
Follow 608K Followers

THOUGHTS AND THEORY

Creating deep neural networks with 3 to 5 lines
of code
We can create new deep neural networks by changing very few lines of code of
already proposed models.

Valdivino Santiago Júnior Oct 30 · 8 min read

Image by author.

When dealing with supervised learning within deep learning, we might say that there

are some classical approaches to follow. The first solution is the so-called “heroic”

strategy where one creates a completely new deep neural network (DNN) from scratch

and train/evaluate it. In practical terms, this solution may not be very interesting since

there are countless DNNs available nowadays, like many deep convolutional neural

networks (CNNs), that can be reused. The second path is simply to consider a deployable

DNN, trained for a certain context, and see its operation in another context. Despite all

Get started Open in app

https://towardsdatascience.com/?source=post_page-----baa83fa616ed-----------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fcollection%2Ftowards-data-science&operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fcreating-deep-neural-networks-with-3-to-5-lines-of-code-baa83fa616ed&collection=Towards+Data+Science&collectionId=7f60cf5620c9&source=post_page-----baa83fa616ed---------------------follow_header--------------
https://towardsdatascience.com/followers?source=post_page-----baa83fa616ed-----------------------------------
https://towardsdatascience.com/tagged/thoughts-and-theory
https://medium.com/@vald.santiago?source=post_page-----baa83fa616ed-----------------------------------
https://medium.com/@vald.santiago?source=post_page-----baa83fa616ed-----------------------------------
https://towardsdatascience.com/creating-deep-neural-networks-with-3-to-5-lines-of-code-baa83fa616ed?source=post_page-----baa83fa616ed-----------------------------------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fcreating-deep-neural-networks-with-3-to-5-lines-of-code-baa83fa616ed&source=post_page-----baa83fa616ed---------------------nav_reg--------------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2Fbaa83fa616ed&%7Efeature=LoOpenInAppButton&%7Echannel=ShowPostUnderCollection&%7Estage=mobileNavBar&source=post_page-----baa83fa616ed-----------------------------------
https://medium.com/?source=post_page-----baa83fa616ed-----------------------------------

the advances in deep learning, models can present bad performances if the contexts are

too diverse.

One of the most famous approach today is known as transfer learning which is used to

improve a model from one domain (context) by transferring information from a related

domain. The motivation to rely on transfer learning is when we face the situation where

there are not so many samples in the training dataset. Some reasons for this are that the

data are not cheap to collect and label or they are rare.

Photo by Janko Ferlič on Unsplash.

But, transfer learning may have disadvantages. Usually the models are trained on huge

datasets so that such pretrained models can be reused in another context. Hence, we

start the training not from scratch but based on an acquired “intelligence” embedded in

the pretrained models. However, even if we have great number of images to train, the

training dataset must be general enough to address different contexts. There are many

interesting benchmark image sets such as ImageNet and COCO that aim to address this

issue. But, eventually, we may be working in a challenging domain (e.g. autonomous

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-016-0043-6
https://unsplash.com/@itfeelslikefilm
https://unsplash.com/

driving, remote sensing) where transfer learning based on these classical datasets might

not be enough.

Even if we have many attempts to augment the training samples, e.g. data

augmentation, generative adversarial networks (GANs), we can create new models by

reusing and/or making some modifications and/or combining different characteristics

of other already proposed models. One of the most significant examples of such a

strategy are the famous object detection DNNs called YOLO. These models, particularly

version 4, were developed based on dozens of other solutions. Such networks are a kind

of eclectic mixture of different concepts to obtain a new model, and they have been very

successful for detecting objects in images and videos. Note that YOLOX is the newest

version of the YOLO networks.

Photo by Amélie Mourichon on Unsplash.

This post is in the direction to create new models by accomplishing a few variations in

previously proposed approaches. It shows how easy it can be to create “new” DNNs by

changing very few lines of code of previously proposed models. Note that we are

pushing it a little by calling the networks presented below as “new” since the changes we

have done were basically related to the number of layers of the original models. But, the

whole point is to encourage practitioners to think about this, and eventually reuse/adapt

previous ideas to generate new approaches when using DNNs in their practical settings.

https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb
https://medium.com/@tastekinalperenn/yolox-main-idea-behind-latest-yolo-algorithm-5f8aa930c33c
https://unsplash.com/@amayli?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

VGG12BN
Top position in localisation and second best place in the classification task in the 2014

ImageNet Large Scale Visual Recognition Challenge (ILSVRC), VGG is one classical DNN

which still has some uses today, even if some authors consider it an obsolete network. In

the original article, authors proposed VGGs with 11, 13, 16, and 19 layers. Here, we

show how to create a “new” VGG composing of 12 layers and with batch normalisation

(BN) just by adding/changing 5 lines of code: VGG12BN.

We relied on the implementation of the PyTorch Team and modified it to create our

model. The VGG modified code is here and the notebook to use it is here. Moreover, we

considered a slightly modified version of the imagenette 320 px dataset from fastai. The

difference is that the original validation dataset was split into two: validation dataset

with 1/3 of the images of the original validation set, and 2/3 of the images compose the

test dataset. Hence, there are 9,469 images (70.7%) in the training, 1,309 images

(9.78%) in the validation, and 2,616 images (19.53%) in the test sets. It is a multiclass

classification problem with 10 classes. We called the dataset as imagenettetvt320.

We now show the modifications we made in the VGG implementation of the PyTorch

Team:

Firstly, we commented out from .._internally_replaced_utils import

load_state_dict_from_url to avoid dependencies on other PyTorch modules. Also, to

be completely sure that we will not use the pretrained models (by default pretrained

= False), we commented out model_urls . It is just to emphasise this point and it is

not really necessary to do this;

The first modification is the addition of the name of our model: "vgg12_bn” ;

https://www.image-net.org/challenges/LSVRC/
https://arxiv.org/abs/1409.1556
https://github.com/vsantjr/DeepLearningMadeEasy/blob/temp_23-09/vggmodified.py
https://github.com/vsantjr/DeepLearningMadeEasy/blob/temp_23-09/PyTorch_VGG_ResNet_VGGout.ipynb
https://github.com/fastai/imagenette
https://www.kaggle.com/valdivinosantiago/imagenettetvt320

Image by author.

Since we have 10 classes, we changed num_classes from 1000 to 10;

Image by author.

Hence, we create a new configuration, "V" , with the following convolutional layers

(number of channels of each layer is shown in the sequence): 64, 64, 128, 128, 256,

256, 512, 512, 512. Note that "M" below means max pooling. Since VGG has 3 fully-

connected (FC) layers by default, altogether we have 12 layers;

Image by author.

To conclude, we create a function, vgg12_bn , which has just one line of code calling

another function. Note that we see the values of parameters "vgg12_bn" (the name of

the network), "V" (the configuration), and True where the latter activates batch

normalisation.

Image by author.

That is it. With 5 added/modified lines of code we created our model. In the notebook,

we need to import the vggmodified file to use the VGG12BN.

Image by author.

Figure (table) below shows the results in terms of accuracy (Acc) based on the test

dataset after the training for 10 epochs. We compared the original VGG16BN, VGG19BN

and the proposed VGG12BN models. Columns # Train Param (M), # Param Mem

(MB), Time (s) present the number of million of trainable parameters of each model,

the size in MByte only due to the parameters of the model, and the time to execute them

using Google Colab. Our “new” VGG12BN got the higher accuracy.

VGG: results. Image by author.

DenseNet-83 and ResNet-14
In the DenseNet model, each layer is connected to every other layer in a feed-forward

manner aiming to maximise the information flow between layers. Another winner of the

ILSVRC, in 2015, ResNet is one of the most popular CNNs where several variants of it

have already been proposed (ResNeXt, Wide ResNet, …) and it has also been reused as

part of other DNNs. It is a residual learning approach where stacked layers fit a residual

mapping rather than directly fitting a desired underlying mapping. We followed a

similar procedure as we have just presented for VGG12BN, but now we had to change

only 3 lines of code to create the DenseNet-83 (83 layers) and ResNet-14 (14 layers).

Access here the DenseNet modified code and its respective notebook is here. The ResNet

modified code is here and the notebook is the same as the VGG12BN but now we show

the output by running ResNet-14. Since the modifications to create both networks are

similar, we will show below only the ones to create DenseNet-83. Hence, this is what we

made:

As previously, we commented out from .._internally_replaced_utils import

load_state_dict_from_url to avoid dependencies on other PyTorch modules. But note

that we did not comment out models_url now;

We added the name of our model: "densenet83" ;

https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1512.03385
https://github.com/vsantjr/DeepLearningMadeEasy/blob/temp_23-09/densenetmodified.py
https://github.com/vsantjr/DeepLearningMadeEasy/blob/temp_23-09/PyTorch_DenseNet.ipynb
https://github.com/vsantjr/DeepLearningMadeEasy/blob/temp_23-09/resnetmodified.py
https://github.com/vsantjr/DeepLearningMadeEasy/blob/temp_23-09/PyTorch_VGG_ResNet_ResNetout.ipynb

Image by author.

And we create a function, densenet83 , which has just one line of code calling

another function. Note that we see the values of parameters "densenet83" (the name

of the network), and (3, 6, 18, 12) are the number of repetitions of dense blocks 1,

2, 3, and 4, respectively.

Image by author.

Figure below shows the DenseNet architectures for ImageNet. We considered DenseNet-

161 as a reference and halved the number of repetitions of the blocks to derive the

DenseNet-83.

Image (table) from the DenseNet article.

Altogether, 3 lines of code were added/modified. As for DenseNet, figure (table) below

shows the results in terms of accuracy (Acc) based on the test dataset after the training

for 10 epochs. We compared the original DenseNet-121, DenseNet-161 and the

proposed DenseNet-83 models. We basically see a tie in terms of performance between

DenseNet-161 and our “new” DenseNet-83, with DenseNet-161 being slightly superior.

https://arxiv.org/abs/1608.06993

DenseNet: results. Image by author.

Regarding ResNet, comparing ResNet-18, ResNet-34, and the “new” ResNet-14, ResNet-

18 was the best and ResNet-14 got the second place as shown in the figure (table)

below.

ResNet: results. Image by author.

Conclusions
In this post, we show how easy it can be to create new DNNs by modifying a few lines of

code of previously proposed networks. We claim that reusing previous ideas and

deriving new models with suitable modifications is a good path to follow.

Sign up for The Variable
By Towards Data Science

Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials
and cutting-edge research to original features you don't want to miss. Take a look.

Get this newsletter

Deep Neural Networks Densenet Resnet Editors Pick Thoughts And Theory

About Write Help Legal

Get the Medium app

https://medium.com/towards-data-science/newsletters/the-variable?source=newsletter_v3_promo--------------------------newsletter_v3_promo--------------
https://medium.com/m/signin?actionUrl=%2F_%2Fapi%2Fsubscriptions%2Fnewsletters%2Fd6fe9076899&operation=register&redirect=https%3A%2F%2Fmedium.com%2Ftowards-data-science%2Fnewsletters%2Fthe-variable&collection=Towards+Data+Science&collectionId=7f60cf5620c9&newsletterV3=The+Variable&newsletterV3Id=d6fe9076899&user=Ludovic+Benistant&userId=895063a310f4&source=newsletter_v3_promo--------------------------newsletter_v3_promo----------d6fe9076899----
https://towardsdatascience.com/tagged/deep-neural-networks
https://towardsdatascience.com/tagged/densenet
https://towardsdatascience.com/tagged/resnet
https://towardsdatascience.com/tagged/editors-pick
https://towardsdatascience.com/tagged/thoughts-and-theory
https://medium.com/?source=post_page-----baa83fa616ed-----------------------------------
https://medium.com/about?autoplay=1&source=post_page-----baa83fa616ed-----------------------------------
https://medium.com/new-story?source=post_page-----baa83fa616ed-----------------------------------
https://help.medium.com/hc/en-us?source=post_page-----baa83fa616ed-----------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----baa83fa616ed-----------------------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----baa83fa616ed-----------------------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----baa83fa616ed-----------------------------------

