be
performed. This is a very important point in inverse prob-
lems, as typically thousands or millions of iterations may be
demanded. The ACS with an usual regularization scheme also
reconstructed the profile from noisy data. However, this de-
mands to find out the regularization parameter γ. Perhaps
the most interesting aspect of the proposed scheme is that γ
is not required.
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