
 

1

     
Exploratory tools for the analysis of extreme weather and 

climate events in gridded datasets       

C. A. S. Coelho1  

Centro de Previsão de Tempo e Estudos Climáticos,  
Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Brazil   

C. A. T. Ferro,   

NCAS-Climate, Department of Meteorology, University of Reading, Reading, U.K.   

D. B. Stephenson   

Department of Meteorology, University of Reading, Reading, U.K.     

D. J. Steinskog  

Nansen Environmental and Remote Sensing Center, Bergen, Norway.         

Submitted to Journal of Climate   

16 November 2006                                                  

 

1 C. A. S. Coelho, Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas 
Espaciais, Rodovia Presidente Dutra, Km 40, SP-RJ, 12630-000, Cachoeira Paulista, SP, Brasil.  
E-mail: caio@cptec.inpe.br 

INPE ePrint: sid.inpe.br/mtc-m17@80/2006/11.28.14.11 v1 2006-11-29

1



 

2

  
Abstract 

This paper reviews and introduces new tools based on Extreme Value Theory (EVT) 

for the analysis of extreme weather and climate events in gridded datasets. The 

methods allow exploratory analysis of spatial patterns of extremes, the investigation 

of relationships between extremes and potentially influential factors (e.g. ENSO), the 

analysis of temporal clustering of extremes, and also the study of teleconnection 

patterns of extremes (spatial extreme dependence). 

The methods are illustrated using Northern Hemisphere monthly mean gridded 

temperatures for June-July-August (JJA) summers from 1870 to 2005. All analyses 

are focused on hot extreme temperature events defined by observed temperatures 

exceeding a pre-defined threshold. Results show that hot extreme temperatures have 

larger variability in extratropical continental regions than in oceanic and tropical 

regions. Extreme temperature variability over tropical and oceanic regions is found to 

be driven mainly by local processes rather than by ENSO atmospheric 

teleconnections. Over extratropical continental regions extreme temperature 

variability is found to be affected by ENSO. Larger variability of extreme 

temperatures is found during La Niña conditions over most of North America, some 

regions in eastern Europe and Scandinavia. Larger variability of extreme temperatures 

is found during El Niño conditions over most of Asia, Russia, and western Europe. 

The Atlantic and East Pacific oceans show higher temporal clustering of extreme 

events than continental regions, most likely due to the longer memory of oceans 

compared to continents. Extreme temperatures over central Europe during August are 

found to be related to extreme temperatures in the west North Atlantic.    
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1. Introduction 

Weather and climate time series on large grid-point arrays can be analysed in many 

ways. For example, atmospheric teleconnections can be investigated by using 

composite and correlation maps between the time series of a grid-point and the time 

series of all the other grid-points. Principal component analysis is usually applied to 

gridded datasets to isolate leading patterns of climate variability, for example the El 

Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). 

Standard methods generally summarise all events (the whole distribution) and 

therefore mask extreme events (tail of the distribution). Given the increasing 

availability of gridded datasets in recent years, there is therefore a need for 

developments of statistical tools designed for summarizing weather and climate 

extreme behaviour in large datasets.  

This paper aims to review and introduce new tools based on extreme value 

theory (EVT) for exploring extreme events in gridded datasets. EVT is the branch of 

probability theory and statistical science that deals with modelling and inference for 

extreme values. Limit theorems characterise the statistical behaviour of processes in 

rare states. For example, maximum values of blocks of data (e.g. years or decades) 

can be studied using the generalized extreme value (GEV) distribution, and values 

above high thresholds can be studied using the generalized Pareto (GP) distribution 

(Coles 2001). EVT relies on asymptotic assumptions (e.g. large blocks or high 

thresholds) so that results are more accurate for rarer events, and tends to ignore the 

process by which values evolved into large values. 

Only a few published studies have analysed extreme weather in gridded 

datasets. The most common practise based on EVT consists in fitting the GEV 

distribution to samples of annual maximum daily surface temperature, precipitation 
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and near-surface wind speed at each grid-point of reanalysis data, model simulations, 

and also for station data (e.g. Zwiers and Kharin 1998; Kharin and Zwiers 2000, 2005; 

van den Brink et al. 2004; Fowler et al. 2005; Kharin et al. 2005). These studies 

analysed maps of changes over time in the estimated GEV parameters and also maps 

of return values (e.g. a 20-year return value is exceeded once every 20 years on 

average). Naveau et al. (2005) fitted the GP distribution to daily temperature and 

precipitation climate model simulations and examined changes in 30-year return 

values over the Euro-Atlantic sector induced by changes in the intensity of the 

thermohaline circulation. The special issue of Global and Planetary Change edited by 

Beniston and Stephenson (2004) gathered several articles examining climate and 

weather extremes in gridded datasets. Shabbar and Bonsal (2004) used maximum 

covariance analysis (also known as singular value decomposition) to investigate the 

relationship between low frequency climate variability (e.g. ENSO, the Arctic 

Oscillation and the Quasi-Biennial Oscillation) and the occurrence of hot and cold 

extreme daily temperatures in Canada. Ferro et al. (2005) discussed methods for 

relating temperature and precipitation extremes to the centre of the distribution. 

Beniston et al. (2006) presented diagnostic methods to determine how heat waves, 

heavy precipitation, droughts, wind storms, and storm surges change between 1961-90 

and 2071-2100 in EU-PRUDENCE project regional model simulations. 

The European heat wave in summer 2003 attracted much attention from 

climate scientists since this event reflected the temperatures that are projected to occur 

in later decades of the 21st century (Beniston 2004; Beniston and Diaz 2004; Meehl 

and Tebaldi 2004; Schär et al., 2004; Stott et al. 2004). Over 20,000 people are 

believed to have lost their lives during the summer 2003 because of the persistently 

hot conditions over Europe (Beniston and Diaz 2004). Motivated by this episode this 

INPE ePrint: sid.inpe.br/mtc-m17@80/2006/11.28.14.11 v1 2006-11-29

4



 

5

 
study investigates hot extremes in monthly mean temperatures during the summer 

months (June-July-August) in the Northern Hemisphere. A good understanding of 

such high-impact events can improve decision-making and disaster planning that can 

then help mitigate some of the losses. 

The study will focus on simple extreme events defined as an individual local 

weather variable exceeding a critical level on a continuous scale (IPCC 2001). A high 

critical temperature level is chosen and the extreme events are those events with 

temperature values above the critical level. The distribution of the values above the 

critical level at each grid-point is then examined.   

The paper will address the following scientific questions: 

 

How does the risk from extremes of different intensities vary in space and 

time? 

 

How do extremes depend on time-varying factors (e.g. ENSO and NAO)?  

 

How do extremes cluster in time at different locations? 

 

How are extremes at one location related to extremes at another location, i.e. 

are there teleconnections at extreme levels?  

The methods used to explore extremes in gridded datasets are illustrated 

throughout the paper with examples of application. Section 2 describes the dataset 

used in the investigation. Section 3 presents summary statistics for the summer 

temperature distribution. Section 4 defines basic concepts required for the 

interpretation of the results. Section 5 illustrates how EVT can be used to model 

extreme events. Section 6 explores factors controlling extreme events. Section 7 

presents temporal clustering analysis of extreme events. Section 8 investigates 

teleconnections between extreme events. Section 9 summarises results and suggests 

future developments. 
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2. Global temperature dataset: 1870-2005 

This study uses monthly mean gridded surface temperature data (HadCRUT2v) from 

the Climatic Research Unit (CRU) (Jones and Moberg 2003; Rayner et al. 2003) 

available from http://www.cru.uea.ac.uk/cru/data/temperature/. The dataset contains 

combined land and marine monthly mean analysis of surface temperature anomalies 

from January 1870 to December 2005 in a regular 5ox5o global grid. This is one of the 

best datasets with the longest time coverage (136 years) available for climate research. 

Such a long time series is appropriate for the investigation of extremes because it 

contains a large number of episodes, which allows a proper investigation of the 

distribution of extreme temperatures. Note however, that not all grid-points have full 

time coverage. Mainly Europe, North America and the North Atlantic region have 

data covering most of the period 1870-2005. For the analysis presented in the 

following sections only grid-points with fewer than 50% of values missing (i.e. with 

at least 68 years of available data) are used. Anomalies in the original dataset are 

expressed with respect to the 1961-1990 period. To obtain the time series of actual 

temperatures at each grid-point before performing the extreme analysis, the 

climatological monthly means for the period 1961-1990 

 

also provided by CRU 

 

are 

added to the anomaly temperature series.  

Figure 1 shows summer (June-July-August) monthly mean temperatures (T) at 

a grid-point in central Europe (12.5oE, 47.5oN), which was chosen arbitrarily for 

illustrative purposes. Each of the ns=408 vertical bar indicates the monthly mean for a 

particular summer month. August 2003 and August 1983 stand out as the first and the 

second hottest observed monthly mean values.    
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3. Summary statistics for summer temperature distribution 

Before focussing on extreme events, it is worth exploring the whole distribution of 

monthly mean temperature values at each grid-point. Figure 2 shows the first three 

sample moments of the distribution of summer temperatures. The mean is a measure 

of location, the standard deviation is a measure of variability, and the skewness is a 

measure of asymmetry of the distribution. The moment measure of skewness b is 

defined as  

sn

i

i

s s

TT

n
b

1

3
1

,   (1) 

where T is a monthly mean summer temperature value,T is the long-term summer 

mean temperature and s is the long-term standard deviation.  

Summer temperatures in the tropics are higher (Fig. 2a) and less variable (Fig. 

2b) than in the extratropics. The larger temperature variability in extratropical regions 

compared to tropical regions is due to mixing processes such as baroclinic instability. 

Regions of maximum temperature variability over the western Atlantic and Pacific 

oceans (Fig. 2b) coincide with the genesis regions of the storm tracks.  

Figure 2c shows that East Europe, large part of Asia and most of the tropics 

have a positively skewed distribution (i.e. distribution with longer tail towards higher 

temperatures) indicating occasional occurrence of very high temperatures in these 

regions. Most of North America and the Atlantic sector have a negatively skewed 

distribution (i.e. distribution with longer cold tail) indicating occasional occurrence of 

very low temperatures. The most common process responsible for high temperatures 

in extratropical regions is atmospheric blocking (Rex 1950). The connection between 

atmospheric blocking and extreme hot temperatures will be further discussed in 

section 5. 
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4. Definition of extreme events 

Figure 3 shows the maximum values of summer monthly mean temperatures. The 

spatial pattern broadly resembles the mean temperature pattern (Figure 2a) with 

higher temperatures in tropical regions and lower temperatures in extratropical 

regions. The largest values are observed in arid tropical regions in North Africa, the 

Middle East, India and central North America where the lack of precipitation results 

in surface dryness and consequently high temperatures.  

The maximum value is based on only one value and may not be a very reliable 

summary of the distribution of hot extreme events. In addition, the maximum value is 

non-resistant to outliers (i.e. if a single anomalously high or erroneous temperature is 

recorded at a particular location where temperatures are usually mild, the use of the 

maximum value will strongly bias the analysis). A more robust approach for 

investigating extremes is to produce a subsample of the original temperature data that 

contains excesses T 

 

u above a pre-defined threshold u and then use the sample of 

excesses to estimate parameters of the distribution of excesses. This is the so-called 

peaks-over-threshold approach (e.g. Coles 2001, chapter 4), which allows the 

description of the entire distribution of excesses and provides more reliable summary 

statistics of the distribution of extreme events. 

One could question the feasibility of using the EVT block maxima approach 

instead of the peaks-over-threshold approach. For monthly mean temperatures the 

block maxima approach using for example annual blocks is not appropriate because 

the blocks are not large enough (only 12 values are available for each year) and 

therefore the asymptotic assumption of large blocks does not hold. For monthly mean 

temperatures a larger block (e.g. a few decades) would be required, and would 

therefore reduce substantially the sample size for the estimation of GEV distribution 
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parameters. The annual block maxima approach, however, could be appropriate for 

daily temperatures that have a larger block size of 365 values per year (Zwiers and 

Kharin 1998; Kharin and Zwiers 2000; 2005). Nevertheless, because of the existence 

of an annual cycle the block maxima approach would limit the investigation of hot 

temperature extremes to summer values. 

The horizontal dashed line in Fig. 1 is the 75th quantile (u0.75 = 16.2oC) of all 

the summer monthly mean temperatures. Values above such a threshold (i.e. 

exceedances T > u0.75) can be used to define simple extreme events (IPCC 2001). The 

solid thick line in Fig. 1 is the long-term mean trend Ly,m estimated with a local 

polynomial fit with sliding window of 10 years using all (January to December) 

monthly mean temperature values from 1870 to 2005, where y is the year index and m 

is the month index. This thick line therefore represents the observed decadal 

variability and shows an increasing trend. Because of the existence of this time trend 

and also due to the existence of the annual cycle variations within June-August it is 

more appropriate to define extreme events using a time-varying threshold that also 

incorporates the long-term trend. Such a time-varying threshold ensures: a) 

approximately constant exceedance frequency; b) analysis is not biased towards the 

warmer climate of the end of the 20th century; c) excesses are yielded relative to 

contemporary climate, and are therefore designed to reflect effects of similar physical 

processes at all times. This study will investigate the distribution of excesses above a 

time-varying threshold estimated as described below.  

The starting point for such an analysis is to define and estimate the threshold 

to be used to obtain the excesses. This threshold is defined as a seasonally varying fit 

to the time series of observed values plus a constant. A procedure for defining and 

estimating the threshold is illustrated in Fig. 4a that shows the observed monthly 
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mean temperatures Ty,m (black dots) for the grid-point in central Europe (12.5oE, 

47.5oN) during the period from 2001 to 2005. The dashed line is the long-term trend 

(Ly,m) that represents decadal variability (same as solid thick line in Fig. 1). The solid 

line is the quantity My,m=Ly,m+ Sm that is a seasonally varying fit to the observed 

values, where Sm is the mean annual cycle estimated as follows:  

n

y
m,ym,ym )LT(

n
S

1

1
,  (2) 

where n is the number of years with available data (e.g. n=136 if data is available for 

the whole 1870-2005 period). For the quantity My,m the mean annual cycle Sm is 

constant for all years. The time-varying threshold uy,m can then easily be defined as 

uy,m = My,m + , where 

 

is a constant increment necessary to have % of the observed 

values above uy,m. The constant 

 

is obtained empirically by lifting My,m up until % of 

the observed values are above uy,m.  More precisely, the procedure for obtaining 

 

is: 

 

Sort the quantity m,ym,y MT

 

in ascending order 

 

Store in vector Dj positive non-repeated sorted values of m,ym,y MT , where 

j=1,2,3 ,K is the number of non-repeated exceedances Ty,m > My,m 

 

Add D1 to My,m and check the percentage of Ty,m values above My,m + D1 

 

Add D2 to My,m+ D1 and check the percentage of Ty,m values above  

My,m + D1+ D2 

 

Keep repeating the procedure above until % of Ty,m values are above  

My,m + D1+ D2 + + DJ, where J < K is the j-th increment to My,m that ensures 

% of Ty,m values is above My,m + D1+ D2 + + DJ 

 

The constant 

 

is then computed as 
J

j
jD

1
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The thick solid segments in Fig 4a show the threshold uy,m for the summer 

months with =25%. This threshold guarantees that 25% of the observed summer 

temperature values are above uy,m, in an equivalent way as if the constant 75th quantile 

had been chosen but which attempts to have constant exceedance frequency. This 

threshold uy,m with =25% is hereafter referred to as the 75% threshold. Exceedances 

(i.e. events Ty,m > uy,m, when black dots are above the thick solid segments) are noted 

in the first three years shown in Fig. 4a, with the largest values observed during the 

summer 2003. The summer 2003 also stands out in Figure 4b, which shows summer 

excesses Ty,m 

 

uy,m above the 75% threshold uy,m (vertical bars above the horizontal 

line) for the same grid-point during the period from 1870 to 2005. Note that 

exceedances occur throughout the period with fairly stable frequency. From hereon 

the 75% threshold has been used for all results to be presented. 

When a constant threshold u is chosen for each grid point it is possible to plot 

a single map of the threshold. However, when a time-varying threshold such as uy,m is 

used, multiple maps of threshold need to be examined. In order to illustrate the typical 

threshold value at each grid-point, Figure 5 shows the long-term time mean of the 

75% threshold uy,m for the summer months over the period from 1870 to 2005. It has a 

broadly similar pattern to Figs. 2a and 3 with larger values observed in arid regions of 

North Africa and part of the Middle East.  

Extreme events can be summarised by presenting sample statistics of the 

excesses Ty,m 

 

uy,m for the exceedance events where Ty,m > uy,m. Figure 6 shows the 

sample time mean of excesses, median of the excesses and variance of the excesses. 

Hot extreme temperatures possess larger mean excesses in colder and more variable 

extratropical regions than in tropical regions. There are much higher values of the 

mean, median and variance of excesses over extratropical land areas than over the 
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oceans and tropical regions. This contrast indicates that monthly temperature excesses 

are on average larger and have larger variability over extratropical continental areas 

than over oceanic and tropical regions. The larger excesses over extratropical land 

regions are most likely due to the much smaller heat capacity of land compared to the 

oceans (Peixoto and Oort 1993).    

5. Modelling of extreme events using extreme value theory 

This section illustrated how peaks-over-threshold can be used to investigate extreme 

temperatures. In the asymptotic limit for sufficiently large thresholds, the distribution 

of excesses Z = Ty,m 

 

uy,m conditional on Ty,m > uy,m can be shown to approximate the 

GP distribution function   

1

11
z

)z(H)zZPr( , (3) 

which is defined for z > 0 and 1+

 

z/

 

> 0, where 

 

> 0 is the scale parameter and 

 

is the shape parameter of the distribution. The mean, median and variance of Z are 

respectively      

1
)(ZE ,    (4)     

)12(
)(ZMed ,   (5)     

)21()1(
)(

2

2

ZVar .  (6) 

For the examples presented in this study 

 

and 

 

are estimated using maximum-

likelihood methods (Coles 2001, section 2.6.3). L-moment estimates for 

 

and 

 

(Hosking and Wallis 1987) have also been explored and provided similar results (not 

shown). 
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Figure 7a shows estimates of the scale parameter 

 
for summer monthly mean 

temperature excesses Ty,m uy,m. The scale parameter provides information about the 

variability (or volatility) of the excesses (6). Regions with larger values of 

 
have 

higher variability of extreme temperatures. In accordance with the variance of 

excesses shown in Fig. 6c, higher variability of extreme hot temperatures (i.e. large ) 

is found over extratropical continental areas when compared to oceanic and tropical 

regions. Note also that the scale parameter pattern (Fig. 7a) is similar to the mean of 

excesses (Fig. 6a) and the median of excesses (Fig. 6b). This similarity is noted 

because both the mean of excesses (4) and the median of excesses (5) are proportional 

to . The maximum variability of extreme temperatures observed over extratropical 

continental Europe and Asia coincides with the region where atmospheric blocking is 

typically observed during the summer (Black et al. 2004). Shorter persistence (less 

than 10 days) of anticyclonic (high pressure) conditions in association with warm air 

advection from North Africa can also contribute to increasing the variability of hot 

extreme temperatures over Europe (Nakamura et al. 2005). 

Figure 7b shows estimates of the shape parameter 

 

for summer monthly mean 

temperature excesses Ty,m 

 

uy,m. The shape parameter tells us about the form (or 

fatness) of the tail of the distribution of excesses. The tail of the distribution of 

excesses in regions with smaller shape parameter is thinner than in regions with larger 

shape parameter. Shape parameter values below zero indicate that the distribution has 

an upper bound (Coles 2001). Shape parameter values above or equal to zero indicate 

that the distribution is unbounded (i.e. it has an infinite upper tail). Figure 7b shows 

that most regions have negative shape parameter and hence have an upper bound 

excess value equal to /

 

from the GP distribution fit. However, no clear large-scale 

pattern is observed. Figure 7c shows the upper bound of excesses / .  Regions with 
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null (or nearly null) and positive shape parameters have no bound (i.e. have infinite 

upper tail) and are shaded in black. Larger upper bounds of excesses /

 
(between 

4oC and 8oC) are found in extratropical continental areas (e.g. north of North 

America, north of Europe and northeast Asia), indicating that excesses over 4oC can 

be observed in these regions.   

When dealing with parametric distributions such as the GP it is always good 

practise to examine how well they fit the data. The goodness of fit can be examined 

using the Anderson-Darling (AD), Kolmogorov-Smirnov (KS) and Cramér-von Mises 

(CvM) test statistics (Choulakian and Stephens 2001), which for this particular 

application are all tests of the null hypothesis that the true distribution function of 

temperature excesses is a GP distribution. It is also advisable to examine if the chosen 

threshold is high enough so that the asymptotic assumption of excesses above a 

sufficiently large threshold approximating a GP distribution is respected. One should 

critically examine whether the 75% threshold choice is high enough to satisfy this 

assumption. Figure 8 shows the percentage of grid-points with AD, KS and CvM p-

values less than or equal to p for each p between 0 and 1 for two choices of time-

varying thresholds, 75% and 60%. P-values are computed by bootstrap resampling as 

in Kharin and Zwiers (2000). If the true distribution function is GP, then the expected 

percentage of grid-points with p-value less than or equal to p should equal p with all 

points falling on the diagonal line. Figure 8 shows that all curves for the 75% 

threshold are close to the diagonal line, indicating that the quality of the fit is good. 

For thresholds lower than 75% the curves fall on the left hand side of the diagonal line 

as illustrated in Fig. 8 for the 60% threshold, indicating that the GP distribution does 

not fit well to the data and the asymptotic assumption is not valid for lower thresholds 

than 75%.  
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Figure 9a shows excesses during August 2003, the hottest ever recorded 

monthly mean temperature in Europe (Fig. 1 and Fig. 4a). Excesses up to 3oC are 

observed in central Europe. This extreme event has been linked to the occurrence of 

atmospheric blocking in central Europe (Beniston and Diaz 2004; Black et al. 2004). 

The persistence of anticyclonic (high pressure) conditions over Europe during the 

summer 2003 resulted in cloudiness reduction, increased surface sensible heat fluxes 

into the atmosphere and reduced surface latent heat fluxes (Black et al. 2004; Zaitchik 

et al. 2006). The lack of precipitation observed in many parts of western and central 

Europe during this event reduced soil moisture, surface evaporation and 

evapotranspiration (Beniston and Diaz 2004). Such a reduction in moisture 

availability combined with the increase in sensible heat fluxes from the hot land 

surface contributed to increase temperatures locally.  

Figure 9b shows the GP distribution return period estimates (1 H(z))-1 for the 

August 2003 excesses of Fig. 9a with scale and shape parameter estimates of Figs. 7a 

and 7b, respectively. The return period is the frequency with which one would expect, 

on average, a given event (e.g. an excess z of 3 Celsius) to recur. Some grid-points 

over Europe have return period between 5 and 10 years, others between 10 and 50 

years and some between 50 and 500 years. For example, the return period for the grid-

point in central Europe (12.5oE, 47.5oN) is 133 years with 90% confidence interval of 

(52, 730) years estimated using a bootstrap resampling procedure (Davison and 

Hinkley 1997). The immediate left neighbour grid-point (7.5oE, 47.5oN) has a return 

period of 184 years, and the grid-point centred in 2.5oE, 42.5oN in the south of France 

has the highest return period over Europe of 316 years. These return period estimates 

are much smaller than the value of 46,000 years over Switzerland obtained by Schär 
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et al. (2004) that used a normal (Gaussian) distribution fitted to the mean June-August 

temperature during 1990-2002.  

6. Factors controlling extreme events 

The dependence of extremes on factors such as time and ENSO can easily be 

examined by modelling the shape and scale parameters of the GP distribution as 

functions of these factors. For example, if one is interested in how the variability of 

summer temperature excesses is related to ENSO, the following model could be used 

for scale and shape: 

log 

 

= o + 1 x   (7)            

 

= o    (8) 

where x is an ENSO index such as the Southern Oscillation Index (SOI). Note that in 

(7) the logarithm of 

 

is used instead of 

 

to ensure that )( 1xOe is positive for all 

choices of parameter values o and 1. The three GP distribution parameters o, 1 

and o can then be estimated using maximum-likelihood methods (Coles 2001).  

The appropriateness of the model given by (7) and (8) can be tested by 

performing a likelihood ratio test (Coles 2001, section 2.6.6). The model of (7) and 

(8) is tested against a simpler nested model given by log 

 

= o and 

 

= o. The need 

for the extra parameter 1 is tested by the null hypothesis Ho: 1 = 0 against the 

alternative hypothesis H1: 1 0. Figure 10 shows the map of p-values for the 

hypothesis test above, where x is the SOI. The null hypothesis cannot be rejected at 

the 5% significance level over regions where p-values are greater than 0.05. This 

indicates that over tropical and oceanic regions the simple model with constant shape 

and scale parameters is enough to fit the excesses above the 75% time-varying 
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threshold, and therefore there is no advantage of using the SOI factor to model hot 

extreme temperatures over these regions. On the other hand, Fig. 10 shows that over 

extratropical continental regions in North America, Europe and Asia p-values are less 

than 0.05 and therefore the null hypothesis can be rejected at the 5% significance level 

in favour to the alternative hypothesis. These results suggest that SOI is a statistically 

significant factor for modulating extreme temperature variability over extratropical 

continental regions. In other words, the variability of hot extreme temperatures over 

extratropical continental regions is affected by ENSO atmospheric teleconnections.  

The model given by (7) and (8) has also been tested against a combination of 

other, more elaborate models including time t (e.g. in centuries) and also the square of 

SOI as covariate factors for the shape and scale parameters to investigate non-linear 

effects (not shown). In all tests performed the null hypothesis of the simpler model 

given by (7) and (8) could not be rejected, indicating that time t and x2 are less 

relevant for the modulation of hot extreme temperatures over Northern Hemisphere 

extratropical continental areas than ENSO alone. 

Because of the logarithmic link function in (7) the parameters o and 1 are 

not on the same scale as the response variable. The parameters can be expressed in 

terms of change in the response due to a unit change in any of the explanatory 

variables. For example a unit change in x scales 

  

by 1e . Figure 11 shows maps of 

Oe

 

(panel a), 1e (panel b) and o estimated using summer temperature excesses 

during the period 1882-2005, which is the period when the SOI was available. As one 

could expect, the map of Oe of Fig. 11a is similar to the map of 

 

of Fig. 7a and the 

map of o of Fig. 11c is similar to the map of 

 

of Fig. 7b, where 

 

and 

 

have been 

estimated as constant parameters. Figure 11b shows that over most of North America, 

some regions in eastern Europe and Scandinavia 1e is larger than one, indicating that 

INPE ePrint: sid.inpe.br/mtc-m17@80/2006/11.28.14.11 v1 2006-11-29

17



 

18

   
increases for larger values of the SOI (i.e. larger variance of excesses during La 

Niña conditions). Figure 12a illustrates this effect using a grid-point over North 

America (97.5oW, 42.5oN). Figure 12a shows a scatter plot of excesses for this grid-

point and the SOI with the median (solid line) and the upper and lower quartiles 

(dashed lines) of the GP distribution with scale parameter )( 1xOe and shape 

parameter 

 

= o superimposed. The increased variability of hot extreme temperatures 

can be noted for larger SOI. Figure 11b also shows that over most of Asia, Russia, and 

western Europe 1e is smaller than one indicating that 

  

increases for smaller values 

of the SOI (i.e. larger variance of excesses during El Niño conditions). Figure 12b 

illustrates this effect using a grid-point over west Russia (52.5oE, 57.5oN).  

7. Temporal clustering of extreme events 

The annual frequency of extreme events, e.g. the number of extreme events observed 

during each summer, is a proxy for clustering of extremes. The average number of 

summer exceedances 
sn

i
e e

N
n

1

1
that occur in years for which there is at least one 

exceedance provides a measure of the average cluster size. The binary variable e = 1 

if an extreme event (i.e. an exceedance) is observed and e = 0 if an extreme event is 

not observed; and N is the total number of summers with at least one observed 

exceedance. By examining maps of en it is possible to identify regions where extreme 

events are more clustered in time (i.e. regions where there is more serial dependence). 

Figure 13 shows en computed for summer exceedances over the period 1870-

2005. A clear contrast between continental and oceanic regions is noted. Extreme 

temperatures are more clustered over the Atlantic and East Pacific oceans (average of 

around 1.8 events per year) than over North America, Europe and Asia (average of 
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around 1.5 events per year). This indicates that temperatures above the threshold uy,m 

are more clustered over the oceans than over land mostly because of the longer 

memory of the oceans when compared to the continents.   

8. Teleconnections between extreme events 

Association of extreme values between different locations (i.e. teleconnection at 

extreme levels) can be studied using an asymptotic dependence measure 

 

(Buishand 

1984; Coles et al. 1999) as follows. Suppose we are interested in investigating how 

extreme monthly mean temperatures at central Europe TE are related to extreme 

monthly mean temperatures at another location TO. If TE and TO have a common 

distribution function F, it is possible to define  

}uT|uTPr{lim EO
uu

    

(9) 

where u+ is the upper end point of F, so that 

 

is a limiting measure of the tendency 

for TO to be large conditional on TE being large (Coles et al. 1999). In other words, the 

probability of temperature at the other location to be high given that temperature at 

central Europe is high. If  = 0 then TE and TO are asymptotically independent .  

However, two different environmental variables could well have uncommon 

or even unknown distribution functions. Nevertheless, the true distribution of these 

variables can be estimated using their empirical distributions and one way of 

obtaining identical distributions is to transform them both to uniform distributions (i.e. 

ranging from 0 to 1). This can be done by ranking each set of observations TE and TO 

separately, and dividing each rank by the total number N of observations in each set. 

If 
OTF and 

ETF are the distribution functions of TE and TO, respectively, (9) can 

be re-written as 
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}u)T(F|u)T(FPr{lim ETOT

u EO1
.          (10) 

It is possible to show that )u(lim
u 1

where  

}u)T(FPr{log

}u)T(F,u)T(FPr{log
)u(

ET

OTET

E

OE2

        
(11) 

defined for thresholds u on the rage 0 < u < 1 (Coles et al. 1999). Therefore, by 

making the uniform transformations rank(TE)/N and rank(TO)/N to 

obtain )T(F ETE
and )T(F OTO 

one can compute (u), where rank(.) is the rank of the 

data. For large thresholds (i.e. u 1) the measure , which ranges from 0 to 1, 

provides a simple measure of extremal dependence between TE and TO. Larger values 

of 

 

indicate stronger dependence. 

Figure 14a shows the scatter plot of August monthly mean temperatures TE in 

a grid-point in central Europe (12.5oE, 47.5oN) and August monthly mean 

temperatures TO in a grid-point in the west North Atlantic (67.5oW, 42.5oN). The 

scatter plot shows that temperatures at the two grid-points are positively associated. 

Indications of extreme dependence are noticeable in that large values often occur 

simultaneously at the two grid-points. The extreme dependence measure 

 

is obtained 

using the points of Fig. 14a that are located on the right-hand side of the 75th threshold 

line of August temperatures in central Europe. The 

 

statistic is given by the ratio 

between the number of points on the top right-hand corner of the scatter plot (i.e. 

those points that are located above both 75th threshold lines) and the total number of 

points to the right-hand side of the vertical line. The 

 

statistics can also be computed 

as described above but instead using the transformed values of TE and TO (i.e. 

)T(F ETE
and )T(F OTO

) as shown in Figure 14b with u = 0.75 (vertical and horizontal 

lines). In practice 

 

is computed using (11). Figures 14c and 14d show similar scatter 
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plots for the grid-point in central Europe (12.5oE, 47.5oN) and a grid-point in west 

Russia (52.5oE, 57.5oN). No sign of extreme dependence is noticeable between these 

two grid-points. 

Figure 15a shows a map of 

 
for extreme August monthly mean temperatures 

for the grid-point in central Europe (12.5oE, 47.5oN). As expected, grid-points close to 

the central Europe grid-point (12.5oE, 47.5oN) have large values of , indicating 

strong dependence. The west North Atlantic also shows some dependence, as 

previously illustrated in Figs. 14a and 14b. 

  

ranges from 0.25 and 0.5 in the west 

North Atlantic regions. Following the interpretation proposed by Coles et al. (1999) 

that was also used by Svensson and Jones (2002), a value of 

 

ranging from 0.25 and 

0.5 means that if the temperature in central Europe exceeds the 75th quantile, then 

there is a 25 to 50% risk that temperature at the west North Atlantic regions will also 

exceed the 75th quantile. This dependence is likely to be linked to the manifestation of 

large scale planetary Rossby waves with ridges over central Europe and the west 

North Atlantic and a trough in between, and also to sea surface temperature conditions 

in the North Atlantic, but further investigation is required to better understand the 

mechanisms behind such a teleconnection. North America and west Russia show very 

weak dependence, as also previously illustrated in Figs. 14c and 14d. 

The 

 

statistic provides a measure of extreme dependence for asymptotically 

dependent distributions (i.e. when 0 ). However, it fails to provide information of 

discrimination for asymptotically independent distributions, i.e. when  = 0 (Coles 

2001). An alternative measure is therefore required to overcome this deficiency. Such 

measure is given by 

)u(lim
uu

      

(12)  
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where 

1
2

}u)T(F,u)T(FPr{log

}u)T(FPr{log
)u(

OOE

E

TTET

ET

 
(13) 

defined for thresholds on the range 0 < u < 1 (Coles et al. 1999). The

 

statistics 

range from 1 to 1. For asymptotically dependent variables =1. For independent 

variables =0. As 

 

provides a summary measure of the strength of dependence for 

asymptotically dependent variables, 

 

provides a corresponding measure for 

asymptotically independent variables.  In other words, when  = 0 (or close to zero) 

then 

 

is a more appropriate measure of the strength of extremal dependence. As the 

correlation coefficient is the standard measure of association between two variables, 

 

is the equivalent association measure for extreme events.  

Figure 15b shows a map of 

 

for extreme August monthly mean temperatures 

for the grid-point in central Europe (12.5oE, 47.5oN). As noticed in Fig. 15a, hot 

extreme temperatures in central Europe are strongly associated with extreme 

temperatures in neighbouring grid-points. Central Europe extreme temperatures are 

also confirmed to be associated with extreme temperatures in the west North Atlantic 

(Fig. 14a and 14b). The one-point correlation map between all August temperature 

values at the grid-point in central Europe and all other grid-points in the Northern 

Hemisphere also show positive association between central Europe and the west 

North Atlantic (not shown), which is also noticed in the scatter plot of Fig. 14a. 

Figure 15b still shows a negative association between temperatures in central Europe 

and west Russia, which is also noticeable in Fig. 14c, but could not be identified by 

examining Fig. 15a alone.  
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9. Conclusions 

This study has presented a number of tools for the investigation of extreme weather 

and climate events in gridded datasets. These tools allow the study of: 

 
spatial patterns of simple extreme events; 

 

relationship between potentially influential factors (e.g. time and ENSO) and 

extreme events; 

 

temporal clustering of extreme events; 

 

teleconnection patterns of extremes.  

The methods have been demonstrated using Northern Hemisphere gridded 

temperature data from CRU covering the period from 1870 to 2005. Motivated by the 

recent hot summer of 2003, the methods have been applied to summer (June-July-

August) monthly mean temperatures. Extreme events have been defined as those 

months when the mean temperature has fallen above a time-varying threshold uy,m. 

The methods have revealed that hot extreme temperatures:  

 

have larger variability in extratropical continental regions than in oceanic and 

tropical regions; 

 

have variability over tropical and oceanic regions mainly driven by local 

processes rather than by ENSO atmospheric teleconnections; 

 

have variability over extratropical continental regions affected by ENSO 

atmospheric teleconnections; 

 

have larger variability during La Niña conditions over most of North America, 

some regions in eastern Europe and  Scandinavia; 

 

have larger variability during El Niño conditions over most of Asia, Russia, 

and western Europe; 
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are more clustered over the Atlantic and East Pacific oceans than over 

continental regions   

 
over central Europe during August are related to hot extreme temperatures in 

the northwestern Atlantic. 

The methods presented here could be further developed and improved. For 

example, quantile regression (Koenker 2005) could be used to define the threshold for 

obtaining the excesses. Such an alternative approach would avoid the estimation of 

the threshold by shifting the mean variability of the observed time series. The 

estimation of the parameters of the GP distribution could be made using not only the 

data of a single grid-point but instead also using data from neighbouring grid-points. 

Such an approach with an increased sample size is likely to provide better estimates 

for the parameters and also smoother (less noisy) spatial maps.  

The software used to perform the analysis presented here has been developed as 

part of the RCLIM intiative (R software for CLIMate analysis) and is freely available 

at http://www.met.reading.ac.uk/cag/rclim/. This initiative has been established within 

work package 4.3 (Understanding Extreme Weather and Climate Events) of the 

European Union funded ENSEMBLES project (GOCE-CT-2003-505539). Functions 

have been written in the R statistical language (http://www.r-project.org). In addition 

to the functions used for the climate analysis of extremes presented here, other 

functions have been written for reading and writing netcdf gridded datasets, general 

exploratory climate analysis (e.g. compute one point correlation, principal component 

analysis, extract subsets of data from a dataset), and animating and plotting climate 

analysis of gridded datasets.    
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List of Figures   

Figure 1: Summer (June-July-August) monthly mean temperatures T (Celsius) from 

1870-2005 at a grid-point in central Europe (12.5oE, 47.5oN). Each of the ns =408 

vertical bar is the monthly mean for a particular summer month. The horizontal solid 

line is the long-term (1870-2005) summer monthly mean temperature of 15.2oC. The 

horizontal dashed line is the 75th quantile of summer monthly mean temperatures of 

16.2oC. The solid thick line is the long-term trend estimated with a local polynomial 

fit with sliding window of 10 years using all monthly mean temperature values from 

1870 to 2005.  

Figure 2: a) Mean (T ), b) standard deviation (s) and c) skewness (b), of monthly 

mean summer temperatures estimated over the 1870-2005 period. White shading 

signifies missing values.  

Figure 3: Maxima of monthly mean summer temperatures over the 1870-2005 period.   

Figure 4: a) Observed monthly mean temperatures Ty,m (black dots) for the grid-point 

in central Europe (12.5oE, 47.5oN) during the period from 2001 to 2005. The dashed 

line is the long-term trend (Ly,m) that represents decadal variability (same as the solid 

thick line in Fig. 1). The thin solid line is the quantity My,m = Ly,m + Sm, (see text for 

explanation). The thick solid segments are the time-varying threshold uy,m given by 

uy,m = My,m + , where 

 

is the increment necessary to have % of the observed values 

above uy,m. The thick solid segments is the 75% threshold uy,m for the summer months 

( =25%). b) Summer month differences between Ty,m and uy,m (75% time-varying 

threshold) for the grid-point in central Europe (12.5oE, 47.5oN) over the period from 
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1870 to 2005. Vertical bars above the horizontal solid line (zero line) are excesses Ty,m 

 
uy,m above the threshold uy,m.   

Figure 5: Time mean of 75% threshold uy,m for the summer months over the period 

from 1870 to 2005.   

Figure 6: a) Mean of excesses, b) the median of excesses  and c) variance of excesses 

above the 75% time-varying threshold uy,m.  

Figure 7: Summer monthly mean temperature GP a) scale parameter , b) shape 

parameter , and c) upper bound /

 

of excess Ty,m 

 

uy,m above the 75% time-

varying threshold uy,m. Grid-points with 

 

>

 

0 have infinite upper bound and are 

shaded in black.   

Figure 8: Percentage of grid-points with Anderson-Darling (AD, dotted lines), 

Kolmogorov-Smirnov (KS, dashed lines) and Cramér-von Mises (CvM, solid lines) 

test statistics probability value (p-value) less than or equal to p (a probability value 

between 0 and 1) for two choices of time-varying thresholds, 60% (grey curves)  and 

75% (black curves) of the summer values falling below the threshold.  

Figure 9: a) Excesses Ty,m 

 

uy,m above the 75% threshold uy,m during August 2003 (i.e. 

Ty,m 

 

uy,m when Ty,m > uy,m). b) Return period estimates for the August 2003 excesses 

using the GP distribution with scale and shape parameters estimates of Figs. 7a and 

7b, respectively.  
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Figure 10: P-values for the likelihood ratio test for model log 

 
= o + 1 x and 

 
= o 

against a simpler nested model given by log 

 
= o and 

 
= o. The need for the extra 

parameter 1 is tested by the null hypothesis Ho: 1 = 0 against the alternative 

hypothesis H1: 1 0.   

Figure 11: a) exp( o), b) exp( 1) and c) o estimated using summer temperature 

excesses Ty,m uy,m above the 75% time-varying threshold during the period 1882-

2005.   

Figure 12: Scatter plot of excesses Ty,m uy,m above the 75% time-varying threshold 

and SOI for two grid-points: a) over North America (97.5oW, 42.5oN) and b) over 

west Russia (52.5oE, 57.5oN). Median (solid line), upper and lower quartiles (dashed 

lines) of the GP distribution with scale parameter )( 1xOe and shape parameter 

 

= o.  

Figure 13: Average number of summer exceedances en obtained using the time-

varying 75% threshold uy,m over the period 1870-2005.  

Figure 14: a) Scatter plot of August monthly mean temperatures TE in a grid-point in 

central Europe (12.5oE, 47.5oN) and August monthly mean temperatures TO in a grid-

point on the west North Atlantic (67.5oW, 42.5oN). The vertical and horizontal lines 

are the 75th quantile of August monthly mean temperatures in each grid-point, 

respectively. b) Scatter plot of transformed values of TE and TO (i.e. 

)T(F ETE
and )T(F OTO

). The vertical and horizontal lines indicate u = 0.75. Panels c) 
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and d) are similar to panels a) and b) but now for the grid-point in central Europe 

(12.5oE, 47.5oN) and a grid-point in west Russia (52.5oE, 57.5oN).  

Figure 15: a) 

 
and b) 

 
for August monthly mean temperatures for the grid-point in 

central Europe (12.5oE, 47.5oN) with u = 0.75.                                          
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Figure 1: Summer (June-July-August) monthly mean temperatures T (Celsius) from 
1870-2005 at a grid-point in central Europe (12.5oE, 47.5oN). Each of the ns =408 
vertical bar is the monthly mean for a particular summer month. The horizontal solid 
line is the long-term (1870-2005) summer monthly mean temperature of 15.2oC. The 
horizontal dashed line is the 75th quantile of summer monthly mean temperatures of 
16.2oC. The solid thick line is the long-term trend estimated with a local polynomial 
fit with sliding window of 10 years using all monthly mean temperature values from 
1870 to 2005.            
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Figure 2: a) Mean (T ), b) standard deviation (s) and c) skewness (b), of monthly 
mean summer temperatures estimated over the 1870-2005 period. White shading 
signifies missing values.   
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Figure 3: Maxima of monthly mean summer temperatures over the 1870-2005 period.                   
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Figure 4: a) Observed monthly mean temperatures Ty,m (black dots) for the grid-point 
in central Europe (12.5oE, 47.5oN) during the period from 2001 to 2005. The dashed 
line is the long-term trend (Ly,m) that represents decadal variability (same as the solid 
thick line in Fig. 1). The thin solid line is the quantity My,m = Ly,m + Sm, (see text for 
explanation). The thick solid segments are the time-varying threshold uy,m given by 
uy,m = My,m + , where 

 

is the increment necessary to have % of the observed values 
above uy,m. The thick solid segments is the 75% threshold uy,m for the summer months 
( =25%). b) Summer month differences between Ty,m and uy,m (75% time-varying 
threshold) for the grid-point in central Europe (12.5oE, 47.5oN) over the period from 
1870 to 2005. Vertical bars above the horizontal solid line (zero line) are excesses Ty,m 

 

uy,m above the threshold uy,m.        
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Figure 5: Time mean of 75% threshold uy,m for the summer months over the period 
from 1870 to 2005.             
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Figure 6: a) Mean of excesses, b) the median of excesses  and c) variance of excesses 
above the 75% time-varying threshold uy,m. 
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Figure 7: Summer monthly mean temperature GP a) scale parameter , b) shape 
parameter , and c) upper bound /

 

of excess Ty,m 

 

uy,m above the 75% time-
varying threshold uy,m. Grid-points with 

 

>

 

0 have infinite upper bound and are 
shaded in black.     
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Figure 8: Percentage of grid-points with Anderson-Darling (AD, dotted lines), 
Kolmogorov-Smirnov (KS, dashed lines) and Cramér-von Mises (CvM, solid lines) 
test statistics probability value (p-value) less than or equal to p (a probability value 
between 0 and 1) for two choices of time-varying thresholds, 60% (grey curves)  and 
75% (black curves) of the summer values falling below the threshold.         

INPE ePrint: sid.inpe.br/mtc-m17@80/2006/11.28.14.11 v1 2006-11-29

42



 

43

          

Figure 9: a) Excesses Ty,m 

 

uy,m above the 75% threshold uy,m during August 2003 (i.e. 
Ty,m 

 

uy,m when Ty,m > uy,m). b) Return period estimates for the August 2003 excesses 
using the GP distribution with scale and shape parameters estimates of Figs. 7a and 
7b, respectively.            
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Figure 10: P-values for the likelihood ratio test for model log 

 

= o + 1 x and 

 

= o 

against a simpler nested model given by log 

 

= o and 

 

= o. The need for the extra 
parameter 1 is tested by the null hypothesis Ho: 1 = 0 against the alternative 
hypothesis H1: 1 0.        
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Figure 11: a) exp( o), b) exp( 1) and c) o estimated using summer temperature 
excesses Ty,m uy,m above the 75% time-varying threshold during the period 1882-
2005.      
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Figure 12: Scatter plot of excesses Ty,m uy,m above the 75% time-varying threshold 
and SOI for two grid-points: a) over North America (97.5oW, 42.5oN) and b) over 
west Russia (52.5oE, 57.5oN). Median (solid line), upper and lower quartiles (dashed 
lines) of the GP distribution with scale parameter )( 1xOe and shape parameter 

 

= o. 
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Figure 13: Average number of summer exceedances en obtained using the time-

varying 75% threshold uy,m over the period 1870-2005.                    
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Figure 14: a) Scatter plot of August monthly mean temperatures TE in a grid-point in 
central Europe (12.5oE, 47.5oN) and August monthly mean temperatures TO in a grid-
point on the west North Atlantic (67.5oW, 42.5oN). The vertical and horizontal lines 
are the 75th quantile of August monthly mean temperatures in each grid-point, 
respectively. b) Scatter plot of transformed values of TE and TO (i.e. 

)T(F ETE
and )T(F OTO

). The vertical and horizontal lines indicate u = 0.75. Panels c) 

and d) are similar to panels a) and b) but now for the grid-point in central Europe 
(12.5oE, 47.5oN) and a grid-point in west Russia (52.5oE, 57.5oN).      
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Figure 15: a) 

 

and b) 

 

for August monthly mean temperatures for the grid-point in 
central Europe (12.5oE, 47.5oN) with u = 0.75.   
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