

INPE-14702-TDI/1227

NESTED-CA: A FOUNDATION FOR MULTISCALE MODELLING

OF LAND USE AND LAND COVER CHANGE

 Tiago Garcia de Senna Carneiro

Doctorate Thesis from the Post Graduation Course in Applied Computer Science,
supervised by Ph.D Gilberto Câmara and Ph.D Antônio Miguel Vieira Monteiro, in

June 9, 2006 .

INPE

São José dos Campos
2007

Publicado por: esta página é responsabilidade do SID

Instituto Nacional de Pesquisas Espaciais (INPE)
Gabinete do Diretor – (GB)
Serviço de Informação e Documentação (SID)
Caixa Postal 515 – CEP 12.245-970
São José dos Campos – SP – Brasil
Tel.: (012) 3945-6911
Fax: (012) 3945-6919
E-mail: pubtc@sid.inpe.br

 Solicita-se intercâmbio
 We ask for exchange

 Publicação Externa – É permitida sua reprodução para interessados.

INPE-14702-TDI/1227

NESTED-CA: A FOUNDATION FOR MULTISCALE MODELLING

OF LAND USE AND LAND COVER CHANGE

 Tiago Garcia de Senna Carneiro

Doctorate Thesis from the Post Graduation Course in Applied Computer Science,
supervised by Ph.D Gilberto Câmara and Ph.D Antônio Miguel Vieira Monteiro, in

June 9, 2006 .

INPE

São José dos Campos
2007

 681.3.06

 Carneiro, T. G. S.
 Nested-CA: a foundation for multiscale modelling of
 land use and land cover change / Tiago Garcia de Senna
 Carneiro. - São José dos Campos: INPE, 2006.
 114 p. ; (INPE-14702-TDI/1227)

 1. Cellular automata. 2. Automata theory.
 3. Environment models. 4. Multiscale models. 5. Computer
 system simulation. 6. Land use. 7. Geographic Information
 Systems (GIS). I. Título.

“Deus dá o frio conforme o cobertor”.

ADONIRAN BARBOSA

A meus pais,
ALEXANDRE DE SENNA CARNEIRO e
GABI GARCIA DE SENNA CARNEIRO.

AGRADECIMENTOS

Agradeço a todos que ajudaram a concluir esse sonho.

À Fundação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, pelo auxílio
financeiro de quatro anos de bolsa de doutorado.

Ao Instituto Nacional de Pesquisas Espaciais – INPE, pela oportunidade de estudos e
utilização de suas instalações.

A Universidade Federal de Ouro Preto por apoiar a minha capacitação.

Aos professores do INPE pelo conhecimento compartilhado.

Aos meus orientadores Prof. Dr. Gilberto Câmara e Profº Antônio Miguel Vieira
Monteiro, pelo conhecimento passado, e pela orientação e apoio na realização deste
trabalho.

A todos os amigos da Divisão de Processamento de Imagem - DPI pelo saudável
ambiente de trabalho, onde carinho e respeito são palavras de ordem, onde
conhecimento é para ser compartilhado.

Às amigas e companheiras de pesquisa sem as quais este trabalho teria menos valor:
Ana Paula Aguiar e Maria Isabel Escada.

Aos amigos com quem também tive o prazer de conviver sob o mesmo teto: Reinaldo,
Gibotti, Gilberto Ribeiro, Caçapa, Caê, Henrique, e Sidão. Entre eles, aqueles que
tiveram o inenarrável prazer de me adotar nos últimos anos de São José dos Campos.
Pessoas com quem minha dívida será eterna: Joubert (Beto) e Flávia (Tatá).

Aos grandes amigos de aventuras e boemia sem os quais a vida perderia a graça:
Brenner, Du, Liana, Borena, Felix, Aragão, Robertinha, Luciana, Rita, Malves e
Brummer.

À minha amada esposa, Tenesca de Quintal Scofield Soriano, pelo amor dedicado, pela
compreensão e pela infindável paciência.

À pequenina Cecília Scofield Carneiro, filhota linda que deu um novo sentido à minha
vida.

A meus pais, meus avós e irmãos pelo ser humano que me tornei, por todas as graças
alcançadas. Nada sou sem vocês.

ABSTRACT

This work presents the mathematical foundations of the Nested Cellular Automata
(nested-CA) model, a model of computation for multiple scale Land Use and Land
Cover Change studies. The main properties of nested-CA model are described and
compared to the agent-based and cellular automata models of computation. The nested-
CA model has been implemented in a software environment, called TerraME (Terra
Modeling Environment), which provides a high-level modeling language for model
description, a set of spatiotemporal data structures for model representation and
simulation, a module for spatiotemporal data management and analysis integrated to a
geographic information system, and a set of functions for model calibration and
validation. We describe the main design choices involved in the development of the
TerraME modeling environment. Its architecture is detailed and the main properties are
compared with other modeling tools: Swarm, STELLA, and GEONAMICA. Finally, the
concept of nested-CA and the TerraME architecture are demonstrated in two
applications of land cover change in the Brazilian Amazon.

Nested-CA: UM FUNDAMENTO PARA A MODELAGEM DE MUDANÇAS DE
USO E COBERTURA DO SOLO EM MÚLTIPLAS ESCALAS

RESUMO

Este trabalho apresenta a base matemática do modelo chamado Autômatos Celulares
Aninhados (Nested-CA), um modelo de computação destinado ao desenvolvimento de
modelos de mudança de uso e cobertura do solo em múltiplas escalas. As principais
propriedades do modelo nested-CA são descritas e comparadas aos modelos de
computação baseados em agentes e em autômatos celulares. O modelo nested-CA foi
implementado em um ambiente computacional, chamado TerraME, que oferece uma
linguagem de alto nível para a descrição de modelos, um conjunto de estruturas de
dados espaço-temporais para a representação e simulação dos modelos, um modulo para
o gerenciamento e análise de dados espaço-temporais integrado a um sistema de
informações geográficas, e um conjunto de funções para calibração e validação dos
modelos. As decisões de projetos envolvidas no desenvolvimento do ambiente de
modelagem TerraME são descritas. A arquitetura do ambiente é detalhada e suas
principais propriedades são comparadas com outras plataformas de modelagem: Swarm,
STELLA, e GEONAMICA. Finalmente, o conceito de nested-CA e o ambiente TerraME
são demonstrados em duas aplicações de mudança de cobertura do solo para a
Amazônia brasileira.

SUMMARY

Pg.

LIST OF FIGURES
LIST OF TABLES
LIST OF ACRONYMS AND ABBREVIATIONS

CHAPTER 1 INTRODUCTION.. 23
1.1 The problem of modeling land use and land cover change 23
1.2 Objective of the work ... 25
1.3 Scientific questions... 26
1.4 Outline of the thesis.. 26

CHAPTER 2 THEORETICAL FOUNDATION AND PREVIOUS WORK 27
2.1 A brief introduction to the LUCC modeling theory and practice............................. 27
2.2 The modeling process... 28
2.3 The role of scale in LUCC modeling ... 30
2.3.1 Scale issues in the choice of spatial representation ... 31
2.3.2 Scale issues in choice of temporal representation ... 31
2.3.3 Scale issues in the choice of analytical representation.. 32
2.3.4 Summary: the need for multiple scales.. 34
2.4 Models of computation for dynamic modeling .. 34
2.4.1 Finite automata .. 35
2.4.2 Hybrid automata .. 36
2.4.3 Cellular automata... 38
2.4.4 Situated agents... 39
2.5 Conclusion.. 40

CHAPTER 3 THE Nested-CA MODEL ... 43
3.1 Introduction .. 43
3.2 Nested CA: a general view ... 44
3.3 Nested-CA: formal definitions ... 46
3.4 The Nested-CA models of computation ... 49
3.5 The semantics of the Nested-CA model: a situated hybrid automaton 51
3.6 Modeling using a nested-CA: an example.. 54
3.6.1 A hydrologic balance spatial dynamic model ... 55
3.7 Properties of the nested-CA model... 57
3.8 Comparison with previous works... 60
3.9 Conclusion.. 61

CHAPTER 4 TerraME: A LUCC MODELING FRAMEWORK 63
4.1 Introduction .. 63
4.2 Design choices.. 64
4.3 TerraME: a general view .. 65
4.4 TerraME system architecture ... 67
4.5 The TerraME framework architecture.. 68
4.5.1 Model representation services ... 69
4.5.2 Model simulation services ... 72
4.6 The TerraME modeling language... 73
4.6.1 The multiple scale model... 75
4.6.1.1 The Scale type .. 75
4.6.2 The spatial model .. 76
4.6.2.1 The CellularSpace type .. 76
4.6.2.2 The Cell type .. 77
4.6.2.3 The Neighborhood type.. 78
4.6.3 The analytical model ... 79
4.6.3.1 The GlobalAutomaton and LocalAutomaton types .. 79
4.6.3.2 The SpatialIterator type ... 80
4.6.3.3 The ControlMode type ... 80
4.6.3.4 The JumpCondition type .. 81
4.6.3.5 The FlowCondtion type.. 82
4.6.3.6 The hydrologic balance model example... 82
4.6.4 The temporal model... 84
4.6.4.1 The Timer type ... 84
4.6.4.2 The Event type.. 85
4.6.4.3 The Message type ... 85
4.6.5 Database management routines ... 85
4.6.6 Defining runtime variables .. 86
4.6.7 Synchronizing the space .. 86
4.6.8 Configuring and starting the simulation .. 87
4.7 Comparison with previous work .. 88
4.8 Conclusion.. 89

CHAPTER 5 APPLICATION OF NESTED CA FOR MODELING OF LAND
USE CHANGE IN BRAZILIAN AMAZON 91

5.1 A brief review on LUCC modeling in Brazilian Amazon.. 91
5.2 Applications.. 92
5.2.1 The CLUE model in TerraME... 94
5.2.2 A deforestation model for heterogeneous spaces: the Rondônia case................. 100
5.3 Conclusion and future work ... 104

REFERÊNCIAS BIBLIOGRÁFICAS ... 107

LIST OF FIGURES

2.1 – Cyclical model development process .. 30
2.2 – Transition diagram for the memory machine. ... 36
2.3 – Hybrid automata model for a climate variation system. Source: adapted from

(Henzinger 1996)... 38
2.4 – Cellular Automata: (a) same finite automaton on each cell - the cellular structure is

functionally homogeneous, and (b) same neighborhood relationship on each cell -
the cellular structure is isotropic and stationary. ... 39

2.5 – A situated agent M coupled to its environment E. Source: Rosenschein (1995)... 40
3.1 – Layered cellular automata. Source: adapted from (Straatman et al. 2001). 44
3.2 – A nested CA as a composition of nested CAs. .. 45
3.3 – The internal state of a hybrid automaton keeps track of the current active control

mode and of the continuous variables values. ... 49
3.4 – Changes in the cellular space and in the automaton internal state in: (a) A global

automaton model; (b) A local automaton model. ... 50
3.5 – The rain model (left) and the water balance model (right).................................... 55
3.6 – Terrain digital model (left) based on the SRTM data (right). Light gray pixels

denote higher locations while dark gray lower ones. The maximal elevation is
1550 meters and the lowest is 1100 meters. .. 56

3.7 – Spatial temporal pattern of precipitation being drained: from the top left to the
bottom right map. .. 57

3.8 – Nested cellular automata (a), multiple scales (b) and multiple resolutions in
different space partitions (c). ... 57

3.9 – Different processes act on distinct space partitions: (a) coastal area, (b) settlements
area in Rondônia, Brazil. Source: adapted from (Escada 2003)............................ 58

3.10 – Generalized Proximity Matrix for modeling non-isotropic processes: Amazon
deforestation processes and roads (a), Moore neighborhood (b) and road geometry
based neighborhood (c) for the red central cell. Source: adapted from (Aguiar et al.
2003).. 59

4.1 – TerraME modules and services. .. 66
4.2 – TerraME modeling environment architecture. .. 67
4.3 – UML diagram: TerraME Framework represents scale as a composite of models.69
4.4 – UML diagram: TerraME Framework global and local automaton structure. 70
4.5 – UML diagram: TerraME Framework cellular space structure.............................. 71
4.6 – UML diagram: TerraME Framework spatial iterator structure............................. 71
4.7 – UML diagram: TerraME Framework spatial iterator structure............................. 72
4.8 – TerraME scheduling data structures: Timer tree (a) and Scale tree (b). 73
4.9 – The use of associative table and function values in LUA. 73
4.10 – The use of the constructor mechanism in LUA. .. 74
4.11 – Defining Scales in TerraME Modeling Language... 75
4.12 – A spatial dynamic hydrologic model in TerraME Modeling Language. 76
4.13 – Defining a CellularSpace in TerraME Modeling Language................................ 77
4.14 – Referencing Cells from a CellularSpace in TerraME Modeling Language. 77

4.15 – In TerraME cells have two especial attributes: latency and past. 78
4.16 – Traversing a Neighborhood in TerraME Modeling Language............................ 78
4.17 – Defining a GlobalAutomaton in TerraME Modeling Language. 79
4.18 – Defining a LocalAutomaton in TerraME Modeling Language. 79
4.19 – Defining a SpatialIterator in TerraME Modeling Language. 80
4.20 – Defining a ControlMode in TerraME Modeling Language................................. 81
4.21 – Defining a JumpCondition in TerraME Modeling Language. 81
4.22 – Defining a FlowCondition in TerraME Modeling Language.............................. 82
4.23 – Simulating the rain in TerraME Modeling Language. .. 82
4.24 – Simulating the water balance process in TerraME Modeling Language. 83
4.25 – Defining a Timer in TerraME Modeling Language. ... 84
4.26 – Defining a Event in TerraME Modeling Language... 85
4.27 – Defining a Message in TerraME Modeling Language. 85
4.28 – Loading space attributes in TerraME Modeling Language................................. 85
4.29 – Saving cell attributes values in TerraME Modeling Language........................... 86
4.30 – Defining a runtime attribute in TerraME Modeling Language. 86
4.31 – Synchronizing a CellularSpace in TerraME Modeling Language....................... 87
4.32 – Configuring and starting the simulation in TerraME Modeling Language......... 87
5.1 - Example 1: Legal Amazon study area, Brazil. Source: (INPE 2005) 93
5.2 – Example 2: Rondônia study area, Brazil Source: adapted from (Escada 2003).... 94
5.3 – Two allocation scales: cells of 100×100 km2

 (left), and cells of 25×25 km2 (right).
... 95

5.4 – CLUE allocation scales in TerraME Modeling Language. 96
5.5 – Model parameters: land use demand from each land use type from 1997 to 2015.

... 97
5.6 – Format of the parameters of the regression equations for a scale. 98
5.7 – Local scale regression parameters. .. 99
5.8 – CLUE results: deforestation process for the whole Brazilian Amazon region.... 100
5.9 – Deforestation process in non-homogeneous space: forest (light gray) and deforest

(dark gray). .. 102
5.10 - Allocation module: The automata autSmallDemand (left) and autLargeDemand

(right). .. 103
5.11 – Space partitions with alternative nearness relationships: roads (black lines), farms

frontier line (light blue lines)... 103
5.12 – Simulation results for deforestation process in Rondônia, Brasil, from 1985 to

1997. .. 103

LIST OF TABLES

3.1 – The Nested-Ca synchronization schemes. ... 54

LIST OF ACRONYMS AND ABBREVIATIONS

API - Application Programming Interface

CA - Cellular Automata

CBERS - China-Brazil Earth Resource Satellite

CLUE - Conversion of Land Use and its Effects

GIS - Geographic Information System

GPM - Generalized Proximity Matrix

INCRA - Brazilian National Institute of Agrarian Reform

INPE - Brazilian National Institute of Space Research

Layered-CA - Layered Cellular Automata

LUCC - Land Use and Land Cover Change

MBB - Model Building Block

Nested-CA - Nested Cellular Automata

SRTM - Shuttle Radar Topographic Mission

SME - Spatial Modeling of the Environment

 23

CHAPTER 1

INTRODUCTION

1.1 The problem of modeling land use and land cover change

One of the most important challenges in geographical information science is to

providing a computational framework for modeling environmental change. The Earth’s

environment is changing at an unprecedented pace. Planners and policy makers need

modeling tools that are able to capture the dynamics and outcomes of human actions

(Turner II, Skole et al. 1995). A particular area of interest on environmental models is

the modeling of land use and land cover change (LUCC). These models aim at

identifying determinant factors of land use change, envisioning which changes will

happen, and assessing how choices in public policy can influence change.

An important area for LUCC studies is the process of deforestation on the Brazilian

Amazonia. Some LUCC studies try to determine proximate causes and driving forces of

deforestation (Pfaff 1999; Geist and Lambin 2002; Laurance, Albernaz et al. 2002;

Aguiar, Kok et al. 2005). LUCC models have been applied to the region in an attempt to

understand the land use change dynamics and its consequences (Laurance, Cochrane et

al. 2001; Soares, Cerqueira et al. 2002; Deadman, Robinson et al. 2004; Walker,

Drzyzga et al. 2004; Aguiar, Kok et al. 2005). Despite much research, there is currently

no agreement as to the main causes of Amazon deforestation (Câmara, Aguiar et al.

2005). This is partly due to the lack of an established theory on human-environment

interaction. On the other hand, there is a clear sense among the LUCC scientific

community that human activities play a central role on the land use system (Lambin,

Turner et al. 2001; Parker, Berger et al. 2001). These studies reinforce the thesis that

LUCC modeling efforts should attempt to represent the multiples drivers of human-

environment interaction at different spatial and temporal scales (Lambin, Geist et al.

2003; Aguiar, Kok et al. 2005; Escada, Monteiro et al. 2005).

 24

One of the critical notions in LUCC models is the concept of scale. Following Gibson et

al. (2000), this work uses scale as a generic concept that includes the spatial, temporal,

or analytical dimensions used to measure any phenomenon. Understanding scale is

important since the causes and consequences of environmental changes can be

measured along multiple scales. Important aspects of scale are its extent and resolution.

Extent refers to the magnitude of measurement. Resolution refers to the granularity

used in the measures. In the spatial dimension of scale, extent is the geographical area

under study and resolution is the geometric partition used to sample the phenomenon. In

the temporal dimension of scale, extent is the time period considered in the analysis and

resolution is the frequency in which changes are recorded. In the analytical dimension

of scale, extent refers to the set of processes taken into account, and resolution refers to

the lowest level of organization for the processes (e. g. landowner level or community

level).

Earlier studies have argued that LUCC model outcomes can be strongly influenced by

the chosen spatial extent and resolution (Kok and Veldkamp 2001). At different scales,

changes are governed by different driving forces and different sets of processes (Turner

II, Skole et al. 1995; Verburg, Schot et al. 2004). Thus, a multi-scale representation on

the spatial, temporal and analytical dimensions is required for realistic environmental

models, especially in LUCC studies. A single choice of extent and resolution in each of

these dimensions would not be sufficient to simulate realistic geographical phenomena

and reproduce expected spatial patterns.

Environmental models require proper computational frameworks. Some of the most

popular computational models for LUCC are based on cellular automata (CA) models.

CA models have been used for landscape and urban dynamic model development and

assessment (White and Engelen 1997; Batty 1999; Almeida, Monteiro et al. 2003).

These CA extensions share one limitation: the application of a single set of rules to the

whole lattice. This approach has led to criticism since it cannot convey the complex

motivations that drive human actions (Briassoulis 2000). In an attempt to capture these

different responses, researchers have proposed the use of agent-based models for

landscape and urban dynamic modeling (Parker, Berger et al. 2001). However, current

 25

agent-based models still fall short of modeling one crucial aspect of landscape and

human dynamics: scale-dependent change. Looking at a landscape or a city at different

scales will reveal different phenomena. The cause-effect relationships that control the

landscape dynamics at a smaller scale will be different from those at a larger scale

(Verburg, Schot et al. 2004). For example, one of the effects of an increase of the price

of grains in the international market on a developing nation varies depending on the

observation scale. On a regional basis, these effects may be the construction of new

roads and migration to new agricultural areas. On a local basis, they include land

disputes and decisions on capital investment. Therefore, differences in scale engender

differences in causative factors, which need to be translated into agent rules. Agent-

based models that use a single scale will not be able to represent such scale-dependent

behavior.

To overcome the shortcomings of traditional CAs and agent-based models for land use

change and to allow multiscale modeling of LUCC processes, this work proposes a new

type of CA: nested cellular automata. The purpose of a nested-CA is to allow

representation of multiple scales, where each scale is associated to a specific analytical,

spatial and temporal extent and resolution. Each scale is a building block of a complex

LUCC model. Model building blocks are organized in a hierarchical structure, where

the upper level scales provide overall control for the lower ones.

1.2 Objective of the work

The main goal of this work is to propose the concept of a Nested Cellular Automata

(Nested-CA) and describe its main properties. In what follows, we provide a

mathematical foundation of the concept of Nested-CA and develop a computational

framework for assessment of the concept. This software environment, called Terra

Modeling Environment (TerraME), is used to develop a LUCC model for the Amazon

region, which explores the main properties of the Nested-CA model.

 26

1.3 Scientific questions

This research postulates the following scientific questions:

• What are the mathematical foundations for a model of computation adequate for

multiple scale LUCC studies?

• What is the best architecture for a model of computation for multi-scale LUCC

studies?

1.4 Outline of the thesis

A review of the relevant literature models of computation for LUCC models is

presented in Chapter 2. Chapter 3 presents the formal definition of nested CA model

and compares this model with other works. Chapter 4 describes a computational

architecture for spatial dynamic modeling. In Chapter 5, the concept of nested-CA and

the computational architecture are demonstrated in two applications of land cover

change in the Brazilian Amazon.

 27

CHAPTER 2

THEORETICAL FOUNDATION AND PREVIOUS WORK

2.1 A brief introduction to the LUCC modeling theory and practice

According to Hestenes (1987), modeling is the cognitive process in which the principles

of one or more theories are applied to produce a model of a real phenomenon. A

phenomenon is any concrete fact or situation of scientific interest, which can be

described or explained. Any model is an outcome from the creativity of the modeler and

from the knowledge she has about the observed phenomenon. During the modeling

activity, the modeler will always need to specify the structure (syntax) and functioning

(semantics) of the idealized model. This specification can be represented on different

ways. A model can be defined as a simplified and abstract representation of a

phenomenon, based on a formal description of entities, their relations, and processes.

Model simulation is the act of reproducing the behavior of some phenomenon in a

computer environment. (Odum 1983; Briassoulis 2000; Parker, Berger et al. 2001).

Models where there is the time as an independent variable are named dynamic models

(Odum 1983). Spatially explicit models or spatial models are models whose outcomes

depend on the spatial position of each value on the input data or on the spatial pattern

present on it (Parker, Berger et al. 2001). Usually, the outcomes of a spatial model are

maps. A spatial dynamic model is a model that has a temporal structure, a spatial

structure, and behavior rules that describe the changes of a spatial phenomenon (Smyth

1998; Couclelis 2000). A LUCC model is a spatial dynamical model that describes

changes of land use and cover in a geographical area that result from the interaction of

human with the environment.

Most LUCC models have a common functional structure (Veldkamp and Fresco 1996;

White, Engelen et al. 1998; Lim, Deadman et al. 2002; Soares, Cerqueira et al. 2002;

Verburg, Soepboer et al. 2002). LUCC models distinguish between the projection for

the quantity of change and the projection for the location where these changes will take

 28

place (Veldkamp and Lambin 2001). In the first stage, they answer the “when?”

question, and establish its temporal extent and resolution. In the second stage, LUCC

models have rules that govern the amount of change (the “how much?” question). In the

next stage, the models determine where the projected change will take place (the

“where?” question). On the final stage, the models apply the changes on an appropriate

way, including external restrictions (the “how?” question). For example, a deforested

location could never become primary forest again. At the end of the fourth stage, the

models are back to the first stage until the simulation finishes.

There are two usual approaches for the projection of the amount of change (the “how

much?” question). The first approach takes two maps about the phenomenon in different

time instants and calculates the quantity of change (Veldkamp and Fresco 1996). A

extrapolation method projects the observed trend on the future. The second approach

uses a demographic or econometric model to calculate the quantity of change (White,

Engelen et al. 1998).

For change allocation (the “where?” question), the most common approach is to

calculate a change potential surface. Each location will have a numeric value indicating

how prone this location is to change. Then the model traverses the surface in an

ascending order of potential, applying the changes (White, Engelen et al. 1998). Some

models use multi-linear regression for change allocation, such as the CLUE model

(Veldkamp and Fresco 1996). Other approaches include a stochastic combination of

diffusive and spontaneous change, such as the DINAMICA model (Soares, Cerqueira et

al. 2002).

2.2 The modeling process

The spatial dynamic phenomena modeling process comprehends the phases described

below, which not need to occur in the order they are presented. These phases are carried

out several times, in a cyclic way as shown in figure 2.1, where each cycle leads to a

more refined model.

 29

• Database development: Acquisition and conversion of spatial data to feed the

model. The database should include data for model calibration and model

validation stored at several spatial scales. Geographical information systems

(GIS) are the appropriate tool for managing and analyzing spatial data.

Therefore, a software platform for environmental change modeling would be

more useful if integrated with a GIS (Wesseling, Karssenberg et al. 1996), which

provides services for data storage, aggregation, allocation and recovery at

different scales.

• Model development: in this stage the user defines the entities that will be part

of the model and the rules that will govern its dynamics. She needs to choose the

scales in which the experiments will be conducted and the appropriate

representations for the spatial, temporal and analytical dimensions of each scale.

It is also important to model the interactions among the scales and among the

model entities. Hence, a software framework toward environmental change

modeling should provide services for the specification of: (a) what database

data will be used as input data for the model; (b) what will be the output data

and where they will be stored; (c) the time instants in which the simulation

outcomes will be saved or visualized; (d) the scales considered on the model; (e)

for each scale: (e.1) the entities that will be part of the model and the rules used

to simulate their behaviors; (e.2) the interactions or feedbacks among entities;

(e.3) the temporal order in which the entities will be simulated; (e.4) what will

be the local properties or constraints in each space location; (e.5) the way the

entities, possibly, traverse the spatial structure; and (f) interactions or feedbacks

among different scales.

• Model calibration, verification and validation: after model development, the

model needs to be verified to check if its implementation corresponds to

idealized model. After that, it is important to calibrate the model. Calibration

requires adjustment to available data. Then, the model needs to be validated by

evaluating its behavior and outcomes when a different dataset is used to feed it.

There are methods for calibrating and validating spatially explicit models on the

 30

literature (Costanza 1989; Pontius 2000; Pontius 2002; Pontius, Huffaker et al.

2004). Thus, a tool for spatial dynamic model development should provide

automatic methods for model calibration, verification and validation (Veldkamp

and Lambin 2001).

• Model execution and visualization; and report analysis: in this phase the

model is executed, generating summary reports and spatiotemporal data which

register the model dynamics. Any modeling tool should provide services to

allow the modeler to specify the report contents. It is also important that services

for visualization and analysis are supplied.

• Scenario projections: in this stage the modeler tests hypotheses about the

modeled phenomenon and try to answer “what if” question about the future in an

attempt to aid the decision-making processes. Therefore, an environmental

change modeling tool should offer services for the scenario development and

hypotheses evaluation.

Figure 2.1 – Cyclical model development process

2.3 The role of scale in LUCC modeling

In this subsection, we consider the scale issues involved in the spatial, temporal, and

analytical representations for LUCC models. As explained in Section 1, we follow

Gibson et al. (2000) and use scale as a generic concept that includes the spatial,

temporal, or analytical dimensions used to measure any phenomenon. The concept of

 31

scale is associated to the need to construct discrete computer representations. We will

argue that a multiple scale representation on all of these dimensions is required for

realistic environmental change models.

2.3.1 Scale issues in the choice of spatial representation

Since locating change allows a better analysis of the underlying forces that cause it,

spatially explicit modeling is necessary to understand geographical reality. Spatial

explicit models require a choice of a discrete spatial representation. Each representation

has an extent and a resolution. The choice of extent and resolution is crucial, since these

factors condition the results of the model. Coarse resolution enables depiction of global

patterns, but local variability can be obscured. Fine resolution shows local variability, at

the expense of possibly introducing noisy patterns. A large extent will include various

spatial patterns which result from different processes. A small extent might not include

the whole spatial pattern. The models should assess the model at different spatial extent

and resolution to improve her understanding of scale effects.

Environmental changes, at different scales, are often influenced by diverse socio-

economic, biophysical, and proximate relationships that act as driving forces (Turner II,

Ross et al. 1993; Turner II, Skole et al. 1995; Verburg, Schot et al. 2004). Consider two

types of LUCC models for deforestation. The first operates at a regional scale, with a

large extent and a coarse resolution. The second operates at a local scale, with a small

extent and fine resolution. At a regional scale, available urban/rural infrastructure, road

or market proximity, and annual rainfall are relevant LUCC driving forces. At a local

scale, family structure, farm frontiers proximity, soil moisture, and modalities of land

management seen to be more impelling driving forces.

2.3.2 Scale issues in choice of temporal representation

A second choice for environmental models is the choice of temporal representation.

Each temporal representation will have its extent and resolution. The extent refers to the

time period under consideration. The resolution is the minimum time period where the

process is sampled. Land use changes are caused by different anthropogenic and

biophysical processes which act at different temporal extents and resolutions. Changes

 32

in political, institutional, and economic conditions can cause rapid changes in the rate or

direction of land-cover change (Turner II, Skole et al. 1995). Government policies

change typically in an yearly temporal resolution. Forest clearing and land abandonment

are processes that depends on these conditions and can also present a climatic

dependence at a higher temporal resolution (multi-decadal time span). Short-term

rainfall variability may also have significant impact on interannual land cover change

(Vanacker, Linderman et al. 2005).

As in the case of spatial representation, the choice of temporal representation is also a

compromise. A sparse temporal resolution can result in a poor description of the

dynamics of change, whereas a very detailed resolution may introduce noise in the

studies. The choice of the temporal extent has to consider the persistence of the

observed phenomena. For LUCC models, one of the temporal constraints is the limited

availability of land cover data before the 1970s, where global remote sensing satellites

became available. The other constraint is the long-term uncertainty of the models and

the long-term error propagation. Some authors consider a period of 10 to 15 years for

the maximum possible validity of LUCC models (Turner II, Skole et al. 1995).

One of the problems in LUCC modeling is that the processes represented in the model

may have different temporal resolutions. Most of the anthropogenic processes are

modeled in coarse resolutions, typically on yearly resolutions. Biophysical processes

such as vegetation regrowth need detailed resolutions. A process may be represented in

different temporal resolutions for distinct spatial extents. A LUCC model may use an

annual temporal resolution to represent a deforestation process and a monthly resolution

to represent changes in cultivated areas.

2.3.3 Scale issues in the choice of analytical representation

At each analysis scale, a different set of processes will cause changes. When modeling

land use change, authors distinguish between proximate causes and underlying causes of

change (Turner II, Skole et al. 1995). Proximate causes of deforestation are human

activities that directly affect the environment. Underlying driving forces (or social

processes) are seen to be fundamental forces that support the more obvious or proximate

 33

causes of tropical deforestation. They can be seen as a complex of social, political,

economic, technological, and cultural variables that constitute initial conditions in the

human-environmental relations that are structural (or systemic) in nature (Geist and

Lambin 2002).

At a local scale, people take decisions directly related to the management of land. Forest

clearing or burning is an important process in conversion of forest into pasture or

agriculture area. At regional scale, agriculture intensification and road construction are

others examples of processes in LUCC. At a global scale, forest fragmentation can show

a positive feedback with global warming (Laurance and Williamson 2001). In this

perspective, the human dynamics of land-use change can be fitted from large- to small-

scale processes (Turner II, Skole et al. 1995). Non-linearity, emergence and collective

behavior may prevent a proper modeling of higher-level processes from the aggregation

of detailed scale processes (Verburg, Schot et al. 2004). In this sense, process

representation is scale-dependent.

The scale issues related to the choice of analytical representation for LUCC models

include:

• Use of categorical or continuous variables to depict land-use change.

• The granularity of the actors involved. Models can depict individuals as actors, or

may choose to capture change based on coarser scale processes such as

agricultural intensification.

• The choice of the analytical model. When change is depicted as discrete events

and the variables are categorical, the finite automata model is a suitable tool.

When change is portrayed as a continuous event and the variables are continuous,

hybrid automata (discussed in the next section) are a more suitable choice

Some studies compare the use of continuous and discrete variables in LUCC models

(Southworth, Munroe et al. 2004; Binford and Cassidy 2005; Munroe and Calder 2005;

Southworth and Binford 2005). They conclude that both approaches are complementary,

 34

and that both are required to answer significant questions of land change (Southworth,

Munroe et al. 2004; Binford and Cassidy 2005). At coarse resolution the LUCC process

should be modeled by continuous variables, to avoid loss of model performance due to

data aggregation. At finer resolution, discrete variables can be used, since data

variability can be preserved.

2.3.4 Summary: the need for multiple scales

The spatial, temporal and analytical dimensions of scale establish requirements for the

development of spatial dynamic models. The previous discussion point out that a LUCC

model must be capable of handling multiple scales at each representation:

• Spatial representation: support the development of spatial models where spaces

partitions can be modeled at different extents and resolutions, characterized by

multiple and distinct proximity relations and described by specific local properties

or constraints.

• Temporal representation: provide a continuous time base where discrete changes

may occur, and distinct processes can change in a synchronous or asynchronous

fashion.

• Analytical representation: support the development models where a space

partition has several processes acting on it. Process can be represented by discrete

and continuous variables and rules, which may belong to different analytical

resolutions (e. g. individual behavior, collective behavior).

2.4 Models of computation for dynamic modeling

This section provides the mathematical formalization and a brief review on the main

computational models which are the foundation for spatial dynamic models proposed in

this work. These models are:

(a) The finite automata model (Minsky 1967), which is the conceptual basis for

simulating discrete behavior. It allows simulation of process which behavior is

neither sequential nor predetermined because it depends on external events.

 35

(b) The hybrid automata model (Henzinger 1996), an extension of the finite

automata model that allows simulation of continuous behavior.

(c) The cellular automata model (von Neumann 1966), which is used to simulate

behavior in n-dimensional space.

(d) The situated agent theory (Rosenschein and Kaelbling 1995), which is used to

guarantee a consistent behavior between an automata and its surrounding

environment.

The CA model has been used for landscape and urban dynamic model development and

assessment (White and Engelen 1997; Batty 1999; Almeida, Monteiro et al. 2003).

Pedrosa et al. (2002) were the first to propose the replacement of the von Neumann CA

discrete automaton by a hybrid automaton (Henzinger 1996) for LUCC modeling. This

works extends their proposal by proposing LUCC models that combine hybrid automata

theory with situated agent theory, and provide a support for multiscale modeling.

2.4.1 Finite automata

A finite automata or finite state machine is a abstract model for a real phenomenon or

system and may be defined as a directed graph Gg = (V, Eg), called transition diagram,

where V is a finite set of vertices and Eg is a set of ordered vertices pairs named arcs

(Hopcroft and Ullman 1979). Each graph vertex corresponds to one automaton state. If

there is a transition from the state q to the state p, as a response to one input a, them in

the transition diagram Gg there is an arc from the vertex q to the vertex p with label a.

Each arc is associated to a transition rule which determines if the transition described by

the arc will be executed. The finite automata model uses a discrete time base (Minsky

1967). The variable t which represents time is assigned to discrete values 0, ±1, ±2,

The behavior of the automata is a linear sequence of events in time. Since the set of

possible states is finite, a finite automaton is not appropriate to simulate behavior where

the set of system states is potentially infinite. Figure 2.2 shows a transition diagram for

a finite automaton capable to store a binary digit that was provided as input at the

instant t-1. The symbol that triggers a transition is presented at the origin of the arcs.

 36

The symbol at the middle of an arc represents the response of the machine at the

transition time.

Figure 2.2 – Transition diagram for the memory machine.

Due to its simplicity, existence of an underling formal theory, and event-driven

properties, the finite automata model (Minsky 1967) is widely used for modeling

dynamical systems where the flow control is neither sequential nor predetermined

because it depends on external events.

2.4.2 Hybrid automata

A hybrid automaton is an abstract model for a system which behavior has discrete and

continuous components, that is, a hybrid system. A hybrid automaton consists of a finite

automaton equipped with continuous variables and continuous operations over them

(Henzinger 1996). A hybrid automaton extends the idea of finite automata to allow

continuous change to take place between transitions. Inside each discrete state, the

automaton continuous variables are allowed to change. The adoption of hybrid automata

theory to LUCC models brings several benefits. One of the challenges of LUCC

modeling is to combine land use change with its effects in the terrestrial and water

ecosystems. For example, consider a coupled model for tropical vegetation that has a

critical threshold caused by land use change. The use of a hybrid automaton would

allow the modeling of the tropical vegetation system under two very different

conditions. We have adapted Henzinger’s hybrid automata model as a basis of LUCC

models. As used in this work, a hybrid automaton H is defined by the structure (X, G,

init, flow, jump, method) where:

(a) Variables: a finite set X = {x1,...,xn} of real variables, modeled as set of points

in the Rn
 space. The notation X’ = {x1’,...,xn’} is used to denote the set of first

 37

derivatives. The notation X* = {x1
*,...,xn

*} is used to denote the values of the

set X at the moment of a transition between states.

(b) Control graph: a finite directed graph G = (V, S). The vertices in V represent

the discrete states of the system and are named control modes. The edges in S

model the system discrete dynamics and are called control switches.

(c) Initial condition: The automaton H has an associated function init, which is the

starting point of the system. It determines the initial control mode and the

values of set X of model variables.

(d) Flow conditions: Each control mode v ∈ V has an associated function flow. The

flow condition flow(v) defines the behavior of the system inside each control

mode and is generally specified as a differential equation.

(e) Jump condition: Each control switch s ∈ S has an edge labeling function jump.

The jump condition jump(s) is a predicate over X ∪ X* and determines if a

control switch will be trigged;

(f) Method = {m1,...,mn} is a set of methods, called to obtain information about the

automaton internal state, or to update the value of any variable x ∈ X.

We define a configuration of a hybrid automaton as a pair (v,x), where v ∈ V is the

current control mode and X+ = {x1
+,...,xn

+} is the current value of its variables.

Communication between automata uses remote method invocation. Each automaton

provides a set of methods that can be called by other automata. By calling methods of

other automata, an automaton can obtain information about their configuration. The

behavior of the automaton depends on the current control mode. This determines the

flow condition that will be executed and the subset of jump conditions that may cause a

transition between control modes. The hybrid automaton on the figure 2.3 models a

climate variation system. The x variable represents the temperature. In the control mode

cooling, the climate is becoming cooler and the temperature is declining according to

the flux condition dx/dt = -0,1x. In the control mode warming, the climate is becoming

 38

warmer and is temperature is rising according to the flux condition dx/dt = 5-0,1x.

Initially, the temperature is 200 C. The jump condition x < 19 indicates that the climate

system will shift to the ‘warming’ mode as soon as the temperature falls below 190 C.

The jump condition x > 21 indicates that the climate system will shift to the ‘cooling’

mode as soon as the temperature is higher than 210 C.

Figure 2.3 – Hybrid automata model for a climate variation system.

Source: adapted from (Henzinger 1996).

2.4.3 Cellular automata

A cellular automata (CA) as conceived by von Neumann (1966) is comprised of a finite

two-dimensional lattice of squared cells, a finite automaton, and a neighborhood

relationship. Each cell is occupied by a copy of the finite automaton which is connected

to its four adjacent automata. As the same set of rules is present on each cell, the

cellular structure is said functionally homogeneous. The von Neumann CA is isotropic

and stationary. Each automaton has the same neighborhood relationship in all

directions. All automata have the same configuration of neighbors. The finite automaton

on each cell may be on a different initial state. Hence, one cellular space region can act

on a given way and send information on a determined direction while another can

behave on a different manner and send information to other direction. The cellular

automata model (CA) is useful due to its capacity to reproduce spatial changing trough

diffusion processes (Couclelis 1997; Batty 1999) and since it can simulate emergent

phenomena (Wolfram 1984).

The information flow in a CA is unidirectional. When an automaton is being executed,

it requests information from its neighbors. This information is combined with the

internal state of the automaton to define the action it will take. Figure 2.4(a) presents the

view of a portion of a CA lattice, showing the CA finite automaton on different states

on each cell. Figure 2.4(b) shows the CA finite automata neighborhood relationship.

 39

Figura 2.4 – Cellular Automata: (a) same finite automaton on each cell - the cellular

structure is functionally homogeneous, and (b) same neighborhood
relationship on each cell - the cellular structure is isotropic and stationary.

2.4.4 Situated agents

In an attempt to capture the dynamic of phenomena whose are outcomes of several

individual interactive systems act over the space, researchers have proposed the use of

agent-based models immersed in a cellular space (Parker, Berger et al. 2001). There

are different and sometimes conflicting definitions of the concept of an ‘agent’

(Wooldridge and Jennings 1995). This work adopts the definition provided by Russel

(1995). An agent is an abstract model for an entity that is embedded in an environment.

The agent is capable of sensing the environments and of acting on it. We consider that

an agent has three properties: autonomy, social ability, and reactivity. To be

autonomous, an agent has to control its actions and its internal state. Granting social

ability to an agent requires that agents communicate. The agent should be able to

perceive its environment and react accordingly. To combine the theory of agents to that

of cellular automaton, each automaton has to perform as an agent. In this section, we

consider an agent model (situated agents) that allows embedding agents in CAs

(Rosenschein and Kaelbling 1995). A situated agent is defined by the structure M = (S,

∑, A, δ, λ, s0), where:

(a) S is a set of finite internal states.

(b) ∑ is a set of inputs (stimulus).

(c) A is the set of outputs (actions).

(d) δ: S×∑ S is a function that determines the agent’s next internal state.

(a) (b)

 40

(e) λ: S A is the function that determines the agent’s next action.

(f) s0 is the agent initial state.

An environment state φ can be distinguished if the modeler develops a transition

function δ in such way that the agent will be in internal state s for any sequence of

inputs σ* that leads the environment to a condition φ from an initial condition φ0. This

establishes a correlation between the agent’s internal state and the environment’s state,

and one can say that the agent is capable of recognizing the environment state.

In this model, agents are purely reactive. The environment E generates inputs to the

agent M. The agent receives this input and performs some actions. These actions result

in the agent reaching an internal state. One can then say that the situated agent is

capable of taking decisions based on the state of the environment. The important aspect

of situated automata theory is modeling systems such that, for each state of the

environment E, there will be a corresponding state of the automaton M. The Figure 2.5

shows the coupling between a situated agent and its environment.

Figure 2.5 – A situated agent M coupled to its environment E.

Source: Rosenschein (1995)

2.5 Conclusion

This chapter provides a brief introduction to the basic concepts of LUCC modeling and

identifies a common structure of most LUCC models. Then, it examines the process of

LUCC modeling and identifies the requirements of each modeling phase. Based on

these requirements, we review the concept of ‘scale’, considered a foundational notion.

We discuss the issues related to the spatial, temporal, and behavioral representations of

scale. The conclusion is that a single choice of extent and resolution in each of scale

dimensions is not sufficient to simulate geographical processes and reproduce spatial

patterns. The chapter also examines models of computation that will be used in the

 41

LUCC modeling framework of the next chapters. In the next Chapter, we will show how

these properties can be combined.

 42

 43

CHAPTER 3

THE Nested-CA MODEL

3.1 Introduction

This chapter describes the nested cellular automata (nested-CA) model and its use for

LUCC modeling. The motivation for the nested-CA model is the need for adequate

computational support for multiscale modeling. To understand this need, we examine

the proposed extensions of the CA model on the LUCC modeling literature. Several

theoretical papers have proposed CA extensions for a better representation of

geographical phenomena (Couclelis 1985; Couclelis 1997; Takeyama and Couclelis

1997; Batty 1999; O'Sullivan 2001). In the specific case of LUCC modeling, recent

works extend the original CA model and make it more suitable for representing the

complexity of human-environment interaction (White, Engelen et al. 1998; Straatman,

Hagen et al. 2001; Pedrosa, Câmara et al. 2002; Soares, Cerqueira et al. 2002; Almeida

2003).

Nevertheless, these CA extensions for LUCC modeling share one limitation: the

application of a single set of rules to the whole cellular lattice. This approach has led to

criticism since it cannot convey the complex motivations that drive human actions. As

an alternative, researchers have proposed the use of agent-based models immersed in a

cellular space (Parker, Berger et al. 2001; Batty 2005). However, current agent-based

models still fall short of modeling one crucial aspect of landscape and human dynamics:

scale-dependent change. The cause-effect relationships that control the environmental

dynamics at a smaller scale will be different from those at a larger scale (Turner II,

Skole et al. 1995; Verburg, Schot et al. 2004). Agent-based models that use a single

scale will not be able to represent scale-dependent behavior.

As an alternative for single-scale modeling of environmental changes, some authors

have proposed the layered CA model (Straatman, Hagen et al. 2001). The layered CA,

shown in Figure 3.1, consists of two or more layers of cells. Every cell in one layer has

 44

one parent cell in the upper layer and an arbitrary number of child cells in the lower

layer. This arrangement allows the combination of models that operate in different

spatial resolutions. However, the layered CA model requires a decision about the spatial

stratification, where each cell is dependent on a parent cell and controls a number of

child cells. The layered CA falls short of providing adequate support for multiscale

modeling, since it handles only layers of fixed spatial resolutions. This approach

constrains the generality of the system, since the different processes are constrained to

fit the hierarchical spatial structure. In a layered CA, “spatial structure comes before

spatial processes”.

Figure 3.1 – Layered cellular automata.

Source: adapted from (Straatman et al. 2001).

To overcome the shortcomings of traditional CAs and agent-based models for

environmental change modeling, we propose a new type of computational model: nested

cellular automata, as described in the next sections.

3.2 Nested CA: a general view

The idea of a nested CA is to support multiscale LUCC modeling, where scale is

defined as a particular combination of spatial, temporal, and analytical resolution and

extent. A nested-CA allows scales to be defined independently and then nested to form

a multiscale model. Each scale is modeled by one single nested CA which embodies all

its dimensions: analytical, spatial and temporal. Each nested CA is composed of one or

more cellular spaces, one or more state machines that operate in these spaces, and one

or more discrete-event schedulers that control the temporal extent and resolution.

Nested CAs can be embedded producing a hierarchical structure, as shown in Figure

 45

3.2. This allows the definition of models with embedded cellular spaces, each one with

its state machine changing the cell attributes at different time resolutions.

Figure 3.2 – A nested CA as a composition of nested CAs.

The nested-CA architecture is a flexible design. All possible combinations of spatial,

temporal, and analytical components are allowed. One nested-CA can have two cellular

spaces that share the same state machine and the same temporal resolution. Another

nested-CA can have a single cellular space where different state machines operate, each

with its own temporal resolution. Therefore, the concept of a nested-CA includes spatial

nesting (one spatial extent inside another with different resolutions), temporal nesting

(one temporal extent inside another with different temporal resolutions) and analytical

nesting (a more general process that controls other processes of smaller granularity).

The possibility of embedding nested-CAs is beneficial for multiscale analysis, since it

allows each process to be associated to the appropriate scale. The idea is that each

spatial dynamical process has a suitable scale. The user should then define the spatial,

temporal and analytical resolution associated to each process. Each process is then

associated to a nested CA. In this way, one can develop simulations where spatial

dynamic models are embedded in others. This flexibility allows diverse processes to

operate in the same landscape, at different scales. In a nested CA, “spatial processes

come before spatial structures”.

 46

3.3 Nested-CA: formal definitions

Definition 3.1 [Time Base]. The execution of a nested-CA requires a continuous time
base T ⊂ R where discrete instantaneous events can occur.

Definition 3.2 [Event] An event is a control structure that defines when a computation

must be done. Given a time base T, each event is defined by a structure e = (to, λ, ρ),

where:

• to ∈ T represents the instant of time in which event must occur.

• λ ∈ R is periodicity in which the event must be repeated.

• ρ is an integer that represents the event priority.

Definition 3.3 [Interface Functions]. Each nested-CA has a set of interface functions

F that can be called, and that perform actions in the automaton. A typical set of

interface functions includes loading, saving, and drawing the state of a cellular space,

and to execute a specific automaton.

Definition 3.4 [Message]. The primary means of requesting actions from a nested-CA is

by sending a message to it. Messages are used to invoke nested CA interface functions.

Each message is associated to an event; when this event is triggered, the message is

executed. Given a set of events E and a set of hybrid automata H, and a set of interface

functions F associated to a nested-CA, an input message x is a structure (e, h, f, {true|

false}), where e ∈ E, h ∈ H, and f ∈ F. The Boolean parameter {true| false} is used to

control whether the message is to be executed periodically or not.

Definition 3.5 [Message queue]. A message queue is a partially-ordered set (Q, ≤) =

{(e,x) | e∈ E, m ∈ M }. Each element of the queue is a pair (event, message). The partial

order relation ≤:ExE {true, false} is defined as

≤(e1,e2)= true if e1.to < e2.to

 = false if e1.to > e2.to

 47

 = true if (e1.to = e2.to) and (e1.ρ ≤ e2.ρ)

 = false if (e1.to = e2.to) and (e1.ρ > e2.ρ)

Definition 3.6 [Discrete-event scheduler]. A discrete-event scheduler determines when

the event will be sent as input to the associated cellular automata. Given a message

queue (Q, ≤), a discrete-event scheduler d is a structure (t, tr, Q), where t ∈ T is the

scheduler internal timer that controls the simulation time. The time reference tr ∈ T is

the time of the first event in the queue (Q, ≤). When the scheduler is executed, it

removes the pair event-message (e, m) which is at the head of its queue, updates its

internal timer to event time (t = e.to), and executes the message m. If the Boolean

parameter of message m is true, the discrete-event scheduler reinserts this pair event-

message on its queue, according to the event’s periodicity. In this case, it updates the

event’s time (e.to = e.to + e.λ).

Definition 3.7 [Cellular Space]. The nested CA cellular space is a set of cells defined

by the structure (S, A, N, I, R), where:

• S ⊆ Rn is a Euclidian space which serves as support to the nested CA. The set S

is partitioned into subsets S ={S1,..., Sn | Si∩Sj=∅, ∀i≠ j, ∪Si =S}.

• A= {A1, ...,An} is the set of domains of cell attributes, and where ai is a possible

value of the attribute Ai (i.e., ai ∈ Ai).

• N = {N1, ...,Nn} is a set of GPMs – Generalized Proximity Matrix (Aguiar,

Câmara et al. 2003) used to model different non-stationary and non-isotropic

neighborhood relationships (Couclelis 1997). The GPM allows the use of

conventional relationships, such as topological adjacency and Euclidian

distance, but also relative space proximity relations (Couclelis 1997), based, for

instance, on network connection relations.

• I = {(I1, ≤), (I2, ≤), ..., (In, ≤)} is a set of domains of indexes where each (Ii, ≤) is

a partially ordered set of values used to index cellular space cells.

 48

• R = {R1, R2, ..., Rn } is a set of spatial iterators defined as functions of form

Rj:(Ii, ≤) S which assigns a cell from the geometrical support S to each index

from (Ii, ≤). Spatial iterators are useful to reproduce the spatial patterns of

change since they permit easy definition of trajectories that can be used by

automata to traverse the space applying their rules. For instance, the distance to

urban center cell attribute can be sort in an ascendant order to form a index set

(Ii, ≤) that, when traversed, allows an urban growth model to expand the urban

area from the city frontier.

Definition 3.8 [Nested CA]. A nested CA is a structure of the form N = (T, H, F, E, M,

D, tr, C, J), where:

• T is a time base.

• H = {h1,...,hn} is a set of hybrid automata.

• F is a set of interface functions.

• E is a set of discrete instantaneous events.

• M is a set of messages.

• (D,≤) is partially-ordered set of discrete event schedulers, where each scheduler

contains a message queue (Q, ≤). The schedulers are ordered by their time

references:

≤(d1,d2)= true if d1.tr ≤ d2.tr

 = false if d1.to > d2.tr

• tr is a time reference for the nested-CA. The time reference tr ∈ T is the time of

the first event scheduler in (D,≤).

 49

• C = {c1,...,cn} is a set of cellular spaces. Although it is possible to define any

arbitrary structure for model the space, in this thesis we assume a regular grid

structure for simplicity.

• (J,≤) is partially-ordered set of nested-CAs {j1,...,jn}. The nested-CAs are

ordered by their time references:

≤(j1,j2)= true if j1.tr ≤ j2.tr

 = false if j1.to > j2.tr

3.4 The Nested-CA models of computation

A nested-CA provides two different models of computation for spatial process modeling

and simulation. The global automaton model allows the development of models based

on the agent approach. A global automaton is an individual that traverses the cellular

space, one cell after another, evaluating its rules at each position. Changes occur

sequentially in the cellular space. The global automaton has a single internal state. The

local automaton model allows the development of models based on the cellular

automata approach. Each cell has its own internal state. At each iteration, each cell

changes its state independently, based on a common set of rules. Changes occur in

parallel in the cellular space, and all locations may change simultaneously (see Figure

3.3).

Figure 3.3 – The internal state of a hybrid automaton keeps track of the current active
control mode and of the continuous variables values.

 50

Another way to compare the global automaton and local automaton models is shown in

Figure 3.4. The sequence of changes in the model state during the simulation of a global

automaton is shown in Figure 3.4(a). Changes in the space follow the trajectory of the

process. The automaton state is represented by a global value shared in all cells. When

the automaton is executed in a cell, changes in its internal state are perceived

instantaneously in all cells. In the local automaton model, the processes are

autonomous. At each location, they can be in different state and exhibit a different

behavior. Figure 3.4(b) shows the sequence of changes in the model state during the

simulation of a local automaton. When the automaton is executed in a cell, only the

copy of the automaton internal state in that cell will be updated. Changes in the internal

state are perceived locally.

Figure 3.4 – Changes in the cellular space and in the automaton internal state in: (a) A

global automaton model; (b) A local automaton model.

Definition 3.9 [Global Automaton]. The global automaton is an abstract model for a

system whose internal state does not depend on a determined location. A global

automaton is a hybrid automaton hg = (X, G, init, flow, jump, method), as defined in

section 2.4.2. Recalling the definition of hybrid automaton, the graph G has a set of

vertices V (control modes) and a set of edges S (control switches). In a global

automaton, the flow conditions and jump conditions are defined as:

• flow(v) is a node labeling function that assigns to each control mode (vertex) v ∈

V a function f:V×B B that describes the automaton continuous behavior, where

B = E×I×A×N×X. E is the set of events associated to the nested-CA. I is a set of

(a) (b)

 51

spatial iterators. A is the set of domains of cell attributes, and N is the set of

proximity matrixes. X is the set of the automaton continuous variables. The

function f is defined by bt = f(vt-1,bt-1), where bt is a value in B at time t, bt-1 is a

value in B at time t-1, and vt-1 is the automaton control mode at time t-1. A flow

condition selects an action based on the current automaton control mode, on the

event that triggers it, on the index (location) of a cell where it is being evaluated,

on the values of the cell attributes, on the cell neighborhood, and on the

continuous variables of the automaton.

• jump(s) is a edge labeling function, named jump condition. It assigns to each

control switch (edge) in S a function j: V×B V that determines if the control

switch will be triggered and the automaton is transferred to a new discrete state.

B and V are as defined above. The function j is defined by vt = f(vt-1,bt-1), where

bt-1 ∈ B, and vt and vt-1 are the automaton control modes at times t and t-1.

Definition 3.10 [Local Automaton]. The local automaton is an abstract model for a

system which internal state depends on the location in which it is evaluated. A local

automaton is a hybrid automaton hl = (Xc, G, init, inv, flow, jump, method), where:

• G, init, flow, jump, and method are defined as above.

• Xc = {(ci, Xi) | ci is the i-th cell from the nested CA cellular space,

Xi = {x1
i,...,xn

i} is the finite set of real variables associated to ci }.

3.5 The semantics of the Nested-CA model: a situated hybrid automaton

The preceding sections describe the structural aspects of the nested-CA model. The

above definitions indicate that the nested-CA model has a rich semantics, which

combines the idea of hybrid automata, multiscale models, and global and local models

of computation. This section discusses how the nested-CA structure works.

The first important issue is the situated semantics of the nested-CA. The original

definition of a hybrid automaton (Henzinger 1996) and its adaptation to LUCC

modeling (Pedrosa, Câmara et al. 2002) do not describe how to guarantee a consistent

 52

behavior between an automata and its surrounding environment. The nested-CA model

therefore requires the combination of hybrid automata theory with situated agent theory

(Rosenschein and Kaelbling 1995). When an automaton is simulated, all the jump

conditions of the current control mode are evaluated, before any flow conditions of this

control mode are executed. If a transition to another control mode occurs, all jump

conditions of the new control mode are checked. This process goes on until a control

mode that reflects the nested-CA state is reached. When the correct control model is

reached, its flow conditions are executed.

The second issue is the semantics of scheduling. Events must occur in a chronological

order from a given initial time t0. When a pair (event, message) is removed from or

inserted into a discrete-event scheduler queue, this scheduler changes its position in the

partially-ordered set of schedulers (D,≤) associated to the nested-CA. This leads to a

reorganization of the partially-ordered set (J,≤) of internal nested-CAs.

The third issue is the semantics of synchronization. A nested-CA has one or more

automata, which share a common set of model variables. Each variable has a timestamp

registering the instant of its last updated. The cell space attributes are example of

variables shared by all automata. To guarantee the consistency of its models of

computation, all automata must agree with the order the changes have occurred. For the

same input data, any computation on shared variables should always result in the same

output value, and all automata should agree on this value. However, if two automata

attempt to update the cellular space attributes simultaneously, a race condition occurs

and the cell values might become unsynchronized. To solve this problem, the nested-CA

model requires the modeler to explicitly synchronize the shared variables. At any point

of the simulation, the modeler can call the interface function synchronize. It is used to

synchronize either a cell (all attributes values will receive the same timestamp), a

cellular space (all cells have will receive the same timestamp), or a nested-CA (all

cellular spaces and internal nested-CA will receive the same timestamp). In this way,

the modeler controls the synchronization and allows changes to be propagated. There

are no hidden assumptions on the order that simultaneous automata will update the

shared variables.

 53

The nested-CA concurrency model guarantees that all automata will record the changes

in the same chronological order. It provides four synchronization schemes, as shown in

Table 3.1, where the method execute is a nested-CA interface function that executes an

automaton:

• Sequential in space and time: The automata act sequentially in space (they

are global automata) and in time (the outcomes of the first automaton

actions are input for the second automaton rules). After each automaton is

executed, it must synchronize its results with the shared variables.

• Sequential in space, parallel in time: The automata execution is sequential

in space (global automata) and parallel in time (changes occur

simultaneously). The shared variables are synchronized after the execution

of both automata.

• Parallel in space, sequential in time: The automata act simultaneously on

several space locations (local automata) and are serialized in time. The

shared variables are synchronized after the execution of each automaton.

• Parallel in space, parallel in time: The automata act simultaneously on

several space locations (local automata) and changes occur simultaneously.

The shared variables are synchronized after the execution of both automata.

 54

TABLE 3.1 – The Nested-CA Synchronization Schemes.

 Sequential in Time Parallel in Time

Sequential in Space execute(globalAutomaton1);

synchronize();

execute(globalAutomaton2);

synchronize();

execute(globalAutomaton1);

execute(globalAutomaton2);

synchronize();

Parallel in Space execute(localAutomaton1);

synchronize();

execute(localAutomaton2);

synchronize();

execute(localAutomaton1);

execute(localAutomaton2);

synchronize();

The last issue is the semantics of communication. Communication between automata

uses remote method invocation. By calling these methods, an automaton can obtain

information about the current control mode and continuous variables of the others.

Since automata are autonomous, one can never set the control mode of another.

However, it can use the methods to update the values of the continuous variables of

another.

3.6 Modeling using a nested-CA: an example

When using a nested-CA to model a specific problem, the modeler should follow a

general guidance:

• Identify processes that have global rules and global behavior as agents. Model

those as global automata.

• Identify processes whose states are location-dependent rules. Model those as

local automata.

• For each automaton, define the discrete behavior using jump conditions and the

different types of continuous behavior using flow conditions.

 55

• For each automaton, define the methods that will be used for

intercommunication.

• Create one of more nested-CAs, each with its spatiotemporal resolution and

extent, defining a cellular space (spatial resolution and spatial extent) and an

event scheduler.

• Associate each automaton to a nested-CA.

• Embed one nested-CA inside another, if required for multiscale modeling.

3.6.1 A hydrologic balance spatial dynamic model

As an example a nested-CA, consider a very simplified hydrological balance process.

The idea is to simulate rain drainage in a terrain. Only superficial drainage is

considered. The analytical dimension of the model is composed of two automata: a

global automaton that simulates the rain and a local automaton that simulates the water

balance process, as shown in Figure 3.5. The rain automaton has one control mode, with

one flow condition: a constant rain. The water balance automaton has two control

modes: dry and wet. In the dry control mode, there are no flow conditions. In the wet

control mode, the amount of water retained is made equal to the infiltration capacity,

and them the surplus water is sent downhill. In this example, there is no

intercommunication between the automata.

Figure 3.5 – The rain model (left) and the water balance model (right).

 56

The next step is to determine the extent and resolution of the cellular space and

discrete-event scheduler used in the model. Based on SRTM (Shuttle Radar

Topographic Mission) data, we model the space by a 90 x 90 meter regular cellular

space, as shown in Figure 3.6. The cell space uses a 3x3 neighborhood, which is

composed by the eight immediately adjacent cells of a certain cell. The cell attributes

are: amount of water in the soil (soilWater), cell elevation (altitude), and cell infiltration

capacity (infCap). An infiltration capacity of 0.5 mm/hour has been considered for all

cells and the initial amount of water in each cell is zero. The flow condition of the rain

automaton is a rain of 2 mm at the start of the simulation.

Figure 3.6 – Terrain digital model (left) based on the SRTM data (right). Light gray
pixels denote higher locations while dark gray lower ones. The maximal
elevation is 1550 meters and the lowest is 1100 meters.

The nested-CA has a temporal resolution of one minute. A discrete-event scheduler,

with two pairs (event, message) is inserted into the nested CA. The event e1 = (0, 3600,

0) triggers the message m1(e1, rain, “execute(rain); synchronize();”, false) at the start

of the simulation. The event e2 = (0, 1, 0) triggers the message m2(e2, waterBalance,

“execute(waterBalance); synchronize();”, true) at each minute. The message m1

activates the rain automaton and synchronizes the nested-CA. The event e1 will never

be reinserted on the scheduler queue. The message m2 activates the waterBalance

automaton and synchronizes the nested-CA. The event e2 will be inserted into scheduler

queue every minute. Figure 3.7 shows the spatial pattern of water balance process at

different simulation times.

 57

Figure 3.7 – Spatial temporal pattern of precipitation being drained: from the top left to
the bottom right map.

3.7 Properties of the nested-CA model

This section considers the properties of the nested-CA model. Given the formal

definitions presented above, the nested-CA model has the following properties:

• Space can be structurally heterogeneous in terms of scale and driving

forces. The cellular space in each nested CA will determine the spatial

resolution and the cell attributes perceived by all automata inside it. Multiscale

models, as shown in Figure 3.8, can be constructed composing various nested

CAs, which can have different spatial extents and resolutions.

Figure 3.8 – Nested cellular automata (a), multiple scales (b) and multiple resolutions in
different space partitions (c).

(a) (b) (c)

 58

• Behaviour can be heterogeneous in space and time. Different processes act

upon different space partitions, with different time resolutions, as exemplified in

Figure 3.9. In Figure 3.9.a, the ocean could be modelled as one nested CA (with

specific processes, such as salinity variation or oil spill spreading), and the land

as a different nested CA, also with land specific processes (such as deforestation

or natural vegetation growth). The total scene could be modelled as a third

nested CA with common process (such as climate or weather) that includes the

two other nested-CAs as its components. In Figure 3.9.b, in a typical Amazon

area of intense deforestation, one can notice different actors and processes that

could be modelled in different ways. In more consolidated area, an

intensification process is beginning to happen, with more capitalized actors. In a

recent deforestation area, the actors are non-capitalized small farmers, living on

subsistence agriculture.

Figure 3.9 – Different processes act on distinct space partitions: (a) coastal area, (b)

settlements area in Rondônia, Brazil.
 Source: adapted from (Escada 2003).

• Space can be structurally heterogeneous in terms of proximity relations,

trough the use of diverse non-isotropic and non-stationary neighborhood for

 59

different space partitions or scales. Figure 3.10 illustrates the use of generalized

proximity matrix (GPM) to establish neighborhood relations considering a

transportation network. Two traditional 3x3 neighborhoods (shown in the two

figures on top) are compared with two GPMs that capture the topological

relationships induced by the road network.

Figure 3.10 – Generalized Proximity Matrix for modeling non-isotropic processes:

Amazon deforestation processes and roads (a), Moore neighborhood
(b) and road geometry based neighborhood (c) for the red central cell.
Source: adapted from (Aguiar et al. 2003).

• Spatial dynamic processes can be asynchronous. Since each nested-CA can

be independently synchronized, the associated automata can operate at different

spatial partitions at distinct temporal frequencies.

 60

3.8 Comparison with previous works

The nested-CA is a model of computation where all scale dimensions (spatial, temporal

and analytical) can be modeled independently. Multiscale models can be structured by

the composition of several nested-CA. In this section, we provide a comparison between

the nested-CA model, and other models: the layered CA model (Straatman, Hagen et al.

2001) and agent-based models (Parker, Berger et al. 2001).

The layered CA model provides a structure where the spatial dimension of the scale

concept can be modeled in diverse extents and resolutions. It is not clear how the

various extents and resolutions of the temporal and analytical dimensions are related to

the spatial ones to represent each scale. This architectural approach does not provide a

clear and direct answer to simple questions involved in multiple scale modeling. For

example: If a cellular layer is removed from the model, what analytical models should

be removed? How to represent processes that are confined in different space partitions

that have the same resolution (e.g. salinity variation in the ocean and deforestation in

the land)? How to represent processes that are driven by different driving forces in

distinct space partitions, that is, how to represent space partitions where cells have

distinct attributes? By contrast, all of these problems can be modeled using a nested-

CA.

The agent-based model is not spatially explicit. It does not provide high level

abstractions for representing spatial processes, scale dependent behavior, or spatial

patterns of change. Therefore, it does not provide suitable abstractions for multiple scale

modeling as discussed in this work. A nested-CA can simulate an agent-based model by

using global automata. Using a nested-CA with local automata provides a flexibility

which is not possible in agent-based model.

The nested CA architecture allows different scales or space partitions to be occupied by

discrete or continuous process, and non-isotropic and non-stationary neighborhood

relations. Neither the layered CA model nor the agent-based models provide devices to

represent continuous process and such proximity relations. The concept of spatial

 61

iterator allows a nested-CA to reproduce spatial patterns of change. Neither the layered

CA model nor the agent-based models provides abstraction for this purpose.

3.9 Conclusion

In this Chapter, we identified the main requirements of a computational model for

multiscale environmental change modeling. We proposed a new model of computation,

called Nested Cellular Automata (nested-CA) that satisfies these requirements. The

nested-CA structure allows the development of complex dynamic spatial models from

hierarchically organized simple ones. It is possible to build models in which different

geographical space partitions have several actors and processes. A nested-CA simulates

discrete or continuous behavior. Neighborhood relations may be defined in non-

isotropic and non-stationary topologies. Spatial iterators reproduce how different spatial

patterns change. The nested-CA model also supports the development of LUCC models

based on the traditional CA or agent-based approaches. We argue that:

• The nested CA is a model of computation suitable to support multiple scale

environmental change model development and assessment.

• Both agent-based and CA-based models for environmental change simulation

can be expressed as specialization of the nested-CA model.

The nested CA model has been implemented in a software platform named Terra

Modeling Environment – TerraME, which will be detailed in the next Chapter. In

Chapter 6, some multiple scale land use and land cover change models that have been

developed through the use of the TerraME Framework will be discussed.

 62

 63

CHAPTER 4

TerraME: A LUCC MODELING FRAMEWORK

4.1 Introduction

In this Chapter, we present the design and implementation issues involved in the

development of a software platform for nested-CAs. This software platform uses the

TerraLib spatial library developed by INPE (Câmara, Souza et al. 2000) and is called

TerraME (Terra Modeling Environment). The TerraME environment implements the

nested-CA model and services for spatiotemporal data analysis and management, model

development, simulation, and assessment. This chapter discusses critical design

decisions, system architecture, and implementation strategies.

Several modeling environments have been developed or used for LUCC modeling,

including SME (Maxwell and Costanza 1995), Swarm (Minar, Burkhart et al. 1996), and

Kenge (Box 2002). The SME framework (Maxwell and Costanza 1995) integrates a

cellular space with GIS systems and embeds a STELLA model in each cell. The STELLA

modeling tool (Roberts, Anderson et al. 1983) is an implementation of the dynamic

system description language proposed in (Forrester 1968). This language uses flow

diagrams, feedbacks loops, and differential equations to describe continuous systems.

Swarm is a library of classes and objects for the development of multi-agent

simulations, where several discrete-event schedulers can be declared to allow agents to

act on different time resolutions (Minar, Burkhart et al. 1996). It does not provide

spatial abstractions. The Kenge toolkit implements a GIS integrated cellular space for

the Swarm platform (Box 2002). Several others agent-based platforms have been used

for LUCC modeling and are compared in (Parker, Berger et al. 2001). The most

powerful property of STELLA and Swarm platforms is the existence of abstractions to

organize models in a hierarchical way, allowing complex models to be developed from

the composition of simpler models in a “black box” fashion.

 64

Despite the positive aspects of modeling environments such as SME (that uses STELLA)

and Kenge (that uses Swarm), they do not provide support for the full set of

requirements for multiscale modeling, as discussed in the previous Chapter.

4.2 Design choices

This section describes the design decisions for building a computational environment

that implements the nested-CA architecture. This environment requires five main

services: model description, model representation, simulation engine, model assessment,

and spatiotemporal data management.

Supporting model description requires an expressive modeling language to allow quick

prototyping. Although a graphic representation is useful to depict parts of a model, the

rules of any model will always need to be defined by the modeler. The language should

have high-level constructs to allow easy model understanding. It also should be

extensible to include new data types. To support this needs, we chose LUA as the basis

for the model programming language. LUA is an extensible programming language

especially designed for extending applications (Ierusalimschy, Figueiredo et al. 1996).

LUA is an open source project, and the language is very simple and expressive.

The use of a well known extension language avoids the costs of a new language design

and interpreter development. LUA has a large amount of programmers in the game

development community, an activity that has many requirements in common with

simulation. Among the existing extension languages (such as Phyton, Tcl, Perl, and

Visual Basic), LUA presents simpler syntax and best performance (Ierusalimschy,

Figueiredo et al. 1996). A LUA plug-in for the Eclipse development environment

provides syntax highlight for the programs, improving model legibility.

Model representation requires data structures that define hierarchically organized scales

where the higher levels in the hierarchy provide overall control over the lower levels.

The simulation engine should support concurrent programming, where geographical

processes are represented by independent control flows. This requires data structures

 65

and algorithms for scheduling, communication and synchronization of model

components.

Model assessment includes calibration and validation methods that compare the

agreement between two maps in several resolutions (Costanza 1989) and attempt to

distinguish between errors of location (allocation) and quantity (demand) (Pontius 2002;

Pontius, Huffaker et al. 2004).

To support spatiotemporal data management, the best solution is to integrate the

modeling environment in a GIS. However, there should be no dependence of a specific

GIS technology. To this end, a properly-designed application programming interface

(API) should encapsulate all data management services. Specific versions of this API

allow the environment to communicate with different spatiotemporal databases. We

have chosen to implement the modeling environment using the TerraLib GIS library,

which implements a spatiotemporal database over relational database systems (e.g.

MySQL, PostgreSQL, Access, Oracle) (Câmara, Vinhas et al. 2001). TerraLib provides

support for cellular spaces, whose neighborhood relations can be defined trough the use

of generalized proximity matrices (Aguiar, Câmara et al. 2003).

4.3 TerraME: a general view

TerraME is a modeling environment that implements the nested-CA model to allow the

development of spatially explicit LUCC models where several temporal, spatial and

analytical resolutions and extents are taken in account. The TerraME modeling

language is a LUA programming language extension. Using this language, the nested

CA model can be specialized to implement models for specific cases. TerraME is

coupled with the open source TerraLib GIS library (Câmara, Vinhas et al. 2001), which

provides services for model input and output data storage. Data can be visualized and

explored using the TerraView software, a viewer that demonstrates the visualization,

spatiotemporal query, and spatiotemporal analysis functions of TerraLib. TerraME

implements calibration and validation methods to spatially explicit dynamic models

assessment (Costanza 1989) (Pontius 2002; Pontius, Huffaker et al. 2004).

 66

Eclipse & LUA plugin
• model description
• model highlight syntax

TerraView
• data acquisition
• data visualization
• data management
• data analysis

TerraLib
database

data

Model
source code

MODEL DATA

m
od

el

• model syntax semantic checking
• model execution

TerraME INTERPRETER

LUA interpreter

TerraME framework

TerraME/LUA interface

m
odel da

ta

Figura 4.1 – TerraME modules and services.

The LUCC modeling services provided by TerraME architecture are distributed in

software modules (Figure 4.1). Two of these modules were developed in this work: the

TerraME Framework and the TerraME interpreter. The other modules are the TerraLib

GIS library and the TerraView GIS application (Câmara, Souza et al. 2000), the LUA

programming language (Ierusalimschy, Figueiredo et al. 1996), and Eclipse software

development platform (Bott 1989).

The modeler can use any text editor to develop its models in TerraME modeling

language. Preferably, she should use the Eclipse software development platform, which

has a free plugin for LUA that can be configured to invoke the TerraME interpreter.

This way, the modeler develops, executes and debugs the model inside an integrated

environment.

The model source code is sent to the TerraME interpreter. The TerraME interpreter is

the application that put all modeling services together, providing syntax and semantic

checking, model simulation, and model assessment. It receives a set of text files

containing models described in TerraME Modeling Language and executes them in the

 67

order they have been passed as parameters. The TerraME/LUA interface registers new

types for spatial dynamic modeling in the LUA interpreter virtual machine. The LUA

interpreter calls functions provided by the TerraME framework which implements these

types.

For data management and analysis, TerraME reads model input data from and saves

model output to TerraLib spatiotemporal database. This database can be constructed

using the TerraView application. The TerraLib API provides several methods for

computation of cell attribute values from raster and vector data. TerraView provides

spatial query and spatial statistical functionalities.

4.4 TerraME system architecture

Figura 4.2 – TerraME modeling environment architecture.

Figure 4.2 shows the layered TerraME architecture. Lower layers provide basic services

over which upper layer services are implemented. In the first layer, TerraLib offers

typical GIS spatial data management and analysis services, and additional functions for

temporal data handling. The TerraME framework is the dynamic modeling architecture

core implemented in this work. It provides the simulation engine and the calibration and

validation services. It is an open source ANSI C++ implementation of the nested-CA

model, portable for Windows and Unix-like operating systems. This framework can be

used directly for model development. Since the development of models in C++ can be a

challenge for non-programmers, TerraME provides a high-level modeling language.

 68

The third layer of the architecture implements the TerraME modeling language

interpreter and runtime environment. The TerraME/LUA interface extends LUA with

new data types for spatial dynamic modeling and services for model simulation and

evaluation. Using the LUA library API, it exports the TerraME framework API to the

LUA interpreter so that it recognizes the TerraME types. If required, other C or C++

applications (such as statistical libraries) can have their APIs exported to the LUA

interpreter and integrated in the architecture. The last layer, called application layer, is

where the end user models are located.

4.5 The TerraME framework architecture

We compared two alternative software architectures for the TerraME core. If developed

as a library of spatial dynamic modeling classes and objects, the TerraME core would

be very flexible and would not impose a rigid structure for the applications that reuse it.

The drawback is that it would have a steep learning curve and it would be more difficult

to develop new models. For better reuse, TerraME has been developed as a framework

to capture the common design decisions in the development of spatial dynamic models.

A framework is more expressive than a library, allowing more efficient prototyping

(Gamma, Helm et al. 1994; Schmidt, Fayad et al. 1996; Buschmann, Meunier et al.

1996).

To reuse a library, a programmer writes the main application code from where library

objects are instantiated and functions are invoked. Using a framework, she reuses the

framework architecture that calls user defined functions. A TerraME Framework

application is a discrete-event simulator (Zeigler, Kim et al. 2005) for the nested-CA

model. Using the TerraME framework API, the modeler defines the variables and rules

that represent the spatial, analytical and temporal aspects of all scales of the model.

Then, the TerraME Framework simulation engine executes the model, providing

services for scale and automata scheduling and synchronization.

These services provided by the TerraME framework includes: (a) data structures for

storage of model representation in memory; (b) a virtual machine that executes the

model representation, and (c) analysis methods for assessing the model results.

 69

4.5.1 Model representation services

The TerraME Framework building block is the type Scale, which represents a spatial

dynamic system. As shown in Figure 4.3, a Scale has been implemented a composite of

Models. Scales can be nested, allowing multiscale model development. When executed,

it simulates its internal Scales executing each model in chronological order. Automaton

models (i. e. local and global automata) represent the biophysical and socio-economic

systems or actors who cause the changes. When simulated, they evaluate their rules over

the cellular space, possibly changing the cell attribute values. CellularSpace models

define which properties will be accessible to the automata in each space location. Timer

models determine the order in which the automata will be simulated. When executed,

they advance the simulation clock and execute the models that must be simulated at that

moment.

Automaton

execute() : bool

CellularSpace

execute() : bool

Model

execute() : bool

Scale

execute() : bool

Timer

execute() : bool

Figura 4.3 – UML diagram: TerraME Framework represents scale as a composite of

models.

As shown in Figure 4.4, an Automaton has a set of ControlModes. Each ControlMode

represents a discrete state of a hybrid automaton. It has two sets of rules:

JumpConditions and FlowConditions. JumpCondition rules control a discrete state

transition between ControlModes. FlowCondition rules describe the continuous

behavior of an automaton in a ControlMode. For instantiating a rule, the modeler must

inherit one of these classes and implement the abstract method execute().

 70

Automaton

execute() : bool

JumpCondition
target : ControlMode

execute() : bool

FlowCondition

execute() : bool

Model

execute() : bool

ControlMode

execute() : bool

transit

1 1..*1 1..*

Rule

execute() : bool0..*0..*0..*

LocalAutomaton

execute() : bool

GlobalAutomaton

execute() : bool

0..*

Figura 4.4 – UML diagram: TerraME Framework global and local automaton structure.

There are two kinds of automata. A GlobalAutomaton has the same active ControlMode

for all CellularSpace locations. A LocalAutomaton has a different active ControlMode

for each Cell. When an Automaton is simulated, it calls the method execute() of its

active ControlMode. The active ControlMode executes its JumpCondition rules in the

order they have been inserted. If a JumpCondition execute() method returns true, the

JumpCondition target becomes the new active ControlMode. Then, the JumpCondition

rules of the active ControlMode are evaluated. The process continues until it finds a

ControlMode from which all JumpCondition rules return false. The FlowConditions of

this ControlMode are executed in the order they have been inserted.

The TerraME Framework spatial model is formed by three components: (a) a cellular

space providing, in certain spatial resolution, attributes describing the space (e.g., soils,

climatic, socio-economic, etc.); (b) one or more alternative neighborhood relationships

between the cells (e.g., Moore, Euclidian distance, or network connection, etc.); (c) one

or more alternative spatial iterators for describing a trajectory that indicates the order

that a cellular space shall be traversed by an Automaton when it is simulated. Some

examples of trajectories are: northeast to southwest; concentric from a given Cell (urban

centre), ascending order of the values of a given Cell attribute (deforestation potential).

 71

CellularSpace

Model

execute()

ControlMode

Neighborhood

Map<Coord2D, Cel l> Map<Coord2D, pair<f loat, Cell> >

Cell
latency : f loat
past : Cell 1 0..*1 0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*0..*

0..*

Figure 4.5 – UML diagram: TerraME Framework cellular space structure.

Figure 4.5 shows the UML diagram of the CellularSpace and Cell classes. A

CellularSpace uses the C++ Map<T1, T2 > parameterized class, which implements a

table for mapping objects of type T1 in objects of type T2. The CellularSpace is a

Map<Coord2D, Cell> that maps 2D coordinates into Cells. Each Cell can have several

alternative Neighborhoods. Each Neighborhood is a Map<Coord2D, (float, Cell)> that

maps 2D coordinates in pairs (weight, neigh), where weight is the intensity of the

relationship of the current cell to the cell neigh. Each Cell has two attributes: past – a

copy of the cell attribute past values, and latency – the period of time since the last

change in any cell attribute value. A Cell keeps track of all active ControlMode

associated of all LocalAutomaton models. This way, it is possible to know the current

discrete state of any LocalAutomaton in each Cell.

Map<T, Cell> SpatialItertor<f loat>

Figure 4.6 – UML diagram: TerraME Framework spatial iterator structure.

The modeler can define a SpatialIterator to represent a trajectory in a CellularSpace as

an instance Map<T, Cell> that maps objects of type T in Cell objects. The modeler

needs to provide the operator <:T×T {true, false} for each iterator class. Figure 4.6

shows a SpatialIterator that maps float values (e. g. deforestation potential) in Cell

objects.

 72

Model
Timer

time : float

Event
time : float
period : float0..*1

Message

execute()

11

trigger1 0..*

Figure 4.7 – UML diagram: TerraME Framework spatial iterator structure.

A Timer is a discrete-event scheduler. It has a set of chronologically ordered Event

objects. As shown in Figure 4.7, each Event has two attributes: time – the simulation

clock time that the Event will occur, and period – the periodicity in which the Event

must occur. Each Event has an associated Message. A Message has an execute() method

that must be implemented by the modeler. It will be used for calling functions from the

TerraME framework API to request services during the simulation.

When a Timer is executed, it removes its first Event, updates the internal simulation

clock (Timer.time = Event.time) and calls the method execute() from the Message

associated to the Event. If this execute() method returns true, the time attribute of the

Event is updated (time = time + period) and the Event is reinserted in the Timer.

4.5.2 Model simulation services

The simulation services in TerraME are controlled by the Timer type, where each Timer

implements a discrete-event scheduler. Each Scale can have several Timers. To keep the

Events of all Timer objects ordered inside each Scale, the TerraME virtual machine

maintains the Timers for each Scale in a balanced binary tree, called Timer tree. This

tree is indexed by the time of the first Event of each Timer, as shown in Figure 4.8.a.

Since Scales can be nested, the Events of all nested Scales are chronologically ordered.

The Scales are stored in a Scale tree that is indexed in chronological order of the first

Event of its associated Timer tree (Figure 4.8.b). When the machine executes an Event,

the associated Timer is removed from the Timer tree and the associated Scale is

removed from Scale tree. The Message attached to Event is executed and the Timer and

Scale objects are reinserted in the data structures. This process keeps Scale, Timer, and

Event objects in a chronological order during simulation.

 73

Figure 4.8 – TerraME scheduling data structures: Timer tree (a) and Scale tree (b).

4.6 The TerraME modeling language

The TerraME Modeling Language is a LUA extension. LUA is a dynamically typed

language: variables do not have types; only values do. There are no type definitions in

TerraME. The basic value types are number (double) and string. The value nil is

different from any other value in the language and has the type nil. Functions in LUA

are first class values. That is, a function definition creates a value of type function that

can be stored in variables, passed as arguments to other functions and returned as

results. The only structured data type LUA is table. It implements associative arrays,

that is, arrays that can be indexed not only with integers, but with string, double, table,

or function values. For table indexing, both table.name and table[''name''] are

acceptable. Tables can be used to implement records, arrays, and recursive data types.

They also provide some object oriented facilities, such as methods with dynamic

dispatching (Ierusalimschy, Figueiredo et al. 1996).

cell = { cover = "forest", distRoad = 0.3, distUrban = 2 };
cell.desfPot = cell.distRoad + cell["distUrban"];
...
cell.reset = function(self)
 self.cover = ""; self.distRoad = 0.0; self.distUrban = 0.0;
 end
for i=1,10,1 do cellularSpace:add (cell); end
...
ForEachCell(cellularSpace, (function(cell) cell:reset(); end));

Figure 4.9 – The use of associative table and function values in LUA.

 74

Figure 4.9 shows the use of table and function values. A table with three attributes (land

cover, road distance, and urban centre distance) is created and stored in the variable cell.

A new attribute is calculated and added to cell (deforestation potential is the sum of the

road and urban center distances). A second attribute called reset is added to cell, defined

as a function that receives the table self as parameter. Then, a cellular space of 10 cells

is created, using the TerraME utility function add. Finally, the program calls the

TerraME utility function ForEachCell, which traverses a CellularSpace and applies the

reset function to each cell. The token “:” is a syntactic mechanism for method

invocation: the modeler can write table:name(…) instead of table.name(table, …). As a

result, all cells are reset.

LUA has a powerful syntactical mechanism, called constructor, which provides an

abstraction similar to the concept of object in the object oriented paradigm. When the

modeler writes name{…}, the LUA interpreter replaces it by name({… }), passing the

table {…} as a parameter to the function name(). This function typically initializes,

checks properties values and adds auxiliary data structure or methods (Ierusalimschy,

Figueiredo et al. 1996). In figure 4.10, this mechanism is used to construct the “type”

MyCell. When the table c is instantiated, the distRoad property value is corrected.

function MyCell(table)
 if(table.distRoad < 0) then table.distRoad = 0; end
 return table;
end
...
c = MyCell{..., distRoad = -0.1, ... }

Figure 4.10 – The use of the constructor mechanism in LUA.

To allow the description of spatial dynamic model as nested CAs, we included several

new value types in LUA using the constructor mechanism. These values are: Scale,

CellularSpace, Cell, Neighborhood, SpatialIterator, GlobalAutomaton,

LocalAutomaton, ControlMode, JumpCondition, FlowCondition, Timer, Event and

Message. We describe each type and its operations in what follows. The TerraME

implementation of the hydrological balance model described in section 3.6.1 is used to

exemplify the use of all values. For a single scale, this model simulates the rain water

being drained according to the 9x9 km terrain digital model of a small village in Minas

Gerais state, Brazil, called “Cabeça de Boi”.

 75

4.6.1 The multiple scale model

Multiple scales models can be developed by nesting several Scales values. A Scale

represents a spatial dynamic system in a specific extent and resolution, for instance, the

LUCC system. It models all analytical, spatial, and temporal aspects of the system.

4.6.1.1 The Scale type

A Scale is a container for automata, cellular spaces and timers, as shown in Figure 4.11.

The automata represent the actors or processes that change the space. The cellular

spaces represent the properties in each location. Timers define the order in which the

automata are simulated. The modeler can add any finite number of Scale,

CellularSpace, LocalAutomaton, GlobalAutomaton and Timer values to a Scale. All

Scale values have an identifier to help in model debugging.

myScale = Scale{

 id = "MyScale",

 -- Add cellular spaces to this scale (spatial scale dimension)
 cs1 = CellularSpace{ … },
 cs2 = CellularSpace{ … },
 …
 csN = CellularSpace{ … },

 -- Add automata to this scale (analytical scale dimension)
 aut1 = LocalAutomaton{ … },
 aut2 = GlobalAutomaton{ … },
 …
 autN = LocalAutomaton{ … },

 -- Add timers to this scale (temporal scale dimension)
 t1 = Timer{ … },
 t2 = Timer{ … },
 …
 tN = Timer{ … },

 -- Add subscale to this scale (multiple scale modeling)
 sc1 = Scale{ … },
 sc2 = Scale{ … },
 …
 scN = Scale{ … },

}

Figure 4.11 – Defining Scales in TerraME Modeling Language.

 76

In Figure 4.12, a Scale value is defined and stored in the variable cabecaDeBoi. A

CellularSpace is added to the Scale to model the terrain. A GlobalAutomaton models

the rain and a LocalAutomaton models the hydrologic balance process. A Timer defines

when the automata is executed.

-- The "Cabeça de Boi" spatial dynamic model
cabecaDeBoi = Scale{

 id = "CabecaDeBoi",

 -- Add cellular spaces to this scale (spatial scale dimension)
 csCabecaDeBoi = CellularSpace{ … },

 -- Add global and local automata to this scale (analytical scale dimension)
 autRain = GlobalAutomaton{ … },
 autHidBalance = LocalAutomaton{ … },

 -- Add timers to this scale (temporal scale dimension)
 t = Timer{ … }

}

Figure 4.12 – A spatial dynamic hydrologic model in TerraME Modeling Language.

4.6.2 The spatial model

The TerraME modeling language spatial model provides three different types:

CellularSpace, Cell, and Neighborhood.

4.6.2.1 The CellularSpace type

A CellularSpace is a multivalued set of Cells that is associated to a TerraLib

spatiotemporal database. The modeler should specify the properties of the

CellularSpace before using it. The host and database values indicate where the input

data is stored. The dbType property identifies the database management system

(MySQL, PostgreSQL, etc). The layer and theme properties are the names of the

TerraLib database layer and theme that are used as input data. A theme is a TerraLib

database structure that contains a set of objects. These objects are selected using a

database query function over their attribute values, spatial relations, and temporal

relations. The select property contains the names of the cell attributes loaded into the

model from the input data set. The property where is used to filter the data, as in SQL

statements. The select and where properties are optional.

 77

-- Loads the TerraLib cellular space
csCabecaDeBoi = CellularSpace {
 dbType = "MySQL",
 host = "localhost",
 database = "CabecaDeBoi ",
 user = "",
 password = "",
 layer = "cells90x90",
 theme = "cells",
 select = { "altitude", "infCap" }
 where = "mask <> ‘noData’";
}

Figure 4.13 – Defining a CellularSpace in TerraME Modeling Language.

In Figure 4.13, the “csCabecaDeBoi” CellularSpace is linked to the “cells” theme from

the “cells90x90” layer of the “CabecaDeBoi” TerraLib database. For each cell, two

attributes are loaded: elevation (altitude) and infiltration capacity (infCap). Only cells

whose “mask” attribute value is different from “noData” will be loaded in the

CellularSpace.

A CellularSpace has a special attribute called cells. It is a one-dimensional table of

references for each Cell in the CellularSpace. The first Cell index is 1. Figure 4.14

shows how i-th Cell from a CellularSpace is referenced.

-- c is the seventh cell in the cellular space
c = csCabecaDeBoi.cells[7];

-- Five equivalent ways of update the attribute “infcap” from the seventh cell
c.infcap = 0;
c["infCap"] = 0;
csCabecaDeBoi["cells"][7]["infCap"] = 0
csCabecaDeBoi.cells[7]["infCap"] = 0
csCabecaDeBoi.cells[7].infCap = 0

Figure 4.14 – Referencing Cells from a CellularSpace in TerraME Modeling Language.

4.6.2.2 The Cell type

A Cell represents a space location, its properties, and its nearness relationships. A Cell

is a table that includes persistent and runtime attributes. The persistent attributes are

loaded from and saved to the database. The runtime attributes exist only in memory

during the model execution. Section 4.6.5 describes the database management routines.

Section 4.6.6 shows how runtime attributes can be defined for all TerraME values. A

Cell value has two special attributes: latency and past. The latency attribute registers the

period of time since the last change in a cell attribute value. It is used for rules that

depend of how long the cell remains in a state. The past attribute is a copy of all cell

 78

attribute values in the instant of the last change. For example, Figure 4.15 shows the

command “if the cell cover is abandoned land during 10 year then the cover transit to

secondary forest”. Figure 4.15 also shows a rule for simulating rain in a cell, which

adds 2mm of water to the past amount of water in the cell.

if(cell.cover == "abandoned" and cell.latency >= 10) then cell.cover = "secFor"; end
…
cell.water = cell.past.water + 2;

Figure 4.15 – In TerraME cells have two especial attributes: latency and past.

4.6.2.3 The Neighborhood type

Each cell has one or more Neighborhoods to represent proximity relations. A

Neighborhood is a set of pairs (weight, cell), where cell is a neighbor Cell and weight is

the neighborhood relationship strength. Figure 4.16 shows two equivalent pieces of

code to traverse a cell neighborhood.

n = cell:getNeighborhood(1);
n:first();
while(not n:isLast()) do
 neigh = n:getNeighbor();
 print(neigh.distRoad);
 print(n:getWeight());
 n:next();
end
…
ForEachNeighbor(
 cell, 1,
 function(cell, neigh)
 print(neigh.distRoad);
 print(neigh:getWeight());
 end
);

Figure 4.16 – Traversing a Neighborhood in TerraME Modeling Language.

The method getNeighborhood(index) of a Cell value recovers its i-th Neighborhood. A

Neighborhood has several methods. The methods first() and last() point to the first and

last neighborhood cell. The methods next() and previous() move back and forth. The

methods isFirst() and isLast() return true if the current neighbor is the first or last

neighbor, respectively. The method getNeighbor() returns the current neighbor Cell.

The method getWeight() returns the intensity of the neighborhood relationship between

the cell and its current neighbor. ForEachNeighbor is a TerraME utility routine that

receives a function as parameter and traverses the i-th Neighborhood of a Cell applying

this function to all cells in it.

 79

4.6.3 The analytical model

TerraME implements the nested-CA different models of computation for spatial process

simulation, described in Section 3.4. The GlobalAutomaton model allows the

development of models based on the agent approach. The LocalAutomaton model

allows the development models based on a cellular automata approach. A

GlobalAutomaton traverses a CellularSpace sequentially, evaluating its rules on each

Cell. A LocalAutomaton has a copy of its internal state in each cell. Changes occur in

parallel, all locations may change simultaneously.

4.6.3.1 The GlobalAutomaton and LocalAutomaton types

The GlobalAutomaton and LocalAutomaton types are containers of ControlMode and

SpatiaIterator objects, as shown in Figures 4.17 and 4.18. A ControlMode represents a

discrete state of the automaton. A SpatialIterator defines the spatial trajectory of the

automaton. When an automaton is executed, it uses this trajectory to traverse a

CellularSpace subset, visiting the Cell values in a predetermined order. At each Cell,

the current ControlMode determines the set of possible actions (rules). The initial

ControlMode of an automaton is the first one defined in its interior.

aut = GlobalAutomaton{

SpatialIterator{…},
SpatialIterator{…},
…
SpatialIterator{…},

 ControlMode{…},
 ControlMode{…},
 …
 ControlMode{…}
}

Figure 4.17 – Defining a GlobalAutomaton in TerraME Modeling Language.

aut = LocalAutomaton{

SpatialIterator{…},
SpatialIterator{…},
…
SpatialIterator{…},

 ControlMode{…},
 ControlMode{…},
 …
 ControlMode{…}
}

Figure 4.18 – Defining a LocalAutomaton in TerraME Modeling Language.

 80

4.6.3.2 The SpatialIterator type

SpatialIterator values are useful to reproduce spatial patterns or represent process

preferential directions (anisotropy). Even for LocalAutomaton values, which are parallel

spatial processes, SpatialIterators are useful to define change suitability surfaces, which

associate each Cell to a real number that indicates how prone the Cell is to specifics

types of change (forest to pasture, pasture to abandonment, pasture to urban, etc).

A SpatialIterator is defined by three values. The first is the CellularSpace over which

the trajectory will take place. The second value is a function that receives a Cell as

parameter and returns a Boolean value. It is used to filter the Cells. If this function

returns true, the cell is included in the trajectory. The third value is a function used to

order this subset of Cells. It receives two Cell values as parameters and returns true if

the first one is greater than the second. Figure 4.19 shows an example of SpatialIterator

useful to simulate the deforestation process in LUCC models. The SpatialIterator it for

the CellularSpace cs is defined by two functions. The first function select only cells

whose land cover is “forest”. The second orders the Cells according to their distance to

the nearest road, making Cells closer to roads more suitable to change. If the second

function is not defined, the Cells are traversed from North to the South and from West

to the East. If both functions are not defined, all Cells are included in the trajectory.

it = SpatialIterator{
 cs,
 function(cell) return cell.cover == "forest"; end,
 function(c1, c2) return c1.distRoad > c2.distRoad; end
}

Figure 4.19 – Defining a SpatialIterator in TerraME Modeling Language.

4.6.3.3 The ControlMode type

A ControlMode is a container of two kinds of rules: JumpCondition and FlowCondition,

Figure 4.20. A JumpCondition represents discrete state transition of an automaton. The

JumpConditions of a ControlMode are executed in the order they have been defined.

FlowConditions are rules that define behavior of the automaton in a specific state. The

FlowConditions of a ControlMode are executed only if no JumpCondition has caused a

 81

state transition. They are executed in the order they have been defined. All

ControlMode has a unique identifier used by JumpConditions to adreess it.

ControlMode{
 id = "working",

 Jump{…},
 Jump{…},
 …
 Jump{…},

 Flow{…},
 Flow{…},
 …
 Flow{…}
}

Figure 4.20 – Defining a ControlMode in TerraME Modeling Language.

4.6.3.4 The JumpCondition type

Jump{
 function(event, automaton, cell)
 return cell.water>cell.capInf;
 end,
 target = "wet"
}

Figure 4.21 – Defining a JumpCondition in TerraME Modeling Language.

A JumpCondition is defined by two properties. The first property is a user defined

function that must return a Boolean value. The second property, called target, is a string

containing the identifier of the target ControlMode. If the user defined function returns

true, the automaton goes to the ControlMode indicated by the target property. If the

function returns false, the automaton stays in the current ControlMode. The

JumpCondition function receives three parameters: the event that causes its execution,

the automaton that owns the JumpCondition, and a Cell where the JumpCondition is

being evaluated. Using these parameters, the user can define JumpConditions which

depends on the current simulation time ("if (event.time > 1) then..."), automaton state

("if(automaton.age > 20) then..."), or spatial properties ("if (cell.distRoad > 10) then

..."). Figure 4.21 shows a JumpCondition that causes a transition to the "wet"

ControlMode when the amount of water in the cell is grater than the cell infiltration

capacity.

 82

4.6.3.5 The FlowCondtion type

Flow{
 function(event, automaton, cell)
 cell.water = cell.past.water + 2;
 end
}

Figure 4.22 – Defining a FlowCondition in TerraME Modeling Language.

A FlowCondition is an user defined function that receives three parameters: the event

that cause the FlowCondition execution, the automaton that owns the FlowCondition,

and the Cell where the FlowCondition is being evaluated. Figure 4.22 shows a

FlowCondition that add 2 units to the amount of water in a cell.

4.6.3.6 The hydrologic balance model example

To exemplify the use of the TerraME analytical models, Figures 4.23 and 4.24 show the

definition of two automata used in the implementation of the hydrological balance

model described in section 3.6.1. The GlobalAutomaton "agRain" simulates the rain

phenomenon. It uses a spatial iterator that limits its actions to the cells whose elevation

is greater or equal to 1500 meters. When executed, it adds 2 units to the past amount of

water in each cell.

-- The rain GLOBAL automaton
agRain = GlobalAutomaton{

it = SpatialIterator{
csCabecaDeBoi,
function(cell) return (cell.altitude >= 1500); end

},

 ControlMode{
 id = "working",
 Flow{
 function(event, agent, cell)
 cell.water = cell.past.water + 2;
 return 0;
 end
 }
 }
}

Figure 4.23 – Simulating the rain in TerraME Modeling Language.

 83

-- The soil water balance LOCAL agent
agWaterBalance = LocalAutomaton{

it = SpatialIterator{
 csCabecaDeBoi,
 function(cell) return true; end
 },

 ControlMode{
 id = "dry",

 Jump{
 function(event, automaton, cell)
 return cell.water>cell.capInf;
 end,
 target = "wet"
 }
 },

 ControlMode{
 id = "wet",

 Jump{
 function(event, automaton, cell)
 return cell.water<=cell.capInf;
 end,
 target = "dry"
 },

 Flow{
 function(event, automaton, cell)

 -- calculates the water overflow
 overflow = cell.water - cell.capInf;
 cell.water = cell.capInf;

 -- how many neighbours are lower than the cell?
 countNeigh = 0;
 height = cell.altitude;
 ForEachNeighbor(

cell, 0,
 function(cell, neigh)
 if (cell~=neigh) and

 (height>=neigh.altitude) then
 countNeigh = countNeigh + 1;
 end
 end
);

 -- send water to the neighbors
 ForEachNeighbour(

cell, 0,
 function(cell, neigh)
 if (cell~=neigh) and

 (height>=neigh.altitude) then
 neigh.water = neigh.water +

overflow/countNeigh;
 end;
 end
);
 end
 }
 }
}

Figure 4.24 – Simulating the water balance process in TerraME Modeling Language.

 84

The LocalAutomaton "agWaterBalance" simulates the water balance process. It has two

ControlModes: "dry" and "wet". In the "dry" ControlMode the automaton checks if the

amount of water in a cell is greater than the cell infiltration capacity. If true the

automaton transit to the "wet" ControlMode. Otherwise, it does nothing. In the "wet"

ControlMode it first checks if it must transit to "dry" ControlMode. If the transition is

not necessary, it calculates the surplus of water and equally divides the surplus to the

lower neighbor cells.

4.6.4 The temporal model

The TerraME temporal model provides three types: Timer, Event and Message. A Timer

maintains a queue of pairs (Event, Message) to control the simulation time. The pairs

are ordered by the Event times. An Event represents a time instant when the simulation

engine must execute some computation (Message). A Message is a user defined

function from where simulation engine services can be called. Among these services,

there are services to load data from the database, to save data in the database, to execute

a specific automaton, to synchronize a cellular space, and to check if an automaton has

been well defined.

4.6.4.1 The Timer type

A Timer is a container for pairs (Event, Message), Figure 4.25. Any finite number of

pairs (Event, Message) can be added to a Timer.

time = Timer{
 Pair{
 Event{ ... },
 Message{ ... }
 },
 Pair{
 Event{ ... },
 Message{ ... }
 },
 ...
 Pair{
 Event{ ... },
 Message{ ... }
 }
}

Figure 4.25 – Defining a Timer in TerraME Modeling Language.

 85

4.6.4.2 The Event type

An Event is defined by two mandatory properties (time and period) and an optional one

(priority). The time property defines the next instant of time (in the simulation clock)

when the event must occur. The period property defines the periodicity in which the

event must occur. The priority property is used to decide what event must occur first

when two events have the same value for the time property. The default priority value is

0 (zero). Smaller values have higher priority. Figure 4.26 presents an Event that must

occur at the year 1985, repeat every year, and has priority equal to -1.

Event{ time = 1985, period = 1, priority = -1 }

Figure 4.26 – Defining a Event in TerraME Modeling Language.

4.6.4.3 The Message type

A Message is an user defined function whose parameter is the Event that has caused its

execution. Figure 4.27 shows a Message that prints the simulation time in the screen,

executes the automaton "agRain", and prints the word "Rained" in the screen.

Message{
 function(event)
 print(event.time);
 agRain:execute(event);
 print("\tRained");
 return 0;
 end
}

Figure 4.27 – Defining a Message in TerraME Modeling Language.

4.6.5 Database management routines

A TerraME CellularSpace provides three functions for database management. The

load() function loads the cell attributes from the spatial database. Since the GPM

neighborhoods are not yet stored in the TerraLib database, the loadNeighborhood(

fileName) can be used to load a GPM neighborhood from a file whose name is received

as parameter. Figure 4.28 shows how these functions are invoked for the CellularSpace

called csCabecaDeBoi.

csCabecaDeBoi:load();
csCabecaDeBoi:loadNeighborhood("MooreGPM");

Figure 4.28 – Loading space attributes in TerraME Modeling Language.

 86

The TerraME CellularSpace also provides a function to save the cell attribute values in

the associated TerraLib database. Its syntax is save (time, themeName, attrNameTable).

The parameter time is the timestamp that will be associated to the data. The parameter

themeName is the TerraLib theme where the data will be saved. The parameter

attrNameTable is a table with the names of the cell attributes to be saved. If the third

parameter is an empty table or a nil value, all cell attributes will be saved. When the

save(...) function is executed, a view named Result is created in the TerraLib database

and a theme containing the saved data is inserted in this view. The name of the theme is

composed concatenating the parameters themeName + time. When the save(...) function

is called with the parameters shown in Figure 4.29, the values of the attribute "water" of

all cells from the CellularSpace "csCabecaDeBoi" are saved in the themes: "sim1985",

"sim1986", "sim1987", and so on.

csCabecaDeBoi:save(event:getTime(),"sim", {"water"});

Figure 4.29 – Saving cell attributes values in TerraME Modeling Language.

4.6.6 Defining runtime variables

The user can define runtime variables for any TerraME type by defining it in a

statement (variable "." newVariable "=" value). One can define runtime variables for

Cell, LocalAutomaton, or Event values. In Figure 4.30, the runtime variable "name" is

added to an Event and receives the value "initialEvent", and a runtime attribute called

"water" whose value is 0 (zero) is added to each cell from the CellularSpace

"csCabecaDeBoi".

-- Creating new event attributes
ev = Event{ time = 1985, period = 1 };
ev.name = "initialEvent";

-- Creating new cell attributes
ForEachCell(csCabecaDeBoi, function(cell) cell.water = 0; end);

Figure 4.30 – Defining a runtime attribute in TerraME Modeling Language.

4.6.7 Synchronizing the space

TerraME implements the nested-CA synchronization model described in section 3.5.

The Cell:synchronize(), CellularSpace::synchronize() and Scale:synchronize() functions

can be used for synchronization, as shown is Figure 4.31. The variable

 87

"csCabecaDeBoi" is a 10 x 10 CellularSpace where the cover of each Cell is “forest”.

The first time this code will be executed, all cells will be "deforested" and the sentence

"Number of deforested cells: 100" will be printed. The second time, the sentence

"Number of deforested cells: 0" will be printed because the cells have already been

deforested. However, if the function "cell:synchronize()" had been excluded, the

changes would not have been committed. Then, the output would always be "Number of

deforested cells: 100".

count = 0;
for i, cell ipairs(csCabecaDeBoi) do
 if(cell.past.cover == "forest") then
 cell.cover = "deforested";
 count = count + 1;
 end
 cell:synchronize();
end
print("Number of deforested cells:"..count);

Figure 4.31 – Synchronizing a CellularSpace in TerraME Modeling Language.

4.6.8 Configuring and starting the simulation

Before starting the simulation, it is necessary to verify if the syntax of the model is

correct. This requires that each automaton has all its ControlModes identified in the

target properties of its JumpConditions. This verification can be performed through the

function build() from both LocalAutomaton and GlobalAutomaton types. If there is a

syntax error, the build() function aborts the model and prints an error message

identifying the wrong JumpCondition target.

The simulation will start at the instant of the first Event value. It is necessary to

configure the final simulation time. The function Scale:config(finalTime) serves this

purpose. It receives the value of the final simulation time as its parameter. In Figure

4.32 the automata "agRain" and "agWaterBalance" from the Scale "cabecaDeBoi" are

verified, the Scale is configured to stop at the year 1987, and the simulation is started

when the function executed() from the Scale "cabecaDeBoi" is called.

cabecaDeBoi.agRain:build();
cabecaDeBoi.agWaterBalance:build();
cabecaDeBoi:config(1987);
cabecaDeBoi:execute();

Figure 4.32 – Configuring and starting the simulation in TerraME Modeling Language.

 88

4.7 Comparison with previous work

This section compares the TerraME modeling environments with the most relevant

platforms used to LUCC modeling: Swarm, STELLA and GEONAMICA. In opposition

to GEONAMICA (Engelen, White et al. 1997) and TerraME, tools originally conceived

to aid spatial dynamic modeling, Swarm (Minar, Burkhart et al. 1996) and STELLA

(Roberts, Anderson et al. 1983), are based on non-spatial foundations: agent theory and

system theory. GEONAMICA implements the Layered-CA model and TerraME uses the

nested-CA model. All of these environments provide abstractions to allow problem

decomposition. In STELLA, a system is a composition of other systems. In Swarm,

objects swarm are containers for sets of agents that can be nested, forming a hierarchy

of swarm objects. In GEONAMICA, model building block (MBB) objects can be

composed of several MBBs. In TerraME, Scales can be nested for multiscale models.

The STELLA modeling tool (Roberts, Anderson et al. 1983) is an application that

provides a graphical interface for model design: in the flow diagram, systems

(rectangles) are connected by flows of energy (arrows). Systems are represented by a set

of continuous variables, and input and output flows. The flows are represented by

differential equations. The model is continuous, sequential, and predetermined by the

modeler. It is not possible to represent processes whose behavior depends on external

events. The spatial modeling framework SME (Maxwell and Costanza 1995) integrates

a cellular space with GIS systems and embeds a STELLA model in each cell.

Swarm (Minar, Burkhart et al. 1996) is an open source library of classes and objects for

the development of multiagent simulations. Actors and processes are modeled as

communication agents. The modeler used the inheritance and dynamic binding

mechanisms from the host programming language to extend the Swarm basic models.

The model behavior is specified in the host programming language. The model needs to

be recompiled each time its code is updated. Several discrete-event schedulers can be

defined to coordinate agents in time, allowing multiple temporal extents and resolutions.

The Kenge toolkit implements a GIS integrated cellular space for the Swarm platform

(Box 2002).

 89

GEONAMICA is a set of C++ templates and ActiveX components (Engelen, White et al.

1997) that depend on the object oriented properties (inheritance, dynamic binding) of

the host language to be extended. A model building block (MBB) component represents

an actor or a process. Models are described graphically in a system diagram where

several MBB (rectangles) are connected by flows of information (arrows). For each

MBB, the modeler should describe, in the host programming language, the rules that

will be executed when four different types of events occur: on read, init, step, and on

write. After this, GEONAMICA generates the source code of the described model. Then,

the model is compiled and linked with the simulation engine. The GEONAMICA spatial

model is integrated with a GIS.

The STELLA, Swarm, and GEONAMICA platforms do not satisfy the full requirements

for multiscale LUCC modeling. They do not provide a special abstraction to represent

the concept of scale. Their foundations are two restrictive to represent complex

heterogeneous spatial dynamic models where different space partitions are represented

in several scales. These platforms do not provide abstractions to reproduce the spatial

patterns of change, or spatial process trajectories. Their analytical models do not

distinguish between sequential and parallel spatial process, whereas TerraME provides

the concept of LocalAutomaton, GlobalAutomaton and SpatialIterator. GEONAMICA

and Swarm do not have special abstractions for continuous behavior modeling.

Swarm and STELLA do not provide methods for spatial model calibration and

validation. The GEONAMICA framework provides methods that assess the model

performance in several spatial resolutions. However, these methods do not distinguish

between errors in the amount of change project by the model from errors on the location

of the changes proposed by the model (Pontius 2002; Pontius, Huffaker et al. 2004).

4.8 Conclusion

In this work, we have presented the design and implementation issues involved in the

development of a software platform for multiscale LUCC modeling. This software

platform, called TerraME, implements the nested-CA model and services for

spatiotemporal data analysis and management, model development, simulation, and

 90

assessment. The TerraME Modeling language has been described in detail. Finally, the

TerraME platform has been compared with relevant modeling tools used to LUCC

model development: Swarm, STELLA, and GEONAMICA. The main contributions of

TerraME are:

(a) The Scale model for representing, in a specific resolution and extent, all analytical,

spatial, and temporal aspects of a geographical phenomenon. The nested Scales can be

used to represent heterogeneous space, where each partition is characterized by different

cell attributes, non-isotropic and non-stationary neighborhood relations, and processes

or actors acting on specific temporal and spatial resolutions.

(b) The LocalAutomaton and GlobalAutomatont concepts, that enable the development

of models that combine the agent-based and the cellular automata approaches. This

allows the simulation of individual processes that change the space sequentially and of

processes whose behavior is location dependent.

(c) The synchronization scheme allows the development of models where several

sequential and parallel spatial processes or actors change the space in a asynchronous

way.

(d) The SpatialIterator allows the representation of spatial trajectories and provides a

mechanism to reproduce the spatial pattern of changes.

(e) The TerraME foundations allow the simulation of discrete, continuous, event-driven

and situated behavior.

Since The TerraME is the only platform that satisfies all requirements of multiple scale

modeling, we argue that TerraME is a suitable platform for LUCC modeling.

 91

CHAPTER 5

APPLICATION OF NESTED CA FOR MODELING OF LAND USE CHANGE

IN BRAZILIAN AMAZON

5.1 A brief review on LUCC modeling in Brazilian Amazon

This Chapter presents a review on LUCC modeling in Brazilian Amazon. To

demonstrate the nested-CA properties, two multiple scale LUCC models have been

implemented using the TerraME modeling environment. The main concepts of these

models are briefly introduced. The general structures of their implementations in

TerraME are presented. The simulation results are shown. In last sections, we highlight

the mains contributions of the work and describe the future work directions.

One of the important areas of environmental change modeling is the Amazonia Rain

Forest. The Brazilian Institute for Space Research (INPE) carries out a yearly

comprehensive survey of deforested areas, using remote sensing images from the

LANDSAT (30 m resolution) and CBERS (20 m resolution) satellites. From 1985 to

2005, INPE’s data indicates that more than 350,000 km2 of forest have been converted

to agriculture and pasture (INPE 2005). INPE’s most recent results indicate a

deforestation rate of 27.300 km2 for the period August 2003- July 2004 and of 18.900

km2 for the period August 2004- July 2005. In the extreme case, deforestation rates can

be as high as 10.000 km2 in a single month.

The process of change in Amazonia is relevant for global primary production1 (Dixon,

Brown et al. 1994; Malhi, Meir et al. 2002), for global biodiversity (Wilson 1989;

Demiranda and Mattos 1992; Dale, Pearson et al. 1994). Deforestation in Amazonia has

impacts on the public health system (Coura, Junqueira et al. 1994; Githeko, Lindsay et al.

2000; Vasconcelos, Travassos da Rosa et al. 2001), on atmospheric chemistry (Ganzeveld

and Lelieveld 2004), on the climate system (Nobre, Sellers et al. 1991; Laurance and

1 Primary production is the production of biological organic compounds from inorganic materials through
photosynthesis or chemosynthesis. Organisms that can create biomass in this manner (notably plants) are
known as primary producers, and form the basis of the food chain.

 92

Williamson 2001; Werth and Avissar 2002; Oyama and Nobre 2003; Negri, Adler et al.

2004), and on global warming (Fearnside 1996).

LUCC studies have been made in the Amazon region in order to determine

proximate causes and driving forces of deforestation (Pfaff 1999; Geist and Lambin

2002; Laurance, Albernaz et al. 2002; Aguiar, Kok et al. 2005; Fearnside 2005). LUCC

models have been applied to the region in an attempt to understand the dynamics land

use change dynamic and its consequences (Dale, Oneill et al. 1994; Pfaff 1999; Evans,

Manire et al. 2001; Laurance, Cochrane et al. 2001; Soares, Assuncao et al. 2001;

Soares, Cerqueira et al. 2002; Deadman, Robinson et al. 2004; Walker 2004; Walker,

Drzyzga et al. 2004; Aguiar, Kok et al. 2005; Arima, Walker et al. 2005; Neeff, Graca et

al. 2005).

There is currently no agreement as to the main causes of Amazon deforestation

(Câmara, Aguiar et al. 2005). This is partly due to the lack of an established theory on

human-environment interaction.

5.2 Applications

In this Section, we present the TerraME implementation of two multiple scale LUCC

models:

• The Conversion of Land Use and its Effects (CLUE) (Veldkamp and Fresco

1996) model is applied to the Brazilian Amazon region (Figure 5.1), to simulate

the deforestation process from 1997 to 2015. The allocation module is the CLUE

model core. It answers the question where the demanded amount of change will

take place (Verburg, Veldkamp et al. 1999). It includes two scales at which land

use is allocated. A coarse scale is used to calculate the trends of the changes in

land use pattern and to capture the influence of land use drivers that act over

considerable distance. Based upon the pattern of land use change calculated at

the coarse scale, but taking local constraints into account, the land use pattern is

calculated at a finer scale. In this work, the allocation module had been

 93

implemented in a generic way; so that it can be parameterized to be applied to

other regions. The amount of change at each time step is a model parameter.

Figure 5.1 - Example 1: Legal Amazon study area, Brazil.

Source: INPE (2005)

• We have developed a LUCC model for the center-north region (Figure 5.2) of

the Rondônia state, Brazil, which occupation history is associated to

colonization projects created by the Brazilian National Institute of Agrarian

Reform (INCRA), to induced migratory flows, to the BR-364 construction, and

to the establishment of poles of development (Becker 1997). A TM/Landsat

image series, from 1985 to 2000, agrarian maps, filed data, and census data have

been used to partitioning the space in homogenous land units, called occupation

unit - UOP (Escada 2003). The homogenous space partitions have been

delineated visually on the satellite images, defining regions formed by the

repetition of texture elements, and linking different land cover patterns to

different deforestation processes in specific temporal and spatial extents and

resolutions. In this work, each UOP is represented as Scale. The whole study

area is represented by a multiple scale model built by the composition of the

UOPs Scales. In the right side of Figure 5.2, the UOPs are classified according

to the farms size. Small farms UOPs appears in light blue. The large farms

 94

UOPs are colored in dark blue. The medium farms UOPs are in an intermediary

tonality. Urban center are in red, and reserve areas in green.

Figure 5.2 – Example 2: Rondônia study area, Brazil.

Source: adapted from Escada (2003).

5.2.1 The CLUE model in TerraME

In the CLUE model, the land cover is represented by the continuous variable coverx,y,t,c

that records the proportion of each land cover type c in a cell (x, y) at the instant t.

Aguiar (2005) has used a multiple regression method to analyze the descriptive data

collected about the land use system at the two allocation scales, cell of 25×25 km2 (local

scale) and 100×100 km2 (coarse scale), and at the instant t0, initial time of the modeling

exercise (1997). Figure 5.3 show the local and coarse allocation scales.

 95

Figure 5.3 – Two allocation scales: cells of 100×100 km2

 (left), and cells of 25×25 km2
(right).

As a result, for the year of 1997, two set of regressions equations have been obtained:

one for each allocation scale. Each set of equations contains a regression equation that

correlates the spatial pattern of each land use type c with other spatial attributes i:

coverx,y,t,c = βo + β1· Attrx,y,t,1+ β2· ATTRx,y,t,2 +…. This method has been used to identify

the most important biophysical and socio-economic drivers of land use change (cell

attributes which will be the dependent terms on the regression equations, Attrx,y,t,i), as

well as the quantitative relationships between these drivers and the surface area of the

different land use types (the coefficient from the equations, βi). At each simulation step,

the first set of rules is used to allocate changes at the coarse scale. Then, the spatial

pattern at the coarse scale is used with the second set of rules to allocate changes at the

local scale.

 96

allocationCLUE = Scale{

 id = "Amazon",

 landUseTypes = {
 "log_luc_pasture", "log_luc_temp", "log_luc_perm",
 "log_luc_nused", "log_luc_plant", "luc_forest"
 }

 landUseDrivers = {
 "conn_mkt", "log_dist_road", "prot_all", "agr_small",
 "log_setl", "log_dist_urban", "log_dist_mineral", "log_dist_river",
 "soils_fert_B1", "soils_fert_B3", "clima_humid", "log_dist_wood",
 "conn_port",
 }

 demand = {...},

 scLocal = Scale{

 regrParam = {...},

 cs = CellularSpace{...},
 aut = GlobalAutomaton{ ... },
 t = Timer{ ... }

 },

 scCoarse = Scale{

 regrParam = {...},

 cs = CellularSpace{...},
 aut = GlobalAutomaton{ ... },
 t = Timer{ ... }

 }

}

Figure 5.4 – CLUE allocation scales in TerraME Modeling Language.

Figure 5.4 shows the general structure of the CLUE allocation model represented in the

TerraME modeling language. It is a scale composed by:

• A landUseTypes table that contains the name of each land use types in the input

data. The land use categories in the input land use maps are: pasture, temporary

agriculture, permanent agriculture, non-used land, and forest.

• A landUseDrives table that contains the name of each biophysical or socio-

economic driver of land use change identified in the regression analysis. Aguiar

(2005) have identified the following drivers: connection through roads to

national markets, logarithm of the Euclidian distance to roads, percentage of

 97

protected areas, percentage of small farms, logarithm of the number of settled

families, logarithm of the Euclidian distance to urban centers, logarithm of the

Euclidian distance to mineral deposits, logarithm of the Euclidian distance to

large rivers, percentage of high and medium fertility soils area, average humidity

in the three drier subsequent months of the year, logarithm of the Euclidean

distance to wood extraction poles, and connection through roads network to

main ports.

demand = {
 { 26579657.13, 5218327.69, 1316347.75, 5331225.00, 234325.00, 252132617.44 },
 { 28406152.43, 5576919.64, 1406804.26, 5697575.00, 250427.30, 249474621.37 },
 { 30232647.74, 5935511.58, 1497260.77, 6063925.00, 266529.59, 246816625.31 },
 { 32059143.05, 6294103.53, 1587717.28, 6430275.01, 282631.89, 244158629.25 },
 { 33885638.36, 6652695.48, 1678173.79, 6796625.01, 298734.18, 241500633.18 },
 { 35712133.67, 7011287.43, 1768630.29, 7162975.01, 314836.48, 238842637.12 },
 { 37538628.97, 7369879.38, 1859086.80, 7529325.01, 330938.78, 236184641.05 },
 { 39365124.28, 7728471.33, 1949543.31, 7895675.02, 347041.07, 233526644.99 },
 { 41191619.59, 8087063.28, 2039999.82, 8262025.02, 363143.37, 230868648.93 },
 { 43018114.90, 8445655.22, 2130456.33, 8628375.02, 379245.67, 228210652.86 },
 { 44844610.21, 8804247.17, 2220912.84, 8994725.02, 395347.96, 225552656.80 },
 { 46671105.51, 9162839.12, 2311369.35, 9361075.03, 411450.26, 222894660.73 },
 { 48497600.82, 9521431.07, 2401825.86, 9727425.03, 427552.55, 220236664.67 },
 { 50324096.13, 9880023.02, 2492282.36, 10093775.03, 443654.85, 217578668.61 },
 { 52150591.44, 10238614.97, 2582738.87, 10460125.03, 459757.15, 214920672.54 },
 { 53977086.75, 10597206.91, 2673195.38, 10826475.03, 475859.44, 212262676.48 },
 { 55803582.06, 10955798.86, 2763651.89, 11192825.04, 491961.74, 209604680.41 },
 { 57630077.36, 11314390.81, 2854108.40, 11559175.04, 508064.04, 206946684.35 },
 { 59456572.67, 11672982.76, 2944564.91, 11925525.04, 524166.33, 204288688.29 }
}

Figure 5.5 – Model parameters: land use demand from each land use type from 1997 to
2015.

• A demand table that defines the total area demanded for each land use type at

each simulation year, Figure 5.5. Each line of the demand table is associated to a

specific year starting from 1997, and contains the total area (in m2) required to

each land use type in table landUseTypes.

• Two internal scales: scLocal and scCoarse. Each scale has a table to store the

parameters of the regression equations, called regrParam, a GlobalAutomata

that calculate the new spatial pattern for each land use type based on these

parameters, a CellularSpace that store the percentage of each land use type and

the values of each land use driver at each location, and a Timer that annually

executes the Automaton and immediately synchronized the CellularSpace.

 98

-- regrParam = {
-- land_use1 = { regrConstant, regError,
-- { beta1, beta2, ..., betaN },
-- { attr1, attr2, ..., betaN },
-- log transformed? (true or false),
-- elasticiy (defaul MIN_ELASTICITY),
-- static? (0: dynamic, 1: static, -1: change towards demand dir.)
-- }
-- ...
-- }

Figure 5.6 – Format of the parameters of the regression equations for a scale.

Figure 5.6 presents the format of the table regrParam. For each land use type in

landUseType, there is a line in the regrParam table that associates this land use

type to a set (table) of parameters. The first parameter in this set is the value of

the regression constant. The second is the value of regression error. A table

containing the value of each regression coefficient is the third parameter. The

fourth parameter is a table of indexes of the land use drives in the table

landUseDrivers. To calculate the regression, the value of the land use driver at

the i-th position in the fourth parameter table will be multiplied by coefficient in

the same position in the third parameter table. The fifth parameter indicates

whether the input data have been logarithm transformed during the regression

analysis. The sixth parameter establishes the minimal elasticity accepted for the

land use type (a CLUE parameter), and the seventh parameter indicates if the

land use is static or dynamic (other CLUE parameter). Figures 5.7 shows the

regression parameters used in this work for the scLocal allocation scale, a

similar structure is used to the scCoarse scale.

 99

regrParamLocalScale = {

 log_luc_pasture = {
 3.958597, 0.63189,
 { -0.641055, -0.463439, -0.316293, 0.943192, -0.131481, 0.750784,
 0.328109, -0.052798 },
 { 1, 2, 3, 4, 6, 8, 9, 10},
 true,
 0.01,
 0
 },

 log_luc_temp = {
 1.498353, 0.49275,
 { -0.465827, -0.279017, 0.31186, 0.627869, 0.072989,-0.099603, 0.522392,
 0.500685, -0.03818, 3.384578 },
 { 1, 2, 3, 4, 6, 7, 8, 9, 10, 12 },
 true,
 0.01,
 0
 },

 log_luc_perm = {
 -1.45349, 0.36059,
 { -0.29376, -0.1618, 0.19072, 0.23094, -0.09049, 0.41573, 0.23233,
 4.44311 },
 { 1, 2, 3, 4, 7, 8, 9, 12 },
 true,
 0.01,
 -1
 },

 log_luc_nused = {
 1.981744, 0.46427,
 { -0.473846, -0.291643, 0.426325, 0.091095, -0.120919, 0.467058,
 0.379051, -0.03735, 5.962671 },
 { 1, 2, 4, 6, 7, 8, 9, 10, 12 },
 true,
 0.01,
 0
 },

 log_luc_plant = {
 -2.46878, 0.22932,
 { -0.12336, -0.06894, 0.04335, 0.16928, -0.0566, 0.0131, 0.14906,
 0.05723, 1.41639 },
 { 1, 2, 3, 4, 6, 7, 8, 9, 12 },
 true,
 0.01,
 -1
 },

 luc_forest = {
 -0.813838, 0.16291,
 { 0.148098, 0.071349, -0.091813, -0.187958, 0.020614, 0.026632,
 -0.239035, -0.062135, 0.014885 },
 { 1, 2, 3, 4, 6, 7, 8, 9, 10 },
 false,
 0.01,
 -1
 }
}

Figure 5.7 – Local scale regression parameters.

 100

The figure 5.8 shows the model results for some time instants: 1999, 2005, 2010, and

2015. Changes are too concentrated the Deforestation Arc, and there is a little pressure

on the central area.

Figure 5.8 – CLUE results: deforestation process for the whole Brazilian Amazon

region.

5.2.2 A deforestation model for heterogeneous spaces: the Rondônia case.

The main goal of developing this model is to test the TerraME modeling environment in

the construction of multi-resolution models, with different actors, with distinct

behaviour acting on contiguous space partitions. To accomplish this, we developed a

deforestation model based on the assumption that small and large/medium farmers

convert the forest to agriculture based on different behavioural rules, both for choosing

the location of change and for defining the speed of change. In this work, we discuss

only some of the main features of the model. A complete description of a full model

being developed for this area using nested-CA, in the context of the GEOMA Project, is

out of the scope of this work, and will be presented in future publication.

1999 2005

2010 2015

 101

As farm properties and amount of capital available for different actors are so discrepant

(small farms are less then 100 ha; medium from 100 to 1000 ha; large greater than

1000ha), we decided to test if different spatial resolutions would better represent the

processes for different actors. The TerraME Scale type has been extended to generate

two new types of Scale values: smallScale and largeScale. Then, each UOP has been

represented as an instance of one of this Scales types, according to its classification:

small farms area, or medium/large farms area.

The smallScale type is a composite of:

(a) A Cellularspace that has a categorical attribute to model the land cover, {forest,

non-forest}, in each 500×500 m2 cell.

(b) A GlobalAutomaton called autSmallDemand that calculates the rate of change based

on the age of the INCRA settlement in the UOP, on the size of the land parcels, and on

the installation of credit received from the Government in first years.

(c) Another GlobalAutomaton called autSmallAllocation that allocates the changes

along the roads based on two spatial properties: the proximity to already established

farmers through the roads network, and proximity to urban areas.

(d) A Timer is defined to every simulated year and executes the autSmallDemand

automaton before the autSmallAllocation automaton execution.

One the other hand, the largeScale type is a composite of:

(a) A Cellularspace that has a continuous attribute to model the land cover, {percentage

of forest}, in each 2500×2500 m2 cell.

(b) A GlobalAutomaton called autLargeDemand that calculates the rate of change based

on the age of the INCRA settlement in the UOP and on the size of the land parcels.

 (c) Another GlobalAutomaton called autLargeAllocation that allocates the changes

along the roads based on three spatial properties: the proximity to already established

 102

farmers through the roads network, and the proximity to established farms which limits

are in the same line of its frontiers (not necessarily where a road exists).

(d) A Timer is defined to every simulated year executes the autLargeDemand

automaton before the autLargeAllocation automaton execution.

Figure 5.9 – Deforestation process in non-homogeneous space: forest (light gray) and

deforest (dark gray).

Figure 5.9 illustrates two UOPs, one representing a small farms official settlement,

established in 1985, called Vale do Anari (right); and another representing large farm

area, being occupied since the 70ies, called Burareiro (left). Figure 5.10 presents the

main differences between the automata autSmallDemand and autLargeDemand. Figure

5.11 describe the nearness relationships used by the automata autSmallAllocation (left)

and autLargeAllocation (right). Figure 5.12 illustrates some simulation results. As the

nested-CA model is a generic framework, several alternative space configurations and

behavioural rules can be tested, allowing for a rich environment for hypothesis testing.

 103

Figure 5.10 - Allocation module: The automata autSmallDemand (left) and

autLargeDemand (right).

Figure 5.11 – Space partitions with alternative nearness relationships: roads (black

lines), farms frontier line (light blue lines).

Figure 5.12 – Simulation results for deforestation process in Rondônia, Brasil, from

1985 to 1997.

In Figue 5.10, the AutSmallDemand automaton initial state is Idle. The automaton

remains in this state until the simulation clock reaches the year of implantation of the

UOP. Then, it transits to the Newly Implanted state, and establishes a higher

 104

deforestation rate because the small farmers receive credit from the Government in the

first 6 years after the settlement implantation. After this period, the automaton transits

the Deforesting state, where the rate of deforestation is moderate and calculated

according the UOP characteristics (age, parcel size). When the percentage of the total

deforested are in the UOP is greater than 80%, the automaton transits to the Slowing

Down state, where the deforestation rate progressively decrease, proportionally to the

remaining amount of forest in the UOP. When there is no forest in the UOP, the

automata transit to the state: Idle. rate of change is null while the UOP is not implanted.

The autLargeDemand automaton does not have the Newly Implanted state because

medium and large farmer do not receive credit.

5.3 Conclusion and future work

A model of computation, called Nested Celluar Automata (nested-CA), has been

developed to support multiscale LUCC modeling. This model has been implemented in

a modeling platform, called TerraME, which provides services for all stages of the

spatial dynamic modeling process. Two multiscale LUCC models have been developed

to test the nested-CA and the TerraME properties.

The nested-CA architecture facilitates integrated model developments, allowing

complex dynamic spatial models to be constructed from hierarchically organized simple

ones, in a black box fashion. It is possible to construct models in which different

geographical space partitions are: inhabited by several specific actors and processes

acting upon them in different spatial and temporal extents and resolutions; and are

characterized by distinct local constraints and nearness relationship. It is possible to

simulate discrete or continuous behavior, moving and communicating actors, and

situated behavior. Neighborhood relations may be defined in alternative ways, including

not only the conventional local relations, such as adjacency, Euclidean distance, etc.,

but also influence relations, such as connection through networks (e.g., roads or

telecommunication), allowing for non-isotropic and non-stationary space relations.

 105

The future work will be conducted within three different research areas:

• Models of computation for multiple scale spatial dynamic modeling: We believe

that the nested-CA theoretical foundation needs to be explored to a better

understanding of the nested-CA properties and their improvement. The situated

behavior of the nested-CA models of computation has not been sufficiently

investigated. It is necessary to perform experiments to test how this property can

be used to represent the knowledge-based decision taking process. A map

algebra over the cellular space can be developed to provide easier automata rules

implementation.

• Software platforms for multiple scales LUCC modeling: The TerraME modeling

environment will be in constant development. The short time projects are to

parallelize the TerraME framework source code to obtain high performance

computing, and to develop a visual interface where the modeler could describe

the models graphically.

• Multiple scale LUCC model development: There is a huge demand for LUCC

models for assess the land use system and for support the decision taking

process. Using the TerraME modeling environment, we will continue to develop

LUCC model to allow better understanding of the Brazilian Amazonian space

and to support the planning of Government actions on this region.

 106

 107

REFERÊNCIAS BIBLIOGRÁFICAS

Aguiar, A.; G. Câmara, et al. Modeling Spatial Relations by Generalized Proximity
Matrices. In: Brazilian Symposium in Geoinformatics, 5., 2003, Campos do Jordão, SP,
Brazil. Proceedings…São José dos Campos: INPE, 2003.

Aguiar, A. P. D.; K. Kok, et al. Exploration of patterns of land-use change in the
Brazilian Amazon using the CLUE framework. In: Open Meeting of the Human
Dimensions of Global Environmental Change Research Community, 6., 2005, Bonn,
Germany. Proceedings…Bonn: [s.n], 2005.

Almeida, C. Spatial dynamic modelling as a planning tool: simulation of land use
change in Bauru and Piracicaba (SP), Brazil. 2003. 351p.(INPE-10567-TDI/942/A).
Thesis (Doctorate in Remote Sense) - National Institute of Space Research (INPE), São
Jose dos Campos, 2003.

Almeida, C. M.; A. M. V. Monteiro, et al. Empiricism and Stochastics in Cellular
Automaton Modeling of Urban Land Use Dynamics. Computers, Environment and
Urban Systems, v. 27, n. 5, p. 481-509, 2003.

Arima, E. Y., R. T. Walker, et al. Loggers and forest fragmentation: Behavioral models
of road building in the Amazon basin. Annals of the Association of American
Geographers, v. 95, n. 3, p. 525-541, 2005.

Batty, M. Modeling urban dynamics through GIS-based cellular automata. Computers,
Environment and Urban Systems, v. 23, p.205-233, 1999.

Batty, M. Agents, cells, and cities: new representational models for simulating
multiscale urban dynamics.Environment and Planning A, v. 37, n. 8, p. 1373-1394,
2005.

Becker, B. K. Amazônia. São Paulo, Brazil: Ática, 1997.

Binford, M.; Cassidy, L. Complementarity of Categorical and Continuous Approaches
for Studying National level Development of Land-Use/Land-Cover Change in Thailand
and Cambodia. In: Open Meeting of the Human Dimensions of Global Environmental
Change Research Community, 6., 2005, Bonn, Germany. Proceedings…. Bonn: [s.n],
2005.

Bott, F. ECLIPSE an integrated project support environment. Iee Computing
Series, v. 14. London UK: IEEE Computer Society Press, 1989. 245p. ISBN:0-86341-
169X.

Box, P. W. Spatial units as agents: Making the landscape an equal player in agent-based
simulations. In: Gimblett, H. R. (ed). Integration of agent-based modelling and
geographic information systems. London UK: Oxford University Press, 2002.

 108

Briassoulis, H. Analysis of land use change: theoretical and modeling approaches.
Lesvos, Greece: West Virginia University, 2000. Department of Geopgraphy - Regional
Research Institute.

Buschmann, F.; R. Meunier, et al. Pattern-oriented software architecture: a system of
patterns. John Wiley & Sons, 1996. ISBN: 978-0-471-95869-7.

Câmara, G.; A. P. Aguiar, et al. Amazonian deforestation models. Science v. 5712, n.
30, p. 1043-1044, 2005.

Câmara, G.; R. Souza, et al. TerraLib: Technology in Support of GIS Innovation. In:
Brazilian Symposium in Geoinformatics, 2., 2000, São Paulo. Proceedings... São
Paulo: [s.n], 2000.

Câmara, G.; L. Vinhas, et al. Design Patterns in GIS Development: The Terralib
Experience. In: Workshop Brasileiro de Geoinformática - SBC, 3., 2001, Rio de
Janeiro. Proceedings... Rio de Janeiro: SBC, 2001.

Costanza, R. Model Goodness of Fit - a Multiple Resolution Procedure. Ecological
Modelling, v. 47, n. 3-4, p.199-215, 1989.

Couclelis, H. Cellular Worlds - a Framework for Modeling Micro-Macro Dynamics.
Environment and Planning A, v. 17, n. 5, p. 585-596, 1985.

Couclelis, H. From cellular automata to urban models: New principles for model
development and implementation. Environment and Planning B-Planning & Design,
v. 24, n. 2, p. 165-174, 1997.

Couclelis, H. Chapter 2: Modeling frameworks, paradigms, and approaches. In: Clarke,
K. C.; Parks, B. E.; Crane, M. P. (eds). Geographic information systems and
environmental modelling. New York: Longman & Co, 2000.

Coura, J. R.; Junqueira, A. C., et al.. Chagas' disease in the Brazilian Amazon -A short
review. Revista do Instituto de Medicina Tropical de Sao Paulo, v.36, n. 4, p. 363-
368, 1994.

Dale, V. H.; Oniell, R. V., et al.. Modeling Effects of Land Management in the Brazilian
Amazonian Settlement of Rondonia. Conservation Biology, v. 8, n. 1, p. 196-206,
1994.

Dale, V. H.; Pearson, S. M., et al.. Relating Patterns of Land-Use Change to Faunal
Biodiversity in the Central Amazon. Conservation Biology, v. 8, n. 4, p. 1027-1036,
1994.

Deadman, P.; Robinson, D., et al. Colonist household decisionmaking and land-use
change in the Amazon Rainforest: an agent-based simulation. Environment and
Planning B-Planning & Design, v. 31, n. 5, p. 693-709, 2004.

 109

Demiranda, E. E.; Mattos, C. Brazilian Rain-Forest Colonization and Biodiversity.
Agriculture Ecosystems & Environment, v. 40, n. 1-4, p. 275-296, 1992.

Dixon, R. K.; Brown, S., et al.. Carbon Pools and Flux of Global Forest Ecosystems.
Science, v. 263, n. 5144, p.185-190, 1994.

Engelen, G.; White, R., et al. Integrating Constrained Cellular Automata Models, GIS
and Decision Support Tools for Urban Planning and Policy Making. In: Timmermans,
H. (ed). Decision support system in urban planning. London, UK: E & FN Spon, p.
125-155, 1997.

Escada, M.. I. S. Evolução de padrões de uso e cobertura da terra na região Centro-
Norte de Rondônia. 2003-04-14. 264 p. (INPE-10209-TDI/899). Tese (Doutorado em
Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais, São José dos
Campos. 2003. Disponível em: <http://mtc-m12.sid.inpe.br/rep-
/sid.inpe.br/jeferson/2003/06.30.13.31>. Acesso em: 15 maio 2007. rep:
sid.inpe.br/jeferson/2003/06.30.13.31.

Escada, M. I. S.; Monteiro, A. M. V., et al. Análise de padrões e processos de ocupação
para a contrução de modelos na Amazônia: Experimentos em Rondônia. In: Simpósio
Brasileiro de Sensoriamento Remoto, 12., 2005, Goiânia, Brazil. Proceedings… São
José dos Campos: INPE, 2005.

Evans, T. P.; Manire, A., et al. A dynamic model of household decision-making and
parcel level landcover change in the eastern Amazon. Ecological Modelling, v. 143,
n.1-2, p. 95-113, 1002.

Fearnside, P. M. Amazonian deforestation and global warming: Carbon stocks in
vegetation replacing Brazil's Amazon forest. Forest Ecology and Management , v. 80,
n. 1-3, p. 21-34, 1996.

Fearnside, P. M. Deforestation in Brazilian Amazonia: History, rates, and consequences.
Conservation Biology, v. 19, n. 3, p. 680-688, 2005.

Forrester, J. W.. Principles of systems. Cambridge: MIT Press, 1968.

Gamma, E.; Helm, R. et al. Design patterns: elements of reusable object-oriented
software. Reading, MA: Addison Wesley, 1994.

Ganzeveld, L.; Lelieveld, 2004. Impact of Amazonian deforestation on atmospheric
chemistry. Geophysical Research Letters, v. 31, n.6, Art. n. L06105, 2004.

Geist, H. J.; Lambin. E. F.. Proximate causes and underlying driving forces of tropical
deforestation. Bioscience v. 52, n. 2, p. 143-150, 2002.

Gibson, C. C.; Ostrom, E. et al.. The concept of scale and the human dimensions of
global change: a survey. Ecological Economics, v. 32, n. 2, p. 217-239, 2000.

http://mtc-m12.sid.inpe.br/rep-

 110

Githeko, A. K.; Lindsay, S. W. et al. Climate change and vector-borne diseases: a
regional analysis. Bulletin of the World Health Organization .v. 78, n. 9, p. 1136-
1147, 2000.

Henzinger, T. A. The Theory of Hybrid Automata. In: Symposium on Logic in
Computer Science (LICS'96), 11., 1996, Washington. Proceedings… Washington:
IEEE Computer Society, 1996.

Hestenes, D. Toward a Modeling Theory of Physics Instruction. American Journal of
Physics v. 55, n. 5, p. 440-454, 1987.

Hopcroft, J. E.; Ullman, J. D. Introduction to automata theory, language and
computation. Reading: Addison-Wesley Publishing Company, 1979.

Ierusalimschy, R.; Figueiredo, L. H. et al. Lua-an extensible extension language.
Software: Practice & Experience, v. 26, p. 635-652, 1996.

Instituto Nacioanl de Pesquisas Espaciais (INPE). Monitoramento da Floresta
Amazônica Brasileira por Satélite: banco de dados PRODES.2005. Avaible at:
<http://www.obt.inpe.br/prodesdigital/>. Accessed in: 30 of March 2006.

Kok, K.; Veldkamp, A. Evaluating impact of spatial scales on land use pattern analysis
in Central America. Agriculture Ecosystems & Environment, v. 85, n.1-3, p. 205-
221, 2001.

Lambin, E. F.; Geist, H. J. et al. Dynamics of land-use and land-cover change in tropical
regions. Annual Review of Environment and Resources, v. 28, p. 205-241, 2003.

Lambin, E. F.; Turner, B. L. et al. The causes of land-use and land-cover change:
moving beyond the myths. Global Environmental Change-Human and Policy
Dimensions, v. 11, n. 4, p. 261-269, 2001.

Laurance, W. F.; Albernaz, A. K. M. et al. Predictors of deforestation in the Brazilian
Amazon. Journal of Biogeography, v. 29, n. 5-6, p. 737-748, 2002.

Laurance, W. F.; Cochrane, M. A. et al. The future of Brazilian Amazon. Science, v.
291, p.988, 2001.

Laurance, W. F.; Williamson, G. B. Positive feedbacks among forest fragmentation,
drought, and climate change in the Amazon. Conservation Biology, v. 15, n. 6, p.
1529-1535, 2001.

Lim, K.; Deadman, P. J. et al.. Agent-based simulations of household decision making
and land use change near Altamira, Brazil. In: Gimblett, R. (ed). Integrating
geographic information systems and agent-based modeling: techniques for
simulating social and ecological processes. New York: Oxford University Press, p. 277–
310, 2002.

http://www.obt.inpe.br/prodesdigital/

 111

Malhi, Y.; Meir, P. et al. Forests, carbon and global climate. Philosophical
Transactions of the Royal Society of London Series A-Mathematical Physical and
Engineering Sciences, v. 360, p. 1567-1591, 2002.

Maxwell, T.; Costanza, R. Distributed modular spatial ecosystem modeling.
International Journal of Computer Simulation: Special Issue on Advanced
Simulation Methodologies, v. 5, n. 3, p. 247-262, 1995.

Minar, N.; Burkhart, R. et al. The swarm simulation system: a toolkit for building
multi-agent simulation. Santa Fe: SFI, SFI Working Paper 96-06-042, 1996.

Minsky, L. M. Computation: finite and infinite machines. Englewood Cliffs, NJ:
Prentice-Hall, Inc, 1967.

Munroe, D.; Calder, C. A. Multivariate multiple regression models of land use change:
can land use drivers predict continuous land cover outcomes?. Open Meeting of the
Human Dimensions of Global Environmental Change Research Community, 6., 2006,
Bonn, Germany. Proceedings…Bonn: [s.n], 2006.

Neeff, T.; Graca, P. M. D. et al. Carbon budget estimation in Central Amazonia:
Successional forest modeling from remote sensing data. Remote Sensing of
Environment, v. 94, n. 4, p. 508-522, 2005.

Negri, A. J.; Adler, R. F. et al. The impact of Amazonian deforestation on dry season
rainfall. Journal of Climate, v. 17, n. 6, p. 1306-1319, 2004.

Nobre, C. A.; Sellers, P. J. et al. Amazonian Deforestation and Regional Climate
Change. Journal of Climate, v. 4, n. 10, p. 957-988, 1991.

O'Sullivan, D. Graph-cellular automata: a generalised discrete urban and regional
model. Environment and Planning B-Planning & Design, v. 28, n. 5, p. 687-705,
2001.

Odum, H. T. Systems ecology: an introduction. John Wiley and Sons, 1983.

Oyama, M. D.; Nobre, C. A. A new climate-vegetation equilibrium state for Tropical
South America. Geophysical Research Letters, v. 30, n. 23, 2003.

Parker, D. C.; Berger, T. et al. Agent-based models of land-use and land-cover
change: report and review of an international workshop. Indiana:Indiana University.
2001. (L. R. No.6).

Pedrosa, B.; Câmara, G. et al. TerraML: a language to support spatial dynamic
modeling. In: Congresso Brasileiro de GeoInformação, 2002. Caxambu. Proceedings...
São José dos Campos: INPE, 2002.

 112

Pfaff, A. S. P. What drives deforestation in the Brazilian Amazon? Evidence from
satellite and socioeconomic data. Journal of Environmental Economics and
Management, v. 37, n. 1, p. 26-43, 1999.

Pontius, R. G. Quantification error versus location error in comparison of categorical
maps. Photogrammetric Engineering and Remote Sensing, v. 66, n. 8, p. 1011-1016,
2000.

Pontius, R. G. Statistical methods to partition effects of quantity and location during
comparison of categorical maps at multiple resolutions. Photogrammetric
Engineering and Remote Sensing, v. 68, n. 10, p. 1041-1049, 2002.

Pontius, R. G.; Huffaker, D. et al. Useful techniques of validation for spatially explicit
land-change models. Ecological Modelling, v. 179, n. 4, p. 445-461, 2004.

Roberts, N.; Anderson, D. et al. Introduction to computer simulation: a system
dynamics modeling approach. Reading, MA: Addison-Wesley, 1983.

Rosenschein, S. J.; Kaelbling, L. P.. A situated view of representation and control.
Artificial Intelligence, v. 73, n. 149-73, 1995.

Russel, S. J.; Norvig, P. Artificial intelligence – a modern approach. Nova Jersey:
Prentice Hall, 1995.

Schmidt, D. C.; Fayad, M. et al. Software pattern.. Communications of the ACM, v.
39, n. 10, p. 37-39, 1996.

Smyth, C. S. A representational framework for geographic modeling. Egenhofer, M.
J.; Golledge, R. G. (eds.). New York: Oxford University Press, p. 191-213,1998.(Spatial
and temporal reasoning in geographic information systems).

Soares, B. S.; Assunção, R. M. et al. Modeling the spatial transition probabilities of
landscape dynamics in an amazonian colonization frontier. Bioscience, v. 51, n. 12, p.
1059-1067, 2001.

Soares, B. S.; Cerqueira, G. C.et al. DINAMICA - a stochastic cellular automata model
designed to simulate the landscape dynamics in an Amazonian colonization frontier.
Ecological Modelling, v. 154, n. 3, p. 217-235, 2002.

Southworth, J.; Binford, M. Footsteps on the land: detecting and analyzing change
within a continuous landscape framework in and around National Park, Uganda. In:
Open Meeting of the Human Dimensions of Global Environmental Change Research
Community, Bonn, Germany, 2005. Proceedings… Bonn: IGBP, 2005.

Southworth, J., Munroe, D. et al. Land cover change and landscape fragmentation -
comparing the utility of continuous and discrete analyses for a western Honduras
region. Agriculture Ecosystems & Environment, v. 101, n. 2-3, p. 185-205, 2004.

 113

Straatman, B., Hagen, A. et al. The Use of Cellular Automata for Spatial Modelling and
Decision Support in Coastal Zones and Estuaria. M. M. T. R. I. f. K. a. Systems.
Maastricht, The Netherlands: Maastricht University, 2001.

Takeyama, M.; Couclelis, H. Map dynamics: Integrating cellular automata and GIS
through Geo-Algebra. International Journal of Geographical Information Science,
v. 11, n. 1, p.73-91, 1997.

Turner II, B. L.; Ross, R. H. et al. Relating land use and global land cover change:
IGDP report no. 24 - HDP report no. 5. Stockholm: Royal Swedish Academy of
Sciences, 1993.

Turner II, B. L.; Skole, D. et al. Land-Use and Land-Cover Change
Science/Research Plan. I. R. N. a. H. R. N. 7. Stockholm and Geneva, IGBP
Secretariat, 1995.

Vanacker, V.; Linderman, M. et al. Impact of short-term rainfall fluctuation on
interannual land cover change in sub-Saharan Africa. Global Ecology and
Biogeography, v. 14, n. 2, p.123-135, 2005.

Vasconcelos, P. F.; Travassos da Rosa, A. P. et al.. Inadequate management of natural
ecosystem in the Brazilian Amazon region results in the emergence and reemergence of
arboviruses. Cadernos de Saúde Pública, v. 17, p. 155-164, 2001.

Veldkamp, A.; Fresco, L. O.. CLUE: a conceptual model to study the Conversion of
Land Use and its Effects. Ecological Modelling, v. 85, p. 253-270, 1996.

Veldkamp, A.; E. F. Lambin. Predicting land-use change. Agriculture Ecosystems &
Environment, v. 85, n. 1-3, p. 1-6, 2001.

Verburg, P., Schot, P. et al.. Land use change modeling: current practices and research
priorities. GeoJournal, v. 61, n. 4, p. 309-324, 2004.

Verburg, P. H., Soepboer, W. et al.. Modeling the Spatial Dynamics of Regional Land
Use: The CLUE-S Model. Environmental Management, v. 30, n. 3, p. 391-405, 2002.

Verburg, P. H., Veldkamp, A. et al.. A spatial explicit allocation procedure for
modelling the pattern of land use change based upon actual land use. Ecological
modelling, v. 116, p. 45–61, 2004.

von Neumann, J.. Theory of self-reproducing automata. Illinois: A.W. Burks, 1966.

Walker, R.. Theorizing land-cover and land-use change: The case of tropical
deforestation. International Regional Science Review, v. 27, n. 3, p. 247-270, 2004.

Walker, R., Drzyzga, S. A.et al.. A behavioral model of landscape change in the
Amazon Basin: The colonist case. Ecological Applications, v. 14, n. 4, p. S299-S312,
2004.

 114

Werth, D.; Avissar, R.. The local and global effects of Amazon deforestation. Journal
of Geophysical Research-Atmospheres, v. 107, n. D20, 2002.

Wesseling, C. G.; Karssenberg, D. et al. Integrating dynamic environmental models in
GIS: the development of a Dynamic Modelling language. Transactions in GIS, v. 1, p.
40-48, 1996.

White, R.; Engelen, G. Cellular automata as the basis of integrated dynamic regional
modelling. Environment and Planning B: Planning and Design, v. 24, p. 235-246,
1997.

White, R.; Engelen, G. et al. Vulnerability assessment of low-lying coastal areas and
small islands to climate change and sea level rise – Phase 2: Case study St. Lucia.
Kingston, Jamaica: United Nations Environment Programme - Caribbean Regional Co-
ordinating Unit, 1998.

Wilson, E. O. Threats to Biodiversity. Scientific American, v. 261, n. 3, p. 108-&,
1989.

Wolfram, S. Cellular automata as models of complexity. Nature, v. 311, p. 419-424,
1984.

Wooldridge, M. J.; Jennings, N. R. Intelligent agents: Theory and practice. Knowledge
Engineering Review, v. 10, n. 2, 1995.

Zeigler, B. P.; Kim, T. G. et al. Theory of modeling and simulation. Orlando, FL,
USA: Academic Press, Inc, 2005.

	COVER

	VERSUS
	TITLE PAGE

	INDEX CARD

	APPROVAL TERM

	EPÍGRAPHY

	DEDICATORY

	ACKNOWLEDGEMENTS

	ABSTRACT
	RESUMO
	SUMMARY
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS AND ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 The problem of modeling land use and land cover change
	1.2 Objective of the work
	1.3 Scientific questions
	1.4 Outline of the thesis

	CHAPTER 2 THEORETICAL FOUNDATION AND PREVIOUS WORK
	2.1 A brief introduction to the LUCC modeling theory and practice
	2.2 The modeling process
	2.3 The role of scale in LUCC modeling
	2.3.1 Scale issues in the choice of spatial representation
	2.3.2 Scale issues in choice of temporal representation
	2.3.3 Scale issues in the choice of analytical representation
	2.3.4 Summary: the need for multiple scales

	2.4 Models of computation for dynamic modeling
	2.4.1 Finite automata
	2.4.2 Hybrid automata
	2.4.3 Cellular automata
	2.4.4 Situated agents

	2.5 Conclusion

	CHAPTER 3 THE Nested-CA MODEL
	3.1 Introduction
	3.2 Nested CA: a general view
	3.3 Nested-CA: formal definitions
	3.4 The Nested-CA models of computation
	3.5 The semantics of the Nested-CA model: a situated hybrid automaton
	3.6 Modeling using a nested-CA: an example
	3.6.1 A hydrologic balance spatial dynamic model

	3.7 Properties of the nested-CA model
	3.8 Comparison with previous works
	3.9 Conclusion

	CHAPTER 4 TerraME: A LUCC MODELING FRAMEWORK
	4.1 Introduction
	4.2 Design choices
	4.3 TerraME: a general view
	4.4 TerraME system architecture
	4.5 The TerraME framework architecture
	4.5.1 Model representation services
	4.5.2 Model simulation services

	4.6 The TerraME modeling language
	4.6.1 The multiple scale model
	4.6.1.1 The Scale type

	4.6.2 The spatial model
	4.6.2.1 The CellularSpace type
	4.6.2.2 The Cell type
	4.6.2.3 The Neighborhood type

	4.6.3 The analytical model
	4.6.3.1 The GlobalAutomaton and LocalAutomaton types
	4.6.3.2 The SpatialIterator type
	4.6.3.3 The ControlMode type
	4.6.3.4 The JumpCondition type
	4.6.3.5 The FlowCondtion type
	4.6.3.6 The hydrologic balance model example

	4.6.4 The temporal model
	4.6.4.1 The Timer type
	4.6.4.2 The Event type
	4.6.4.3 The Message type

	4.6.5 Database management routines
	4.6.6 Defining runtime variables
	4.6.7 Synchronizing the space
	4.6.8 Configuring and starting the simulation

	4.7 Comparison with previous work
	4.8 Conclusion

	CHAPTER 5 APPLICATION OF NESTED CA FOR MODELING OF LAND USE CHANGE IN BRAZILIAN AMAZON
	5.1 A brief review on LUCC modeling in Brazilian Amazon
	5.2 Applications
	5.2.1 The CLUE model in TerraME
	5.2.2 A deforestation model for heterogeneous spaces: the Rondônia case.

	5.3 Conclusion and future work

	REFERENCES

