
The Performance Relation of Spatial Indexing on
Hard Disk Drives and Solid State Drives

Anderson Chaves Carniel1, Ricardo Rodrigues Ciferri2,
Cristina Dutra de Aguiar Ciferri1

1Department of Computer Science – University of São Paulo
13.560-970 – São Carlos – SP – Brazil

accarniel@gmail.com, cdac@icmc.usp.br

2Department of Computer Science – Federal University of São Carlos
15.565-905 – São Carlos – SP – Brazil

ricardo@dc.ufscar.br

Abstract. Spatial indexing is a core aspect in spatial databases and Geographic
Information Systems. Commonly, spatial indices like the R-tree and the R*-tree
consider Hard Disk Drives (HDDs) as the main storage device in data man-
agement. On the other hand, flash memories in the form of Solid State Drives
(SSDs) have widely been adopted in data servers. Due to their unique char-
acteristics like the erase-before-update operation and the asymmetry between
read and write costs, the impact of spatial indexing on SSDs needs to be stud-
ied. In this paper, we conduct an experimental evaluation in order to analyze
the performance relation of spatial indexing on HDDs and SSDs. As a result, we
show experimentally that spatial indices originally designed for HDDs should
be redesigned for SSDs in order to take into account the unique characteris-
tics of SSDs. We also propose guidelines to improve the performance of spatial
indexing on SSDs by considering these characteristics.

1. Introduction

Several advanced applications like agriculture systems, urban planning, and public trans-
portation planning make use of geometric or spatial information in order to represent
spatial phenomena. These applications commonly employ specialized systems to man-
age, analyze, and store a spatial phenomenon, such as spatial database systems and Geo-
graphic Information Systems (GIS). In order to aid in decision making, spatial queries re-
turn a set of spatial objects that satisfy some topological predicate (e.g., overlap, disjoint,
inside) according to a given object [Gaede and Günther 1998]. For instance, a spatial se-
lection that finds all rivers intersecting the Sao Paulo state. To speed up the processing of
spatial queries, spatial indices are employed, such as the R-tree [Guttman 1984] and the
R*-tree [Beckmann et al. 1990].

In general, these indices manage spatial objects stored in Hard Disk Drives
(HDD), and thus take into account the slow mechanical access and the cost of search
and rotational delay of magnetic disks. On the other hand, flash memories have
widely been utilized in many applications since they are increasingly being used
as the main storage device in mobile phones and laptops [Mittal and Vetter 2015,

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

263



Suzuki and Swanson 2015]. Solid State Drives (SSD) are robust forms of flash memo-
ries that have also been popular in data centers and data servers. Flash memories have
many positive characteristics compared to HDDs, such as (i) smaller size, (ii) lighter
weight, (iii) lower power consumption, (iv) better shock resistance, and (v) faster reads
and writes.

Although the positive characteristics of flash memories, these memories have
other unique characteristics that may affect the performance of many applica-
tions [Chen et al. 2009, Mittal and Vetter 2015]. The main unique characteristic is the
asymmetry between read and write costs, where a write requires more time and power
consumption than a read. Another characteristic is that a random write is slower than a
sequential write since the flash memory is block-oriented. Therefore, an evaluation of the
performance of disk-based spatial indices (i.e., originally designed for HDDs) on flash
memories is needed.

There are few approaches [Emrich et al. 2010, Fevgas and Bozanis 2015] that
conduct an experimental evaluation of spatial indexing on flash memories. There are
also approaches [Wu et al. 2003, Lv et al. 2011, Sarwat et al. 2013] that make use of a
buffer in the main memory, which stores the modifications of the spatial indices and thus,
avoid random writes to the flash memory. When the buffer is full, a flushing operation is
performed by applying sequential writes to the flash memory. However, these approaches
face several problems, such as the lack of an analysis between the performance relation of
spatial indexing on HDDs and flash memories, the conduction of a limited experimental
evaluation that do not focus on the spatial query processing, and the lack of analysis of
the parameterization impact of spatial indices on flash memories.

The goal of this paper is threefold. The first goal aims to check the relative perfor-
mance results of an index on a SSD and a HDD, that is, if a spatial index that show the best
results on the HDD also shows the best results on the SSD and vice-versa. For this pur-
pose, we conducted an extensive experimental evaluation that varied several parameters
of different spatial indices. The second goal aims to verify the impact of parameters on
flushing operations. For instance, we analyzed if the size of bytes in a flushing operation
(i.e., a flushing unit) has relation with the page size used in a spatial index. Finally, the
third goal aims to analyze if the parameterization that could benefit the flushing operation
also guarantee a good performance in the spatial query processing.

This paper is organized as follows. Section 2 surveys related work. Section 3
summarizes underlying concepts from spatial indexing. Section 4 briefly describes the
unique characteristics of flash memories. Section 5 details the conducted experimental
evaluation. Section 6 concludes the paper and presents future work.

2. Related Work
There are few approaches [Emrich et al. 2010, Fevgas and Bozanis 2015] that conduct an
experimental evaluation of spatial indexing on flash memories. In addition, there also
approaches [Wu et al. 2003, Lv et al. 2011, Sarwat et al. 2013] that propose new spatial
indices for flash memories based on the R-tree. We classify these approaches according
to the following characteristics: (i) the analysis of the performance of spatial indexing on
HDDs and SSDs, (ii) the variety of spatial indices used in experiments, (iii) the parameters
considered in the indices, and (iv) the focus of the experiments.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

264



Regarding the first characteristic, almost all the approaches do not evaluate the
performance of spatial indexing on HDDs and SSDs. This kind of evaluation is important
to study and check if the performance of well-known indices (e.g., the R-tree and the R*-
tree) are the same on HDDs and SSDs due to the different characteristic of these storage
systems. Only [Emrich et al. 2010] conducts a performance evaluation considering both
storage systems, HDDs and SSDs.

Regarding the second characteristic, the majority of the ap-
proaches [Wu et al. 2003, Lv et al. 2011, Sarwat et al. 2013] employs the R-tree as
baseline, while the remaining approaches [Emrich et al. 2010, Fevgas and Bozanis 2015]
employ the R*-tree as baseline. However, it is important to consider both the R-tree and
the R*-tree in a same experiment due to their good performance reported in the litera-
ture. In addition, many approaches [Wu et al. 2003, Lv et al. 2011, Sarwat et al. 2013,
Fevgas and Bozanis 2015] also propose new spatial indices for flash memories. These
approaches conduct experimental evaluations to check the performance behavior of their
indices. But, the lack of studies about the performance of well-known spatial indices on
flash memories can ignore other characteristics that could improve their performance.

Regarding the third characteristic, the main parameter analyzed in the approaches
is the buffer size in the main memory. Another parameter analyzed in [Sarwat et al. 2013]
is the type of the flushing policy. However, parameterization plays an important role in
spatial indexing and the variation of specific parameters of a spatial index could impact
its performance (see Section 3). For instance, there is a lack of analysis of the relation
between the page size considered in a spatial index on the HDD and SSD.

Regarding the fourth characteristic, the main focus of the experiments conducted
in the approaches is insertion and deletion operations. The reason is that the flash mem-
ories introduce challenges in the maintenance of a spatial index since a random write is
an expensive operation. But, it is also important to examine the spatial query processing
since this is a very common operation in spatial databases. As a result, there is a lack of
studies verifying the impact of query selectivity. For instance, since the flash memories
provide fast reads, an open question is how to adapt the spatial organization to take into
account this characteristic.

In this paper we conduct a performance evaluation considering different spatial
indices with different parameters on both storage systems, HDDs and SSDs. For this
purpose, we consider disk-based spatial indices (e.g., the R-tree) and flash-aware spatial
indices (e.g., the FAST), which are summarized in the next section. Further, we analyze
the performance results for creating and querying spatial indices.

3. Spatial Indexing
In general, hierarchical structures are employed to index spatial objects by using
their Minimum Boundary Rectangles (MBR). The most known spatial index is the R-
tree [Guttman 1984], which is composed of internal and leaf nodes where indexed spatial
objects are stored in leaf nodes. The R*-tree [Beckmann et al. 1990] is a well-known vari-
ant of the R-tree that employs other aspects to organize the spatial objects in the nodes,
such as the overlapping area among the entries, redistribution to maximize the storage
utilization, and the margin of the nodes. Hence, the R*-tree modifies the insert algorithm
of the R-tree in order to consider these aspects. Further, it applies a policy of reinsertion

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

265



Table 1. Comparison of the HDD1 and the SSD2 used in the experiments.

4KB Random Transfers3 Power Consumption4
Endurance5

Read Write Read Write

HDD 0.185MB/s 0.441MB/s 4.1W 4.1W > 1015

SSD 285.156MB/s 109.375MB/s 1.423W 2.052W 104 � 105

in order to decrease the number of split operations. Since these indices consider MBRs, a
spatial query is composed of the filter and refinement steps [Gaede and Günther 1998].

With the increasing use of flash memories in applications, new spatial indices
for flash memories were proposed [Wu et al. 2003, Lv et al. 2011, Sarwat et al. 2013,
Fevgas and Bozanis 2015]. Despite the particular characteristic of each index, in general
they make use of a buffer in the main memory that stores the most recent modifications of
nodes of a spatial index instead of applying directly them to the flash memory. The goal is
to avoid random writes, such as those that occur in splits. A flushing operation composed
of sequential writes is performed when the buffer is full. Almost all the indices consider
all modifications in the flushing operation, which can introduce overhead in write opera-
tions. On the other hand, [Sarwat et al. 2013] uses a refined flushing policy that chooses
a set of nodes with modifications to be flushed. This set form a flushing unit, which has a
fixed number of nodes to be written.

Parameterization plays an important role in spatial index-
ing [Gaede and Günther 1998]. Page (node) size as well as minimum and maximum
number of entries of leaf and internal nodes are examples of typical parameters used
by hierarchical structures. In addition, each index may include specific parameters
according to its design. For instance, we are able to vary the reinsertion percentage of
the R*-tree. Another example is to vary the buffer and flushing unit sizes of flash-aware
spatial indices, which will impact directly on the performance of flushing operations.
Therefore, there is a significant performance impact if different parameters are used in a
spatial index in different datasets under different storage systems. We mainly conduct an
empirical study regarding to it by analyzing the unique characteristics of flash memories,
which are summaried in Section 4.

4. Flash Memories
Flash memories in the form of SSDs have been very popular in many applica-
tions [Suzuki and Swanson 2015, Mittal and Vetter 2015]. Table 1 shows a comparison
of the SSD and HDD used in our experimental evaluation (Section 5). Flash memories
have unique characteristics that need to be taken into account in the development of appli-
cations for them. Flash memories are block-oriented. This means that a fixed number of
flash pages composes a flash block. Commonly, the flash page and block sizes of a SSD
are 4KB and 256KB, respectively [Chen et al. 2009, Mittal and Vetter 2015].

1https://support.wdc.com/product.aspx?ID=608&lang=en
2https://www.kingston.com/us/ssd/consumer/sv300s3
3Measured by Iometer (http://www.iometer.org/).
4According to the manufactures12.
5According to [Mittal and Vetter 2015].

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

266



Flash memories support the following operations: erase, read, and write (pro-
gram) [Chen et al. 2009]. An erase is a block level operation that changes the bits from 0
to 1 of all pages contained in the block, and thus, this is the most expensive operation. The
read and write are page level operations with asymmetric costs. A read requires much less
time and power consumption than a write (see Table 1). A write is only able to change the
bits from 1 to 0 in an erased block. Hence, a write operation in a previously written block
requires an erase-before-update operation that leads to a very time-consuming operation.
On the other hand, a write operation in a previously erased block is a lower latency oper-
ation and is denominated as a sequential write. Another important characteristic of flash
memories is their lower endurance than HDDs (see Table 1). Endurance refers to the
maximum number of writes and erases in a block before its unreliableness.

In order to avoid erase-before-update operations and improve the endurance of
flash memories, the Flash Translation Layer (FTL) [Wu et al. 2009, Chung et al. 2009]
is employed. For this purpose, FTL provides an interface that allows operation systems
to use flash memories as a virtual disk and only enables reads and writes for application
layers. Further, FTL maps physical page addresses of a flash memory into logical page
addresses, which are effectively used by application layers. A logical page is marked as
either free, valid, or invalid. A free logical page is able to store data. A valid logical
page contains data previously written. A logical page is marked as invalid if a write is
performed on a valid logical page; and its new content is stored in another free logical
page. This operation is termed as an out-of-place update and avoids an erase-before-
update operation. A garbage collection is needed when space is required and there is
no sufficient free logical pages. This operation selects a set of blocks to apply erase
operations causing erase-before-update operations. Hence, this is the most expensive
operation performed by the FTL. The algorithms of the garbage collection and out-of-
place update also consider a wear leveling in order to improve the endurance of flash
blocks. For a survey of FTLs, see [Chung et al. 2009].

5. Performance Evaluation

We conduct an experimental evaluation in order to analyze the performance relation be-
tween the spatial indexing on HDDs and SSDs. Section 5.1 details the experimental setup
used in the experiments, while Section 5.2 discusses the obtained results.

5.1. Experimental Setup

We used a real dataset extracted from the OpenStreetMap6, which consisted of 534.926
complex regions with holes. This dataset represents the buildings of Brazil, such as hospi-
tals, schools, universities, houses, stadiums, and so on. We used the PostgreSQL database
management system with the PostGIS extension to store this dataset in a relational table.

In order to conduct our experiments, we employed FESTIval [Carniel et al. 2016].
FESTIval is a PostgreSQL extension that enables the performance comparison of differ-
ent spatial indices with different parameters under different storage systems by using a
unique environment. We used it to compare the performance of the following spatial
indices designed for HDDs: the R-tree and the R*-tree. Further, we implemented the

6http://www.openstreetmap.org/

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

267



Table 2. Configurations of the spatial indices and their corresponding specific
parameters used in the experiments.

Configuration Name Spatial Index Specific Parameters

Linear R-tree R-tree Split: Linear
Quadratic R-tree R-tree Split: Quadratic
R*-tree 20% R*-tree RP: 20%
R*-tree 30% R*-tree RP: 30%
R*-tree 40% R*-tree RP: 40%
FAST Linear R-tree FAST R-tree Split: Linear; FP: FAST*
FAST Quadratic R-tree FAST R-tree Split: Quadratic; FP: FAST*
FAST R*-tree 20% FAST R*-tree RP: 20%; FP: FAST*
FAST R*-tree 30% FAST R*-tree RP: 30%; FP: FAST*
FAST R*-tree 40% FAST R*-tree RP: 40%; FP: FAST*

Table 3. Generic parameters used in the experiments.

Page Size Minimum Occupancy Maximum Occupancy

2KB 28 56
4KB 57 113
8KB 114 227
16KB 228 455
32KB 455 910
64KB 910 1820

FAST [Sarwat et al. 2013], which is an approach that adapts a spatial index to be effi-
ciently used in flash memories. Note that FAST does not change the index structure but
only changes the way in which the nodes are written in the flash memory. We applied
the FAST to be used together with the R-tree and R*-tree, and thus, we formed the FAST
R-tree and the FAST R*-tree, respectively.

FESTIval also enables the configuration of a spatial index by using specific and
generic parameters. Specific parameters only determine the configuration of a specific
spatial index. For the R-tree, we varied its split algorithm. For the R*-tree, we varied
the reinsertion percentage (RP) since it impacts on the number of writes in the structure.
Further, based on the recommendations for the R*-tree [Beckmann et al. 1990], we con-
sidered the close reinsert and fixed the number of elements to be examined in the insertion
algorithm as 32. For the FAST-based indices, we considered the FAST* flushing policy
(FP) due to its advantages over other flushing policies [Sarwat et al. 2013]. In addition,
we studied the effect of the variation of the size of the buffer and the flushing unit (Sec-
tion 5.2.1). Based on that, we employed the configurations depicted in Table 2.

We also varied generic parameters, which can be applied for any spatial index. For
instance, the page size (i.e., the size of a node) and the minimum and maximum number
of entries of a node. Further, we considered the DIRECT I/O to avoid operational system
caching in read and write operations. Table 3 shows the generic parameters employed for
all the configurations in Table 2.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

268



We executed two workloads defined as follows. The first workload focused on the
index construction, and thus, we collected the time processing in seconds for creating a
spatial index (Section 5.2.1). The creation of a spatial index was performed by inserting
element by element according to the original insert algorithm of the respective index.

The second workload focused on the spatial query processing (Section 5.2.2).
Due to its utilization in many applications, we executed intersection range queries
(IRQ) [Gaede and Günther 1998]. This kind of query returns from a dataset D, a set
of spatial objects R that intersects a given query window QW , i.e., R = {o|o 2
D ^ intersects(o,QW ) = true}. Here, we employed rectangular-shaped objects as
query windows. We synthetically generated three sets of query windows. Each set was
composed of 100 query windows, which had a x% of area of the bounding box of Brazil.
The first set had 0.1%, the second set had 0.5%, and the third set had 1%. They correspond
to query windows with low, medium, and high selectivities, respectively.

We collected the total elapsed time in seconds taken to execute the 100 IRQs of
each set of query windows. The total elapsed time was calculated as follows. For a
specific set of query windows, we executed each IRQ 10 times, collected the average
elapsed time of the execution, and then calculated the sum of the average elapsed times
of the 100 IRQs. We performed the tests locally to avoid network latency and flushed the
system cache after the execution of each IRQ.

The experiments were conducted on a computer with an Intelr CoreTM i7-4770
with frequency of 3.40GHz and 32GB of main memory. For the experiments with HDD
we used a 2TB Western Digital with 7200RPM, while for the experiments with SSD we
used a 480GB Kingston V300. We employed the Ubuntu Server 14.04 64 bits, Post-
greSQL 9.5, PostGIS 2.2.0, and GEOS 3.5.2. GEOS is used by PostGIS for the computa-
tion of topological predicates.

5.2. Performance Results

The obtained results related to the spatial index construction and spatial query processing
are discussed in Sections 5.2.1 and 5.2.2, respectively.

5.2.1. Spatial Index Construction

Figure 1 depicts the elapsed time for creating disk-based spatial indices according to Ta-
bles 2 and 3. We obtained the best performance results for all spatial indices on both
storage systems by using the page size equal to 4KB, indicating that this page size should
be used for creating spatial indices. Considering the page size equal to 4KB, the perfor-
mance gain of the indices on the SSD overcame the HDD in at most 14.45% since 4KB
is the page size of the SSD. A performance gain is the percentage that shows how much
one configuration is more efficient than another configuration. On the other hand, for
other page sizes (i.e., 2KB, 8KB, 16KB, 32KB, and 64KB) we obtained best performance
results on the HDD with performance gains between 1.88% and 27.05%, which increased
as the page size also increased. This case happens since an index construction mix many
random writes and reads, and thus, it can degenerate the performance on flash memories
(also discussed in [Lee and Moon 2007] and [Chen et al. 2009]).

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

269



0

200

400

600

800

1,000

1,200

1,400

1,600

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

ec
o

n
d

s)

Page Size

Linear R-tree Quadratic R-tree R*-tree 20%

R*-tree 30% R*-tree 40%

0

200

400

600

800

1,000

1,200

1,400

1,600

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

ec
o

n
d

s)

Page Size

Linear R-tree Quadratic R-tree R*-tree 20%

R*-tree 30% R*-tree 40%

(performed on the HDD) (performed on the SSD)

Figure 1. Performance results for creating disk-based spatial indices.

The results demonstrated that spatial indices originally designed for HDD should
be redesigned for flash memories in order to take into account the unique characteristics
of these memories. FAST is an approach that adapts disk-based spatial indices to be used
efficiently on flash memories. In order to evaluate the performance of FAST-based spatial
indices, we varied the flushing unit size from 1 to 5. For instance, for configurations
with page size equal to 16KB, the flushing unit size equal to 3 performs writes of 48KB
in each flushing operation. The flushing unit sizes were combined with each page size,
which allowed to verify the impact of this parameter on the index construction. We further
considered three different buffer sizes: 128KB, 256KB, and 512KB. In Figure 2, we only
report the performance results for creating FAST-based spatial indices by using the buffer
size equal to 512KB since it had the same behavior than the other buffer sizes.

The performance results showed that FAST-based indices improved the perfor-
mance of their counterparts on both storage systems. For instance, the FAST R*-tree 30%
(Figure 2) configuration with 4KB performed on the HDD imposed a performance gain
from 17.23% to 32.84% compared to the R*-tree 30% with 4KB (Figure 1) on the HDD.
This also occurred for the SSD, where the performance gains were yet more expressive,
varying from 23.85% to 32.86%. Further, we clearly note that we did not obtain the same
performance behavior on the storage systems for constructing FAST-based indices. We
emphasize two main differences. The first difference was that the spatial indices showed
best performance results on the HDD by utilizing the page size equal to 4KB and the
flushing unit size equal to 5. On the other hand, the best performance results on the SSD
utilized the page size equal to 4KB and the flushing unit equal to 1. The second difference
was that with the increase of page and flushing unit sizes in the index construction on the
SSD, the time processing also increased. This was even much slower than the construc-
tion performed on the HDD. For instance, for the page size equal to 64KB, the results
demonstrated that the performance gains on the HDD were higher than the SSD because
big writes turned out problematic on the SSD.

5.2.2. Spatial Query Processing

Figures 3, 4, and 5 depict the obtained results for processing spatial queries by employing
IRQs with 0.1%, 0.5%, and 1%, respectively. Note that we use a different scale to report

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

270



0

200

400

600

800

1,000

1,200

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

ec
o

n
d

s)

Flushing Unit / Page Size

FAST Linear R-tree FAST Quadratic R-tree FAST R*-tree 20% FAST R*-tree 30% FAST R*-tree 40%

(Performed on the HDD considering buffer equal to 512KB)

0

200

400

600

800

1,000

1,200

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

ec
o

n
d

s)

Flushing Unit / Page Size

FAST Linear R-tree FAST Quadratic R-tree FAST R*-tree 20% FAST R*-tree 30% FAST R*-tree 40%

(Performed on the SSD considering buffer equal to 512KB)

Figure 2. Performance results for creating FAST-based spatial indices.

the results for the SSD in order to better compare the performance results. We considered
only configurations based on the R-tree and the R*-tree (Table 2) since the FAST does
not change the structure of a spatial index (e.g., the Linear R-tree using 4KB as page size
has the same structure than the FAST Linear R-tree using 4KB as page size). Clearly, the
performance of spatial query processing on the SSD overcame the HDD in all experiments
because of its faster random reads.

With respect to the execution on the HDD, almost all the configurations improved
their performance by increasing page sizes. The reason is that if we use large page sizes,
we are able to retrieve more elements from the disk with few reads. The best results
were obtained by using the R*-tree 30% configuration. For the query windows with 0.1%
(Figure 3), the page size equal to 32KB provided the best results since the number of
performed reads in the tree required for answering the queries was lower than the other
IRQs due to the low selectivity. Hence, for the IRQs with medium and high selectivity
(Figures 4 and 5), the use of the page size equal to 64KB improved the elapsed time.

With respect to the execution on the SSD, the performance behavior was slightly
different than the HDD. For the IRQs with low selectivity (Figure 3), we obtained the
best result by using the Linear R-tree configuration with the page size equal to 8KB. For
this kind of selectivity, the number of traversed paths on the index to answer the query
impacted on the elapsed time. It led to perform sequential reads, which is a very low la-
tency operation [Chen et al. 2009]. Further, for the majority of the cases, the performance

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

271



4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

ec
o

n
d

s)

Page Size

Linear R-tree Quadratic R-tree R*-tree 20%

R*-tree 30% R*-tree 40%

4.00

4.50

5.00

5.50

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

ec
o

n
d

s)

Page Size

Linear R-tree Quadratic R-tree R*-tree 20%

R*-tree 30% R*-tree 40%

(performed on the HDD) (performed on the SSD)

Figure 3. Performance results of spatial queries considering IRQs with 0.1%.

25.00

27.00

29.00

31.00

33.00

35.00

37.00

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

ec
o

n
d

s)

Page Size

Linear R-tree Quadratic R-tree R*-tree 20%

R*-tree 30% R*-tree 40%

25.00

27.00

29.00

31.00

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

ec
o

n
d

s)

Page Size

Linear R-tree Quadratic R-tree R*-tree 20%

R*-tree 30% R*-tree 40%

(performed on the HDD) (performed on the SSD)

Figure 4. Performance results of spatial queries considering IRQs with 0.5%.

deteriorated as the page size increased. On the other hand, by increasing the page size for
medium and high selectivities (Figures 4 and 5), we guaranteed more efficient time pro-
cessing. This is due to the fact that small page sizes introduce much more random reads.

The results of this experiment demonstrated that the spatial organization for an
efficient spatial query processing on SSDs tends to be different than on HDDs. A main
finding is that we can exploit the good performance of random reads by using larger page
sizes for higher selectivities. Conversely, we can use smaller page sizes for spatial query
processing with lower selectivities.

6. Conclusions and Future Work

In this paper, we conducted an extensive experimental evaluation to check the perfor-
mance relation of spatial indexing on HDDs and SSDs. We considered the disk-based
spatial indices R-tree and R*-tree due to their positive characteristics known in the litera-
ture. We also considered flash-aware spatial indices based on the FAST due to its positive
features, such as the support of flushing policies and flushing units. For all these indices,
we varied several parameters and as a result, at least 180 distinct configurations of spatial
indices were analyzed in our experiments.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

272



32.00

34.00

36.00

38.00

40.00

42.00

44.00

46.00

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

ec
o

n
d

s)

Page Size

Linear R-tree Quadratic R-tree R*-tree 20%

R*-tree 30% R*-tree 40%

32.00

34.00

36.00

38.00

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

ec
o

n
d

s)

Page Size

Linear R-tree Quadratic R-tree R*-tree 20%

R*-tree 30% R*-tree 40%

(performed on the HDD) (performed on the SSD)

Figure 5. Performance results of spatial queries considering IRQs with 1%.

As main conclusions we can cite the following performance behaviors, which can
lead us to a set of guidelines to further improve the performance of spatial indexing on
SSDs. Firstly, in all experiments we see that the direct employment of disk-based spatial
indices that showed good performance results on HDDs did not guarantee the best per-
formance results on SSDs. For instance, the R-trees provided better performance on the
SSD in the spatial query processing than the R*-trees; but the R*-trees led to best per-
formances on HDDs. This means that the spatial indexing should consider other aspects
in order to explore the positive characteristics of flash memories. Based on that, the ex-
periments showed that FAST-based indices improved the elapsed time for the creation of
spatial indices on the SSD and even on the HDD since it uses a buffer in the main memory.
In general, the performance evaluation showed that employing the FAST for the R-tree
with page sizes varying from 4KB to 16KB did not require much time for creating the
indices and provided a good performance in the spatial query processing. While the use
of the page size equal to 4KB should be recommended for queries with low selectivity,
the page size equal to 16KB should be recommended for queries with higher selectivities.

Future work will consider new workloads by including insertions, deletions, and
updates of spatial objects in order to analyze the performance behavior for maintaining
spatial indices. We will also extend the experiments by considering other spatial indices,
like the Hilbert R-tree [Kamel and Faloutsos 1994].

Acknowledgments

This work has been supported by the Brazilian research agencies CAPES, CNPq, and
São Paulo Research Foundation (FAPESP). The first author has been supported by the
grant #2015/26687-8, FAPESP. The second author has been supported by the grant
#311868/2015-0, CNPq.

References

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The R*-tree: An effi-
cient and robust access method for points and rectangles. SIGMOD Record, 19(2):322–
331.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

273



Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. (2016). Experimental evaluation of spa-
tial indices with FESTIval. In Proceedings of the Brazilian Symposium on Databases
- Demonstration Track, pages 123–128.

Chen, F., Koufaty, D. A., and Zhang, X. (2009). Understanding intrinsic characteris-
tics and system implications of flash memory based solid state drives. SIGMETRICS
Perform. Eval. Rev., 37(1):181–192.

Chung, T.-S., Park, D.-J., Park, S., Lee, D.-H., Lee, S.-W., and Song, H.-J. (2009). A
survey of flash translation layer. Journal of Systems Architecture: the EUROMICRO
Journal, 55(5-6):332–343.

Emrich, T., Graf, F., Kriegel, H.-P., Schubert, M., and Thoma, M. (2010). On the impact
of flash SSDs on spatial indexing. In Int. Workshop on Data Management on New
Hardware, pages 3–8.

Fevgas, A. and Bozanis, P. (2015). Grid-file: Towards to a flash efficient multi-
dimensional index. In Proceedings of the International Conference on Database and
Expert Systems Applications, pages 285–294. Springer International Publishing.

Gaede, V. and Günther, O. (1998). Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. SIGMOD
Record, 14(2):47–57.

Kamel, I. and Faloutsos, C. (1994). Hilbert R-tree: An improved R-tree using fractals. In
Int. Conf. on Very Large Data Bases, pages 500–509.

Lee, S.-W. and Moon, B. (2007). Design of flash-based DBMS: An in-page logging
approach. In ACM SIGMOD Int. Conf. on Management of Data, pages 55–66.

Lv, Y., Li, J., Cui, B., and Chen, X. (2011). Log-Compact R-tree: An efficient spatial
index for SSD. In Int. Conf. on Database Systems for Advanced Applications, pages
202–213.

Mittal, S. and Vetter, J. (2015). A survey of software techniques for using non-volatile
memories for storage and main memory systems. IEEE Trans. on Parallel and Dis-
tributed Systems, PP(99):1–14.

Sarwat, M., Mokbel, M. F., Zhou, X., and Nath, S. (2013). Generic and efficient frame-
work for search trees on flash memory storage systems. GeoInformatica, 17(3):417–
448.

Suzuki, K. and Swanson, S. (2015). A survey of trends in non-volatile memory technolo-
gies: 2000-2014. In IEEE Int. Memory Workshop, pages 1–4.

Wu, C.-H., Chang, L.-P., and Kuo, T.-W. (2003). An efficient R-tree implementation
over flash-memory storage systems. In ACM SIGSPATIAL Int. Conf. on Advances in
Geographic Information Systems, pages 17–24.

Wu, P.-L., Chang, Y.-H., and Kuo, T.-W. (2009). A file-system-aware FTL design for
flash-memory storage systems. In Conf. on Design, Automation and Test in Europe,
pages 393–398.

Proceedings XVII GEOINFO, November 27-30, 2016, Campos do Jordão, Brazil

274


