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Abstract. The State of Rio Grande do Sul is the largest producer of irrigated 
rice in Brazil. The goal of this study was to use a time series of MSI/Sentinel-2 
vegetation indices (VIs), such as Normalized Difference Vegetation Index  
NDVI; and Normalized Difference Water Index  NDWI, to extract metrics of 
irrigated rice cultivation in the municipality of Uruguaiana-RS and map this 
crop in the 2019/2020 period using Random Forest (RF). Our methodology 
generated maps with a systematic and cost-efficient benefit for mapping rice 
between the 2019/2020 period (with a 96,5% of overall classification accuracy), 
showing consistency with those of available maps from official institutions, and 
for predicting production in the 2020/2021 period. 

1. Introduction 

The monitoring of agricultural crops is important for economic development, food 
security, and environmental conservation [Laborte, 2017]. The applications range from 
forecasting production volume to government management of agricultural stocks, such as 
export/import stimulus, availability of rural credit, and support for agricultural insurance. 
The monitoring contributes to assist in the decision making for buying, selling, 
distribution, and national supplying of the agents in this chain. In many places in the 
world, especially in underdeveloped countries, official data regarding crop areas is done 
based on farmers' reports or field visits. This process can be bureaucratic because of the 
time that it takes to organize data and field visits [Frolking, 2002]. In this circumstance, 
remote sensing images allow a systematic and comprehensive analysis of a given areas 
quickly and at low cost [Castro, 2020]. 

 Different digital image processing methods have been developed and are required 
to monitor crops. The dissemination of medium resolution products in multi-sensor 
remote sensing, such as MSI/Sentinel-2 series (10-m spatial resolution), have boosted 
precision agriculture activities and the advancement in research of crop mapping and 
determination of crop areas. This is because of its practicality and ability to collect 
information from land covers on the Earth's surface with improved spectral and spatial 
resolutions.  

 An example of a plantation of great relevance for Brazil is the irrigated rice. It is 
inserted in the conditions of constant updates for crop mapping research because of its 
great productive representativeness that aims to supply the country's domestic supply, in 
addition to the contribution of crops to the country's economy, since according to the 
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National Supply Company (CONAB, 2020), 76% of the production of all irrigated rice in 
Mercosur comes from Brazil. However, the extensive planted area is an obstacle to faster 
mapping that can be circumvented with the use of remote sensors of medium resolution 
and with a dense temporal coverage for the construction of systematized time series. This 
allows an effective assessment of the phenological structure of the crop and its behavior 
during the entire cycle of development from soil preparation up to harvest. 

 The main goal of this study was to map irrigated rice in a small area of south 
Brazil. For this purpose, we used times series of two vegetation indices (NDWI and 
NDVI), calculated from MSI/Sentinel-2 satellite data, to extract metrics of irrigated rice 
cultivation to use as input data to a Random Forest (RF) model to process and identify a 
spatialized classification of rice cultivation in Uruguaiana. Compared to the Landsat 
instruments, the use of a 5-day temporal resolution and of a 10-m spatial resolution for 
some MSI bands increases the change of obtaining cloud-free data and mapping small 
fields of irrigated rice. 

2. Material and Methods 

The study area has 5,702 km² (Figure 1) and is located in the Uruguaiana municipality in 
the State of Rio Grande do Sul. This area is known by the historical use of irrigation in 
Brazil, where rice farming has been active since the beginning of the last century. 

 

Figure 1. Study Area. 

 The first step of the methodology was to obtain the satellite time series of the 
Sentinel 2A and 2B images (Figure 2). Every scene of surface reflectance image was 
collected from August 2019 to June 2020 and from August 2020 to June 2021, were used 
to calculate the Normalized Difference Vegetation Index (NDVI) [Rouse/1974] and the 
Normalized Difference Water Index (NDWI) [Gao/1996] on the Google Earth Engine 
(GEE) computing platform, then the mosaic of the scenes was performed to contemplate 
the entire study area (four images to compose a scene). In order to fill the gaps caused by 
the cloud mask, a cubic interpolation was applied to the time series. In addition, a 
Whittaker smoother was applied [Whittaker/1923] in order to remove noise from the time 
series. 
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The crop period was chosen based on the CONAB (2019) agricultural calendar, 
extending into one month before planting to understand the flooding period of the rice 
crop plots. In spite of the adequate spatial resolution of the MSI/Sentinel-2 for mapping 
crops, we decide to resample the data to 100-m pixel size to optimize the processing time 
to extract the metrics. 

Figure 2. Flowchart with the process steps.

After gap filling and filtering, we extracted basic and polars metrics from the time 
series [Korting/2012]. The basic metrics obtained were: derivative absolute mean, mean, 
minimum value, maximum value, standard deviation, and amplitude. The polar metrics 
represent the time series projected in polar coordinates [Bendini/2020], thus it is possible 
to calculate the area of each quadrant, as described by Korting (2012). The metrics 
describe the objects' properties and help to select specific characteristics and behaviors 
that allow distinguish between the different objects present in a scene [Korting/2012]. 

The RF machine learning algorithm was used for classification of rice crops, 
considered as a supervised classification algorithm. The basis of RF is tied to a 
combination of decision models, also called decision trees, which are responsible for 
improving the accuracy of the classification [Breiman/2001]. Because it has this 
supervised feature, it was necessary to create a set of refined and adjusted training samples 
between two classes of rice and non-rice crops. 

The samples used in the training and testing of the RF model were obtained from 
the irrigated rice mapping performed by CONAB for the 2019/2020 growing season. The
agriculture mask was obtained from MapBiomas (2020). Rice points samples were 
randomly selected within the polygons of the CONAB rice mapping, while non-rice 
points samples were randomly obtained from the polygons of the discounted agriculture 
mask of the CONAB rice mapping. In order to reduce spectral mixture of samples, near 
a 100-meter buffer was applied before extracting the samples.
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 A total of 1000 points were extracted (500 for each class), which were then 
carefully evaluated to verify the correct positioning of the sample in the corresponding 
area, that is, away from edges or pixels without accurate information about mapped land 
covers (rice and non-rice). 

 The model accuracy was evaluated considering the confusion matrix and the 
determination of metrics such as the overall classification accuracy, recall and precision. 
We compared RF models using different input data: (1) basic metrics, (2) polar metrics, 
and (3) the combination of basic and polar metrics. 

3. Results and Discussion 

The rice and non-rice samples showed remarkably different patterns in the time series of 
NDVI and NDWI (Figure 3). At the time before the maximum vegetative vigor of the 
grain (Feb/2020), the NDWI had a stable behavior, especially during land preparation and 
flooded stages for rice development. This curve seeks its minimum values when the 
NDVI has its peak, demonstrating the maximum vegetative vigor of the crop and the 
absence of water background influence in this period. This typically happens between 
January and February, when the crop is about to be harvested. In the non-rice temporal 
profiles, we noticed a non-standardization of the behavior of the NDVI and NDWI curves 
because of the mixture of targets present in this class. 

 

Figure 3. Temporal patterns of vegetation indices (NDVI and NDWI) for selected 
samples, for 2019/2020 time series. 
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 Table 1 and Table 2 show the performance of the NDVI and NDWI derived 
metrics to separate rice fields from non-rice areas, respectively. Results refer to the 
models trained and tested with the basic, polar, basic + polar metrics. Because of the large 
presence of rice (defined behavior) in the region and the continuous sampling throughout 
the study area, the overall accuracy was quite promising (between 95% and 98%). This 
result indicates separability between the classes. 

Table 1. Confusion matrix for crop classification using NDVI and the RF model 
during the 2019/2020 growing season. 

 

Table 2. Confusion matrix for crop classification using NDWI and the RF model 
during the 2019/2020 growing season. 

 

 Tables 1 and 2 also show the 3 models developed for the individual metrics. 
Again, a high classification accuracy (95%) was observed, especially for the NDVI Basic 
+ Polars metrics that had mapped areas of rice similar to the reference values provided by 
CONAB (79.7 thousand ha) (Table 1).   

 Sample location, data pre-processing and time series smoothing contributed to 
classification accuracy of the RF classifier. Because of careful sampling and positioning 
of the samples, a step that demanded time in the work, the accuracy of the models was 
high (above 95%). This was reflected in the final classification of the rice areas that were 
well identified and with few classification errors, as deduced from the confusion matrix 
tables. 
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 After removing the noise present in the classifications in all metrics, visually, the 
classification of the areas of the 2019/2020 crop was spatially well defined and in 
accordance with the manual classification made by CONAB. The classification result 
using basic + polar metrics for NDVI, and polar metrics for NDWI, are presented in 
Figures 4 and 5, respectively. 

  

Figure 4. Classification results using basic and polar metrics extracted from 
NDVI time series for the 2019/2020 growing season. 
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Figure 5. Classification results using polar metrics extracted from NDWI time 
series for the 2019/2020 growing season. 

 From these figures, we can observe consistency between the RF and CONAB 
maps, even considering the constraint of data resampling to 100-m pixel size in our data 
set. 

 We also performed crop prediction for currently irrigated rice areas for the 
2020/2021 period (Figure 6). Once again, the algorithm behaved promisingly when 
correctly classifying crop areas using the polar + basic metrics RF model. The total 
estimated area was 5% larger in relation to the area of the last 2019/2020 harvest period, 
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with about 83.65 thousand ha, according to the estimated classified area assigned by the 
NDVI metric bounded by the RF algorithm for the 2020/2021 crop. 

 

Figure 6. Crop prediction results using polar + basic metrics model extracted 
from the NDVI time series for the 2020/2021 period. 

4. Conclusions 

In the present work, we sought to identify irrigated rice in the municipality of Uruguaiana 
using image processing techniques and machine learning. The combined use of basic and 
polar metrics from MSI/Sentinel-2 time series of VIs and the RF model allowed 
classification of irrigated rice areas with accuracy above 95% for the 2019/2020 growing 
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season. The accuracy of the models and the estimated areas showed slight differences 
across VIs. For the NDVI time series, the best accuracy (97%) was observed in the basic 
metrics + polar model, in which the area was underestimated by 1%. For the NDWI time 
series, the best accuracy (98%) was observed in the polar metrics model, in which the 
area was overestimated by 2%.  

 The methodology was promising for the classification of irrigated rice areas and 
for crop prediction. For future work, it is recommended to extrapolate and test the 
application of the model to other regions and to use the images with the original spatial 
resolution of the MSI/Sentinel-2 (10-m) to improve the current maps. 
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