Proceedings XXII GEOINFO, November 29 - December 02, 2021, Sdo José dos Campos, SP, Brazil. p 156-166

Anomaly detection based method for spatio-temporal
dynamics mapping in dam mining regions

Vinicius L. S. Gino, Rogério G. Negri, Felipe N. Souza

"nstituto de Ciéncia e Tecnologia (ICT)
Universidade Estadual Paulista “Jalio de Mesquita Filho” (UNESP)
12247-004 — Sao José dos Campos — SP — Brazil

{vinicius .gino, rogerio.negri, fn.souza}@unesp.br

Abstract. Remote Sensing technologies and Machine Learning methods rise as
a potential combination to assemble new environmental monitoring applica-
tions. In this context, the presented work proposes a new method that exploits
anomaly detection models applied to Remote Sensing imagery to identify the
spatio-temporal changes over the Earth’s surface. The potential of the intro-
duced approach is shown in a study case concerning the analysis of the land-
scape changes using One-Class SVM and Isolation Forest methods in Landsat
and Sentinel images for Brumadinho and Mariana regions, Brazil, after its re-
cent dam collapses.

1. Introduction

The environment is constantly subjected to spatial changes by human actions and
interactions.  Its preservation is essential to the maintenance of life on Earth
[Hawken et al. 2013]. In this sense, one of the biggest global challenges is breaking issues
like greenhouse gases emission, deforestation, and other disasters impulsed by unstop-
pable consumption of natural resources [Steffen et al. 2015]. The “United Nations 2030
Agenda” provides a multidimensional and holistic vision of this subject, where sustain-
able development goals rule how to combine human well-being with economic prosperity
and environmental protection to guide public policies to mitigate impacts on the environ-
ment [Pradhan et al. 2017].

A significant parcel of Brazilian’s economy is strongly dependent on mining ac-
tivity. Usually, the extracted minerals demand processes before its commercialization,
generating then large amounts of solid waste [Garcia et al. 2017]. As a consequence of
the need to deposit these tailings, the mining dams emerge. Among distinct alternatives
to building such dams, the upstream raising model has a low financial cost yet a high risk
in terms of structural safety.

Unfortunately, Brazil lies at the center of debates regarding mining waste disposal.
The reason comes from the recent technological disasters caused by the failures on min-
ing dams in Mariana [do Carmo et al. 2017] and Brumadinho [Rotta et al. 2020], which
resulted in the death of hundreds of people in addition to significant environmental im-
pacts. Face to these events, the development of strategies and tools to analyze and monitor
mining dams has demanded attention.

In this scenario, Remote Sensing technology rises as a convenient tool for observ-
ing and analyzing the Earth’s surface. Beyond allowing register the information in differ-
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ent spectral wavelengths, the remote sensors also allow wide spatial and temporal analysis
[Jensen 2009]. Additionally to Remote Sensing data, the Machine Learning techniques
encompass the construction of algorithms able to identify and extract information from
large bases of data, which includes diverse studies and applications with Remote Sensing
data [Lary et al. 2016]. Anomaly Detection comprises a kind of unsupervised Machine
Learning technique that may be applied in Remote Sensing data to automatically identify
the temporal changes and dynamics over the Earth’s surface [Guo et al. 2016].

In the light of the presented discussions, this study addresses the use of Anomaly
Detection and Remote Sensing data to identify regions with high spectral-temporal dy-
namics. Furthermore, this research proposes and implements a prototype of an “anomaly
monitoring and warning system” fed by images acquired by the Sentinel and Landsat
programs/satellites. Functionalities of the Google Earth Engine platform support such
implementation. A study case focuses on analyzing the regions affected after the dams
collapse in Mariana and Brumadinho.

2. Theory background
2.1. Preliminary notations

Let 7 be the matrix representation of an image obtained by Remote Sensing. Each posi-
tion of Z is expressed in terms of s, defined over a regular grid S C N2. By convention,
s is called a pixel and corresponds to a specific geographic position. The measurement
performed by the remote sensor is expressed by the vector x € X, with X being the data
attribute space. Thus, Z(s) = x determines that the behavior of Z with respect to position
s is expressed by the components of a d-dimensional vector X = [z, T2, . .., Zg).

Among different applications that make use of Remote Sensing images, the need
to distinguish the different targets on the Earth’s surface it is a common procedure. For
this purpose, classification techniques are adopted. The classification process consists of
applying a function F': X — Y on the vector of attributes x of each s € S in order
to associate a class indicator y € Y = {1,...,c}. The different image classification
techniques proposed in the literature comprise different ways of modeling F'.

2.2. Anomaly Detection

Among the different techniques that permeate Machine Learning, Anomaly Detection
identifies events/elements with significantly distinct behavior compared to other observa-
tions. Usually, such techniques have been used in the identification of bank fraud, check-
ing for intruders in security systems, and in supporting medical analysis [Gu et al. 2019].
In addition to these applications, anomaly detection techniques are highlighted as a po-
tential tool for the environmental monitoring [Dereszynski and Dietterich 2011].

The Breaks For Additive Season and Trend (BFAST) [Lambert et al. 2013], Local
Outlier Factor (LOF) [Ma et al. 2013], Elliptic Envelope [Hoyle et al. 2015] and One-
Class Support Vector Machine (OC-SVM) [Chen et al. 2001] and Isolation Forest (IF)
[Liu et al. 2008] are example of Anomaly Detection methods found in the literature. In
special, the two latter mentioned methods have been successfully employed in remote
sensing studies [Rembold et al. 2013, Holloway and Mengersen 2018].

As a variant of the well-known and attractive Support Vector Machine (SVM)
method, the OC-SVM [Chen et al. 2001] deals with quantile estimation and anomaly de-
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tection problems. Conceptually, starting from a set of observations Z, the OC-SVM
method provides a model capable of classifying the objects as part of a set of non-
anomalous elements according to a probability v of false-positive occurrence.

Formally, we may express the function F': X — {+1, —1}, where the output +1
implies that the data input is in Z, and —1 otherwise. The decision function F' is given

by:
F(x) = sgn (2 o, K(x,x;) — b) (D
i=1

where b = 37 | ;K (x;,%;) to some x; € Z, and K (-, -) stands for a kernel function.

The coefficients «;, ¢ = 1,...,n, are obtained by solving the following optimization
problem:
min Z?Fl ;o K (x4, %;)
Q1.0 ’
, £ 2
- azne 0, Vn] ()
D=1

It is worth noting that the OC-SVM is parameterized by v € [0,1] and other
parameters related to the adopted kernel function. Further details on kernel functions are
discussed in [Shawe-Taylor et al. 2004].

The Isolation Forest (IF) [Liu et al. 2008] comprises a low-computational cost
method able to overcome the difficulties when dealing with large databases. This method
has been used in Remote Sensing studies [Li et al. 2019] and other analyses involving
digital image processing [Alonso-Sarria et al. 2019].

In summary, the IF embodies an ensemble of decision trees, in this case, called
“isolated tree” (IT). According to the conceptual idea behind this method, when the
data/objects are submitted to classification in a decision tree scheme, the anomalies tend
to present a short path to the root node. The expected length of this path is strictly
dependent on the number of decision trees in the ensemble and the size of the dataset
[Lesouple et al. 2021].

The definition of an IT starts from a sample set {xi,...,X,,}, where x; =
[zi1, ..., 2:a)7 € R? with components express a specific attribute in m observations.
This dataset may also be represented as a matrix X whose columns are the vectors x;, for
¢t =1,...,m. The nodes of a IT may be either internal or external. While the earlier have
two descendants, the external node has no descendent and are called “leaf”’. With basis
on this structure, the IT sequentially randomly select a value p in the ¢-th attribute to split
X into two descendants. After recursively perform this process, the IT is defined. As stop
criterion for the IT expansion, is assumed: (i) the IT reaches its length limit; (i) | X| =1;
or (iii) all the columns of X are equal.

Regarding the IT structure, the Anomaly Detection process is performed by scores
assigned to each x; according to the root-to-leaf path length that such vector pass-through
the IT, represented by h(x;). The average estimate of h(x;) for the external nodes is the
same as an unsuccessful search in a Binary Search Tree, expressed as:

2(m—1)

cm)=2H(m —1) — —

3)
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where H (i) = In(i) + 0.5772156649 is a harmonic number [Havil 2003] and ¢(m) is the
average estimate of h(-) considering the m observations. In turn, the anomaly score is:

(h(x))
s(x;,m) = o~ (Zit)

“4)

where E(h(x;)) = % ¢, h(x;) is the mean of h(x;) from a collection of ITs.

Therefore, it can be inferred that if F'(h(x;)) tends to zero, the score tends to 1,
representing then an anomaly. On the other hand, when h(x;) tends to m — 1, s tends to
0, showing very likely regular data. Furthermore, when E(h(x;)) tends to ¢(m), s(x;, m)
tends to 0.5 and then there is no anomaly distinction.

2.3. Spectral Indices

A spectral index comprises a combination of two or more spectral bands to provide a
particular representation of the Earth’s surface. Among a plethora of spectral indices
proposed in the literature, the vegetation indices take into account the spectral response
of chlorophyll targets concerning electromagnetic radiation from the Sun [Moreira 2000].

One of the most used vegetation indices for canopy characterization is the Nor-
malized Difference Vegetation Index (NDVI) [Rouse et al. 1974], which uses the red and
infrared bands as input data. This index has various application purposes, for example,
monitoring and mapping crops, droughts, pest damage, agricultural productivity, hydro-
logical modeling, and others [Xue and Su 2017].

The Normalized Difference Water Index (NDWI) [Gao 1996] comprises a spectral
index based on the region of electromagnetic spectrum sensitive to water presence. Its use
allows detecting particulate matter and suspended sediments in water columns.

Let consider Z(s) = x where the components Zcen, Zreq and g stands for

the radiometric response at the green, red and near-infrared wavelengths. The NDVI
IR — L Red and LGreen — TNIR

and NDWI values at the position s is computed by N ,
) TNIR + TRed ZTGreen + TNIR
respectively.

3. Proposal of multitemporal anomaly detection

3.1. Conceptual formalization

Figure 1 depicts a general overview of the proposed method for multitemporal anomaly
detection.

Accordingly to this structure, as an initial step, it is defined the period of analy-
sis, the region of interest, a cloud cover threshold, and a remote sensor as a data source.
The anomaly detection method is also defined in the initial step. Such configuration (ex-
cept the anomaly detection model) is submitted as a request to the Google Earth Engine
(GEE), which consequently returns a collection of images that gives place to a multi-
temporal image series. A median image and cloud/shadow cover masks are determined
from such image series as support data for posterior use. In a second stage, the NDVI
and NDWTI are computed at each instant and then subtracted from the median image of
period for that study area to translate all the data around a common central tendency (i.e.,
the zero). Moreover, information from areas affected by cloud and shadow occurrences
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Figure 1. Overview of the proposed method.

are disregarded after applying the previously defined masks. After, the NDVI and NDWI
translated values in [—ao, +ac]| are used to train an anomaly detection model F' and
classify the complete dataset. The ¢ is the dataset standard deviation and v € R is an
adopted scale factor. Lastly, a map about the multitemporal dynamics is produced accord-
ing to an anomaly counting over the analyzed period. Also, a map of p-value based on
the “run test of randomness” [Siegel and Castellan 1988] allows identifying regions with
high confidence regarding the occurrence of the changes.

3.2. Implementation details

The Python 3.8 was the programming language adopted to implement the proposed
method, as the monitoring prototype. Additionally, the Scikit-Learn library was used
to apply the Anomaly Detection methods. OC-SVM was parameterized with RBF kernel
function with v = 0.1 and upper bound on the fraction of training errors at v = 0.05.
IF, in turn, was defined by 100 components/IT and random state equal to zero (0) where
all the other parameters were maintained as default (maximum samples, contamination,
bootstrap, verbose and warm start) as shown in Scikit Learn documentation. Moreover,
the Pandas library was employed to organize the information.

The Anomaly detection models are trained with basis on observed values of a
previously defined spectral index (i.e., NDVI or NDWI) in [—«ao, +ac], where o is the
standard deviation of considered spectral index and v = 0.5 is a constant adopted to
control the training set regularity.

Lastly, the Google Earth Engine (GEE) Application Programming Interface (API)
is used to access the Remote Sensing image catalogs and obtain the multitemporal image
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series according to the defined period, region, and sensor, based in Python. Landsat and
Sentinel data are considered in this study. The cloud occurrence threshold of 20% inside
the region of analysis is admitted to disregarding useless scenes.

4. Experiments

4.1. Study area and Remote Sensing data

In order to assess the method proposed and discussed at Section 3, it is carried a prac-
tical application regarding the analysis of temporal dynamics in the regions of Mariana
and Brumadinho affected after the respective dam collapses. Figure 2 shows the area
locations.

CORREGO DO FEIJAO MINE I FUNDAO DAM
44.130°W 44.120°W 44.110°W ___43.475°W 43.450°W

60.00°W _ 45.00°W __ 30.00°W
g

0
&
3
<

Se0TT'0¢

200°0

20.120°S

So021°02
20.200°S
S000¢°0C

So00'ST

N

B N

= o

& S

& 8

F N
3

So00°0€

( 9&0 1.800 km

.00°W  45.00°W  30.00°W

[ Study area
Project system: UTM ‘

20.140°5
"~ 5.0bT°07

20.250°S

° S005¢'0T

. s y
DATUM: WGS 84 44.130°W 44.120°W 44.110°W

43.475°W 43.450°W

Figure 2. Spatial location of study areas.

It is worth highlighting that the Mariana (Fundao) and Brumadinho (Cérrego do
Feijao Mine I) dams are located in Minas Gerais (MG). These areas are considered strate-
gic for the development of mining activity in Brazil, a sector responsible for 4% of the
national GDP and the generation of more than 2 million indirect jobs [IBRAM 2020]. The
disruption of these structures impacted the surrounding landscape, initially surrounded by
vegetation characteristic of the Atlantic Forest biome. Moreover, these dams were built
following the upstream heightening, which is less costly but with the greater risk of dis-
ruptions [Thomé and Passini 2018].

Concerning the Mariana study area, were considered 71 images acquired by the
Thematic Mapper (TM) and Operational Land Imager (OLI) sensors, both with 30 meters
of spatial resolution, on-board the Landsat-5 and 8 satellites. The period of analysis covers
the years between 2013 and 2020. Regarding the Brumadinho area, the MultisSpectral
Instrument (MSI — 10 meters of spatial resolution) sensor on-board the Sentinel-2A/B
satellites were considered the image source for 2016 to 2020 period, collecting 54 images.

4.2. Results and discussion

Figures 3 and 4 depicts a bi-temporal comparison using color compositions and the re-
spective multitemporal dynamic maps in terms of “anomaly detection counting” and “p-
value”. The first one was obtained by percentage discretization of anomaly detection data,
where the lowest 20% represents “Very low” label, and so on. The NDVI and NDWI val-
ues are considered to obtain the results for Brumadinho and Mariana areas, respectively.
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Focusing on the “anomaly detection counting” maps, it is possible to observe that
while the IF method delivers more consistent results, OC-SVM tends to overestimate
the frequency of anomaly occurrence. Moreover, the IF identifies areas affected by the
collapse of the dams (Brumadinho — center-bottom regions; Mariana — southeast region).
Low-dynamic regions, like vegetation and exposed soil, are also highlighted when the
proposed method is equipped with the IF model.

Regarding the p-value maps, under a 5% significance, the pixels in black rep-
resents regions with not random behavior in terms of anomaly/regular occurrence over
time. Consequently, such regions demand attention when analyzing the obtained maps.
The plausible reasons for such behavior are seasonal changes showed by targets like water
bodies and vegetation. In general, the p-value mapping results achieved with the IF model
are more consistent than those using the OC-SVM.

RGB composition (Red, Green, Blue)
30°W 44.120°W 44.110°W 44.120°W_44.110°W

1S3¥04 NOILYTOSI

WAS SSV12-3INO

NDWI
44.130°W 44.120°W 44.110°W
@ ¥

20.115°S
SeSTT°0C

1 2 3 km

Anomaly count

B Very low " ——
I Low Rupture date of Cdrrego do Feijao Mine I | Anomaly dynamic
f— dam, Brumadinho-MG: 01/25/2019
Medium - Not random
[ High Project system: UTM I Random
DATUM: WGS 84

20.130°S

474

fiyd

e e ..‘ﬁ

it . e
January 7th, 2019 February 1st, 2019 Il Very high

Figure 3. Results using NDWI for Brumadinho dam area.

To validate and comparate the results generated by the proposed method, reference
samples collected from change maps of moments before and after dam failures were di-
vided into (i) No change areas; (ii) Change areas. These samples were applied at Anomaly
Detection maps, which can be observed in the histograms highlighted by Figure 5, whose
expected results were the decrease of “No changes” bars as they increase “Changes” bars
along anomaly count axis. In this sense, it is notable that OC-SVM method is more sen-
sitive for Anomaly Detection, once some unchanged areas correspond at “Medium” or
“High” count of anomalies. On the other hand, IF shows higher precision at unchanged
areas related to labels “Very low” and “Low” for Anomaly Detection, clearly distinguish-
ing changed areas.

The whole process involved considerable computational costs. The reference ma-
chine was a desktop with 16 GB RAM and 500 GB of SSD memory. For Mariana, the
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Figure 4. Results using NDVI for Mariana dam area.
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Figure 5. Anomaly count for reference samples and change map comparison.

manipulation of 30 meters resolution images demanded a run-time of about two hours. In
turn, Brumadinho analysis used 10 meters resolution images, resulting in higher compu-
tational costs, expending around 2.5 hours.
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5. Conclusions

Based on the presented results, it is possible to verify that the proposed method, viewed as
an environmental monitoring system prototype, could identify anomalies that correspond
to targets with high spectral-temporal dynamics.

It is noteworthy that the assessed Anomaly Detection models have different pre-
cision. The IF method was able to distinguish with better contrast the regions of anoma-
lies and regular and provide more consistent p-value maps (useful to identify seasonal
changes). OC-SVM method, in turn, was more sensible to change detection often classi-
fying unchanged regions as anomalies.

In future works could be addressed numeric validation techniques to combinate
both anomaly detection methods to set better parameters and improve the proposed pro-
totype. Furthermore, the number of study areas should be expanded to evaluate regions
that never passed by technological disaster events, such Mariana and Brumadinho, with a
view to building an alert system for spatio-temporal dynamics.
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