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ABSTRACT 

This work presents the mathematical foundations of the Nested Cellular Automata 
(nested-CA) model, a model of computation for multiple scale Land Use and Land 
Cover Change studies.  The main properties of nested-CA model are described and 
compared to the agent-based and cellular automata models of computation. The nested-
CA model has been implemented in a software environment, called TerraME (Terra 
Modeling Environment), which provides a high-level modeling language for model 
description, a set of spatiotemporal data structures for model representation and 
simulation, a module for spatiotemporal data management and analysis integrated to a 
geographic information system, and a set of functions for model calibration and 
validation. We describe the main design choices involved in the development of the 
TerraME modeling environment. Its architecture is detailed and the main properties are 
compared with other modeling tools: Swarm, STELLA, and GEONAMICA. Finally, the 
concept of nested-CA and the TerraME architecture are demonstrated in two 
applications of land cover change in the Brazilian Amazon. 

 

 
 

 

 

 

 

 





 
 

Nested-CA: UM FUNDAMENTO PARA A MODELAGEM DE MUDANÇAS DE 
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RESUMO 

Este trabalho apresenta a base matemática do modelo chamado Autômatos Celulares 
Aninhados (Nested-CA), um modelo de computação destinado ao desenvolvimento de 
modelos de mudança de uso e cobertura do solo em múltiplas escalas. As principais 
propriedades do modelo nested-CA são descritas e comparadas aos modelos de 
computação baseados em agentes e em autômatos celulares. O modelo nested-CA foi 
implementado em um ambiente computacional, chamado TerraME, que oferece uma 
linguagem de alto nível para a descrição de modelos, um conjunto de estruturas de 
dados espaço-temporais para a representação e simulação dos modelos, um modulo para 
o gerenciamento e análise de dados espaço-temporais integrado a um sistema de 
informações geográficas, e um conjunto de funções para calibração e validação dos 
modelos. As decisões de projetos envolvidas no desenvolvimento do ambiente de 
modelagem TerraME são descritas. A arquitetura do ambiente é detalhada e suas 
principais propriedades são comparadas com outras plataformas de modelagem: Swarm, 
STELLA, e GEONAMICA. Finalmente, o conceito de nested-CA e o ambiente TerraME 
são demonstrados em duas aplicações de mudança de cobertura do solo para a 
Amazônia brasileira.  
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CHAPTER 1 

INTRODUCTION 

1.1 The problem of modeling land use and land cover change 

One of the most important challenges in geographical information science is to 

providing a computational framework for modeling environmental change. The Earth’s 

environment is changing at an unprecedented pace. Planners and policy makers need 

modeling tools that are able to capture the dynamics and outcomes of human actions 

(Turner II, Skole et al. 1995). A particular area of interest on environmental models is 

the modeling of land use and land cover change (LUCC). These models aim at 

identifying determinant factors of land use change, envisioning which changes will 

happen, and assessing how choices in public policy can influence change.  

An important area for LUCC studies is the process of deforestation on the Brazilian 

Amazonia. Some LUCC studies try to determine proximate causes and driving forces of 

deforestation (Pfaff 1999; Geist and Lambin 2002; Laurance, Albernaz et al. 2002; 

Aguiar, Kok et al. 2005). LUCC models have been applied to the region in an attempt to 

understand the land use change dynamics and its consequences (Laurance, Cochrane et 

al. 2001; Soares, Cerqueira et al. 2002; Deadman, Robinson et al. 2004; Walker, 

Drzyzga et al. 2004; Aguiar, Kok et al. 2005). Despite much research, there is currently 

no agreement as to the main causes of Amazon deforestation (Câmara, Aguiar et al. 

2005). This is partly due to the lack of an established theory on human-environment 

interaction. On the other hand, there is a clear sense among the LUCC scientific 

community that human activities play a central role on the land use system (Lambin, 

Turner et al. 2001; Parker, Berger et al. 2001). These studies reinforce the thesis that 

LUCC modeling efforts should attempt to represent the multiples drivers of human-

environment interaction at different spatial and temporal scales (Lambin, Geist et al. 

2003; Aguiar, Kok et al. 2005; Escada, Monteiro et al. 2005). 
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One of the critical notions in LUCC models is the concept of scale. Following Gibson et 

al. (2000), this work uses scale as a generic concept that includes the spatial, temporal, 

or analytical dimensions used to measure any phenomenon. Understanding scale is 

important since the causes and consequences of environmental changes can be 

measured along multiple scales. Important aspects of scale are its extent and resolution. 

Extent refers to the magnitude of measurement.  Resolution refers to the granularity 

used in the measures. In the spatial dimension of scale, extent is the geographical area 

under study and resolution is the geometric partition used to sample the phenomenon. In 

the temporal dimension of scale, extent is the time period considered in the analysis and 

resolution is the frequency in which changes are recorded. In the analytical dimension 

of scale, extent refers to the set of processes taken into account, and resolution refers to 

the lowest level of organization for the processes (e. g. landowner level or community 

level).  

Earlier studies have argued that LUCC model outcomes can be strongly influenced by 

the chosen spatial extent and resolution (Kok and Veldkamp 2001). At different scales, 

changes are governed by different driving forces and different sets of processes (Turner 

II, Skole et al. 1995; Verburg, Schot et al. 2004). Thus, a multi-scale representation on 

the spatial, temporal and analytical dimensions is required for realistic environmental 

models, especially in LUCC studies. A single choice of extent and resolution in each of 

these dimensions would not be sufficient to simulate realistic geographical phenomena 

and reproduce expected spatial patterns.  

Environmental models require proper computational frameworks. Some of the most 

popular computational models for LUCC are based on cellular automata (CA) models. 

CA models have been used for landscape and urban dynamic model development and 

assessment (White and Engelen 1997; Batty 1999; Almeida, Monteiro et al. 2003). 

These CA extensions share one limitation: the application of a single set of rules to the 

whole lattice. This approach has led to criticism since it cannot convey the complex 

motivations that drive human actions (Briassoulis 2000).  In an attempt to capture these 

different responses, researchers have proposed the use of agent-based models for 

landscape and urban dynamic modeling (Parker, Berger et al. 2001). However, current 
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agent-based models still fall short of modeling one crucial aspect of landscape and 

human dynamics: scale-dependent change. Looking at a landscape or a city at different 

scales will reveal different phenomena. The cause-effect relationships that control the 

landscape dynamics at a smaller scale will be different from those at a larger scale 

(Verburg, Schot et al. 2004). For example, one of the effects of an increase of the price 

of grains in the international market on a developing nation varies depending on the 

observation scale. On a regional basis, these effects may be the construction of new 

roads and migration to new agricultural areas. On a local basis, they include land 

disputes and decisions on capital investment. Therefore, differences in scale engender 

differences in causative factors, which need to be translated into agent rules. Agent-

based models that use a single scale will not be able to represent such scale-dependent 

behavior.  

To overcome the shortcomings of traditional CAs and agent-based models for land use 

change and to allow multiscale modeling of LUCC processes, this work proposes a new 

type of CA: nested cellular automata. The purpose of a nested-CA is to allow 

representation of multiple scales, where each scale is associated to a specific analytical, 

spatial and temporal extent and resolution. Each scale is a building block of a complex 

LUCC model. Model building blocks are organized in a hierarchical structure, where 

the upper level scales provide overall control for the lower ones.   

1.2 Objective of the work 

The main goal of this work is to propose the concept of a Nested Cellular Automata 

(Nested-CA) and describe its main properties. In what follows, we provide a 

mathematical foundation of the concept of Nested-CA and develop a computational 

framework for assessment of the concept. This software environment, called Terra 

Modeling Environment (TerraME), is used to develop a LUCC model for the Amazon 

region, which explores the main properties of the Nested-CA model. 
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1.3 Scientific questions 

This research postulates the following scientific questions: 

• What are the mathematical foundations for a model of computation adequate for 

multiple scale LUCC studies?  

• What is the best architecture for a model of computation for multi-scale LUCC 

studies?   

1.4 Outline of the thesis 

A review of the relevant literature models of computation for LUCC models is 

presented in Chapter 2. Chapter 3 presents the formal definition of nested CA model 

and compares this model with other works. Chapter 4 describes a computational 

architecture for spatial dynamic modeling. In Chapter 5, the concept of nested-CA and 

the computational architecture are demonstrated in two applications of land cover 

change in the Brazilian Amazon. 
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CHAPTER 2 

THEORETICAL FOUNDATION AND PREVIOUS WORK 

2.1 A brief introduction to the LUCC modeling theory and practice 

According to Hestenes (1987), modeling is the cognitive process in which the principles 

of one or more theories are applied to produce a model of a real phenomenon. A 

phenomenon is any concrete fact or situation of scientific interest, which can be 

described or explained. Any model is an outcome from the creativity of the modeler and 

from the knowledge she has about the observed phenomenon. During the modeling 

activity, the modeler will always need to specify the structure (syntax) and functioning 

(semantics) of the idealized model. This specification can be represented on different 

ways. A model can be defined as a simplified and abstract representation of a 

phenomenon, based on a formal description of entities, their relations, and processes. 

Model simulation is the act of reproducing the behavior of some phenomenon in a 

computer environment.  (Odum 1983; Briassoulis 2000; Parker, Berger et al. 2001).  

Models where there is the time as an independent variable are named dynamic models 

(Odum 1983). Spatially explicit models or spatial models are models whose outcomes 

depend on the spatial position of each value on the input data or on the spatial pattern 

present on it (Parker, Berger et al. 2001). Usually, the outcomes of a spatial model are 

maps. A spatial dynamic model is a model that has a temporal structure, a spatial 

structure, and behavior rules that describe the changes of a spatial phenomenon (Smyth 

1998; Couclelis 2000). A LUCC model is a spatial dynamical model that describes 

changes of land use and cover in a geographical area that result from the interaction of 

human with the environment. 

Most LUCC models have a common functional structure (Veldkamp and Fresco 1996; 

White, Engelen et al. 1998; Lim, Deadman et al. 2002; Soares, Cerqueira et al. 2002; 

Verburg, Soepboer et al. 2002). LUCC models distinguish between the projection for 

the quantity of change and the projection for the location where these changes will take 
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place (Veldkamp and Lambin 2001). In the first stage, they answer the “when?” 

question, and establish its temporal extent and resolution. In the second stage, LUCC 

models have rules that govern the amount of change (the “how much?” question). In the 

next stage, the models determine where the projected change will take place (the 

“where?” question). On the final stage, the models apply the changes on an appropriate 

way, including external restrictions (the “how?” question). For example, a deforested 

location could never become primary forest again. At the end of the fourth stage, the 

models are back to the first stage until the simulation finishes. 

There are two usual approaches for the projection of the amount of change (the “how 

much?” question). The first approach takes two maps about the phenomenon in different 

time instants and calculates the quantity of change (Veldkamp and Fresco 1996). A 

extrapolation method projects the observed trend on the future. The second approach 

uses a demographic or econometric model to calculate the quantity of change (White, 

Engelen et al. 1998).  

For change allocation (the “where?” question), the most common approach is to 

calculate a change potential surface. Each location will have a numeric value indicating 

how prone this location is to change. Then the model traverses the surface in an 

ascending order of potential, applying the changes (White, Engelen et al. 1998). Some 

models use multi-linear regression for change allocation, such as the CLUE model 

(Veldkamp and Fresco 1996). Other approaches include a stochastic combination of 

diffusive and spontaneous change, such as the DINAMICA model (Soares, Cerqueira et 

al. 2002). 

2.2  The modeling process 

The spatial dynamic phenomena modeling process comprehends the phases described 

below, which not need to occur in the order they are presented. These phases are carried 

out several times, in a cyclic way as shown in figure 2.1, where each cycle leads to a 

more refined model. 
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• Database development: Acquisition and conversion of spatial data to feed the 

model. The database should include data for model calibration and model 

validation stored at several spatial scales. Geographical information systems 

(GIS) are the appropriate tool for managing and analyzing spatial data. 

Therefore, a software platform for environmental change modeling would be 

more useful if integrated with a GIS (Wesseling, Karssenberg et al. 1996), which 

provides services for data storage, aggregation, allocation and recovery at 

different scales. 

• Model development: in this stage the user defines the entities that will be part 

of the model and the rules that will govern its dynamics. She needs to choose the 

scales in which the experiments will be conducted and the appropriate 

representations for the spatial, temporal and analytical dimensions of each scale. 

It is also important to model the interactions among the scales and among the 

model entities. Hence, a software framework toward environmental change 

modeling should provide services for the specification of:  (a) what database 

data will be used as input data for the model; (b) what will be the output data 

and where they will be stored; (c) the time instants in which the simulation 

outcomes will be saved or visualized; (d) the scales considered on the model; (e) 

for each scale: (e.1) the entities that will be part of the model and the rules used 

to simulate their behaviors; (e.2) the interactions or feedbacks among entities; 

(e.3) the temporal order in which the entities will be simulated; (e.4) what will 

be the local properties or constraints in each space location; (e.5) the way the 

entities, possibly, traverse the spatial structure; and (f) interactions or feedbacks 

among different scales. 

• Model calibration, verification and validation: after model development, the 

model needs to be verified to check if its implementation corresponds to 

idealized model. After that, it is important to calibrate the model. Calibration 

requires adjustment to available data. Then, the model needs to be validated by 

evaluating its behavior and outcomes when a different dataset is used to feed it. 

There are methods for calibrating and validating spatially explicit models on the 
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literature (Costanza 1989; Pontius 2000; Pontius 2002; Pontius, Huffaker et al. 

2004). Thus, a tool for spatial dynamic model development should provide 

automatic methods for model calibration, verification and validation (Veldkamp 

and Lambin 2001). 

• Model execution and visualization; and report analysis: in this phase the 

model is executed, generating summary reports and spatiotemporal data which 

register the model dynamics. Any modeling tool should provide services to 

allow the modeler to specify the report contents. It is also important that services 

for visualization and analysis are supplied. 

• Scenario projections: in this stage the modeler tests hypotheses about the 

modeled phenomenon and try to answer “what if” question about the future in an 

attempt to aid the decision-making processes. Therefore, an environmental 

change modeling tool should offer services for the scenario development and 

hypotheses evaluation. 

 
Figure 2.1 – Cyclical model development process 

2.3 The role of scale in LUCC modeling 

In this subsection, we consider the scale issues involved in the spatial, temporal, and 

analytical representations for LUCC models. As explained in Section 1, we follow 

Gibson et al. (2000) and use scale as a generic concept that includes the spatial, 

temporal, or analytical dimensions used to measure any phenomenon. The concept of 
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scale is associated to the need to construct discrete computer representations. We will 

argue that a multiple scale representation on all of these dimensions is required for 

realistic environmental change models.  

2.3.1 Scale issues in the choice of spatial representation 

Since locating change allows a better analysis of the underlying forces that cause it, 

spatially explicit modeling is necessary to understand geographical reality. Spatial 

explicit models require a choice of a discrete spatial representation. Each representation 

has an extent and a resolution. The choice of extent and resolution is crucial, since these 

factors condition the results of the model. Coarse resolution enables depiction of global 

patterns, but local variability can be obscured. Fine resolution shows local variability, at 

the expense of possibly introducing noisy patterns. A large extent will include various 

spatial patterns which result from different processes. A small extent might not include 

the whole spatial pattern. The models should assess the model at different spatial extent 

and resolution to improve her understanding of scale effects. 

Environmental changes, at different scales, are often influenced by diverse socio-

economic, biophysical, and proximate relationships that act as driving forces (Turner II, 

Ross et al. 1993; Turner II, Skole et al. 1995; Verburg, Schot et al. 2004).  Consider two 

types of LUCC models for deforestation. The first operates at a regional scale, with a 

large extent and a coarse resolution. The second operates at a local scale, with a small 

extent and fine resolution. At a regional scale, available urban/rural infrastructure, road 

or market proximity, and annual rainfall are relevant LUCC driving forces. At a local 

scale, family structure, farm frontiers proximity, soil moisture, and modalities of land 

management seen to be more impelling driving forces.  

2.3.2 Scale issues in choice of temporal representation 

A second choice for environmental models is the choice of temporal representation. 

Each temporal representation will have its extent and resolution. The extent refers to the 

time period under consideration. The resolution is the minimum time period where the 

process is sampled. Land use changes are caused by different anthropogenic and 

biophysical processes which act at different temporal extents and resolutions. Changes 
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in political, institutional, and economic conditions can cause rapid changes in the rate or 

direction of land-cover change (Turner II, Skole et al. 1995). Government policies 

change typically in an yearly temporal resolution. Forest clearing and land abandonment 

are processes that depends on these conditions and can also present a climatic 

dependence at a higher temporal resolution (multi-decadal time span). Short-term 

rainfall variability may also have significant impact on interannual land cover change 

(Vanacker, Linderman et al. 2005).  

As in the case of spatial representation, the choice of temporal representation is also a 

compromise. A sparse temporal resolution can result in a poor description of the 

dynamics of change, whereas a very detailed resolution may introduce noise in the 

studies. The choice of the temporal extent has to consider the persistence of the 

observed phenomena. For LUCC models, one of the temporal constraints is the limited 

availability of land cover data before the 1970s, where global remote sensing satellites 

became available. The other constraint is the long-term uncertainty of the models and 

the long-term error propagation. Some authors consider a period of 10 to 15 years for 

the maximum possible validity of LUCC models (Turner II, Skole et al. 1995). 

One of the problems in LUCC modeling is that the processes represented in the model 

may have different temporal resolutions. Most of the anthropogenic processes are 

modeled in coarse resolutions, typically on yearly resolutions.  Biophysical processes 

such as vegetation regrowth need detailed resolutions. A process may be represented in 

different temporal resolutions for distinct spatial extents. A LUCC model may use an 

annual temporal resolution to represent a deforestation process and a monthly resolution 

to represent changes in cultivated areas.  

2.3.3 Scale issues in the choice of analytical representation 

At each analysis scale, a different set of processes will cause changes. When modeling 

land use change, authors distinguish between proximate causes and underlying causes of 

change (Turner II, Skole et al. 1995). Proximate causes of deforestation are human 

activities that directly affect the environment. Underlying driving forces (or social 

processes) are seen to be fundamental forces that support the more obvious or proximate 
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causes of tropical deforestation. They can be seen as a complex of social, political, 

economic, technological, and cultural variables that constitute initial conditions in the 

human-environmental relations that are structural (or systemic) in nature (Geist and 

Lambin 2002). 

At a local scale, people take decisions directly related to the management of land. Forest 

clearing or burning is an important process in conversion of forest into pasture or 

agriculture area. At regional scale, agriculture intensification and road construction are 

others examples of processes in LUCC. At a global scale, forest fragmentation can show 

a positive feedback with global warming (Laurance and Williamson 2001). In this 

perspective, the human dynamics of land-use change can be fitted from large- to small- 

scale processes (Turner II, Skole et al. 1995). Non-linearity, emergence and collective 

behavior may prevent a proper modeling of higher-level processes from the aggregation 

of detailed scale processes (Verburg, Schot et al. 2004). In this sense, process 

representation is scale-dependent. 

The scale issues related to the choice of analytical representation for LUCC models 

include: 

• Use of categorical or continuous variables to depict land-use change. 

• The granularity of the actors involved. Models can depict individuals as actors, or 

may choose to capture change based on coarser scale processes such as 

agricultural intensification. 

• The choice of the analytical model. When change is depicted as discrete events 

and the variables are categorical, the finite automata model is a suitable tool. 

When change is portrayed as a continuous event and the variables are continuous, 

hybrid automata (discussed in the next section) are a more suitable choice 

Some studies compare the use of continuous and discrete variables in LUCC models 

(Southworth, Munroe et al. 2004; Binford and Cassidy 2005; Munroe and Calder 2005; 

Southworth and Binford 2005). They conclude that both approaches are complementary, 
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and that both are required to answer significant questions of land change (Southworth, 

Munroe et al. 2004; Binford and Cassidy 2005). At coarse resolution the LUCC process 

should be modeled by continuous variables, to avoid loss of model performance due to 

data aggregation. At finer resolution, discrete variables can be used, since data 

variability can be preserved.  

2.3.4 Summary: the need for multiple scales 

The spatial, temporal and analytical dimensions of scale establish requirements for the 

development of spatial dynamic models. The previous discussion point out that a LUCC 

model must be capable of handling multiple scales at each representation: 

• Spatial representation: support the development of spatial models where spaces 

partitions can be modeled at different extents and resolutions, characterized by 

multiple and distinct proximity relations and described by specific local properties 

or constraints.  

• Temporal representation: provide a continuous time base where discrete changes 

may occur, and distinct processes can change in a synchronous or asynchronous 

fashion. 

• Analytical representation: support the development models where a space 

partition has several processes acting on it. Process can be represented by discrete 

and continuous variables and rules, which may belong to different analytical 

resolutions (e. g. individual behavior, collective behavior). 

2.4 Models of computation for dynamic modeling  

This section provides the mathematical formalization and a brief review on the main 

computational models which are the foundation for spatial dynamic models proposed in 

this work. These models are: 

(a) The finite automata model (Minsky 1967), which is the conceptual basis for 

simulating discrete behavior. It allows simulation of process which behavior is 

neither sequential nor predetermined because it depends on external events. 
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(b) The hybrid automata model (Henzinger 1996), an extension of the finite 

automata model that allows simulation of continuous behavior. 

(c) The cellular automata model (von Neumann 1966), which is used to simulate 

behavior in n-dimensional space. 

(d) The situated agent theory (Rosenschein and Kaelbling 1995), which is used to 

guarantee a consistent behavior between an automata and its surrounding 

environment.  

The CA model has been used for landscape and urban dynamic model development and 

assessment (White and Engelen 1997; Batty 1999; Almeida, Monteiro et al. 2003). 

Pedrosa et al. (2002) were the first to propose the replacement of the von Neumann CA 

discrete automaton by a hybrid automaton (Henzinger 1996) for LUCC modeling. This 

works extends their proposal by proposing LUCC models that combine hybrid automata 

theory with situated agent theory, and provide a support for multiscale modeling.  

2.4.1 Finite automata 

A finite automata or finite state machine is a abstract model for a real phenomenon or 

system and may be defined as a directed graph Gg = (V, Eg), called transition diagram, 

where V is a finite set of vertices and Eg is a set of ordered vertices pairs named arcs 

(Hopcroft and Ullman 1979). Each graph vertex corresponds to one automaton state. If 

there is a transition from the state q to the state p, as a response to one input a, them in 

the transition diagram Gg there is an arc from the vertex q to the vertex p with label a. 

Each arc is associated to a transition rule which determines if the transition described by 

the arc will be executed. The finite automata model uses a discrete time base (Minsky 

1967). The variable t which represents time is assigned to discrete values 0, ±1, ±2, .... 

The behavior of the automata is a linear sequence of events in time. Since the set of 

possible states is finite, a finite automaton is not appropriate to simulate behavior where 

the set of system states is potentially infinite. Figure 2.2 shows a transition diagram for 

a finite automaton capable to store a binary digit that was provided as input at the 

instant t-1. The symbol that triggers a transition is presented at the origin of the arcs. 
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The symbol at the middle of an arc represents the response of the machine at the 

transition time. 

 
Figure 2.2 – Transition diagram for the memory machine. 

Due to its simplicity, existence of an underling formal theory, and event-driven 

properties, the finite automata model (Minsky 1967) is widely used for modeling 

dynamical systems where the flow control is neither sequential nor predetermined 

because it depends on external events. 

2.4.2 Hybrid automata 

A hybrid automaton is an abstract model for a system which behavior has discrete and 

continuous components, that is, a hybrid system. A hybrid automaton consists of a finite 

automaton equipped with continuous variables and continuous operations over them 

(Henzinger 1996). A hybrid automaton extends the idea of finite automata to allow 

continuous change to take place between transitions. Inside each discrete state, the 

automaton continuous variables are allowed to change. The adoption of hybrid automata 

theory to LUCC models brings several benefits. One of the challenges of LUCC 

modeling is to combine land use change with its effects in the terrestrial and water 

ecosystems. For example, consider a coupled model for tropical vegetation that has a 

critical threshold caused by land use change. The use of a hybrid automaton would 

allow the modeling of the tropical vegetation system under two very different 

conditions. We have adapted Henzinger’s hybrid automata model as a basis of LUCC 

models. As used in this work, a hybrid automaton H is defined by the structure (X, G, 

init,  flow,  jump,  method) where:  

(a) Variables: a finite set X = {x1,...,xn} of real variables, modeled as set of points 

in the Rn
 space. The notation X’ = {x1’,...,xn’} is used to denote the set of first 
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derivatives. The notation X* = {x1
*,...,xn

*} is used to denote the values of the 

set X at the moment of a transition between states. 

(b) Control graph: a finite directed graph G = (V, S). The vertices in V represent 

the discrete states of the system and are named control modes. The edges in S 

model the system discrete dynamics and are called control switches.  

(c) Initial condition: The automaton H has an associated function init, which  is the 

starting point of the system. It determines the initial control mode and the 

values of set X of model variables.  

(d) Flow conditions: Each control mode v ∈ V has an associated function flow. The 

flow condition flow(v) defines the behavior of the system inside each control 

mode and is generally specified as a differential equation.  

(e) Jump condition: Each control switch s ∈ S has an edge labeling function jump. 

The jump condition jump(s) is a predicate over X ∪ X* and determines if a 

control switch will be trigged;  

(f) Method = {m1,...,mn} is a set of methods, called to obtain information about the 

automaton internal state, or to update the value of any variable x ∈ X.  

We define a configuration of a hybrid automaton as a pair (v,x), where v ∈ V is the 

current control mode and X+ = {x1
+,...,xn

+} is the current value of its variables.  

Communication between automata uses remote method invocation. Each automaton 

provides a set of methods that can be called by other automata. By calling methods of 

other automata, an automaton can obtain information about their configuration. The 

behavior of the automaton depends on the current control mode. This determines the 

flow condition that will be executed and the subset of jump conditions that may cause a 

transition between control modes. The hybrid automaton on the figure 2.3 models a 

climate variation system. The x variable represents the temperature. In the control mode 

cooling, the climate is becoming cooler and the temperature is declining according to 

the flux condition dx/dt = -0,1x. In the control mode warming, the climate is becoming 
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warmer and is temperature is rising according to the flux condition dx/dt = 5-0,1x. 

Initially, the temperature is 200 C. The jump condition x < 19 indicates that the climate 

system will shift to the ‘warming’ mode as soon as the temperature falls below 190 C. 

The jump condition x > 21 indicates that the climate system will shift to the ‘cooling’ 

mode as soon as the temperature is higher than 210 C. 

 
Figure 2.3 – Hybrid automata model for a climate variation system.  

Source: adapted from (Henzinger 1996). 

2.4.3 Cellular automata 

A cellular automata (CA) as conceived by von Neumann (1966) is comprised of a finite 

two-dimensional lattice of squared cells, a finite automaton, and a neighborhood 

relationship. Each cell is occupied by a copy of the finite automaton which is connected 

to its four adjacent automata. As the same set of rules is present on each cell, the 

cellular structure is said functionally homogeneous. The von Neumann CA is isotropic 

and stationary. Each automaton has the same neighborhood relationship in all 

directions. All automata have the same configuration of neighbors. The finite automaton 

on each cell may be on a different initial state. Hence, one cellular space region can act 

on a given way and send information on a determined direction while another can 

behave on a different manner and send information to other direction. The cellular 

automata model (CA) is useful due to its capacity to reproduce spatial changing trough 

diffusion processes (Couclelis 1997; Batty 1999) and since it can simulate emergent 

phenomena (Wolfram 1984). 

The information flow in a CA is unidirectional. When an automaton is being executed, 

it requests information from its neighbors. This information is combined with the 

internal state of the automaton to define the action it will take. Figure 2.4(a) presents the 

view of a portion of a CA lattice, showing the CA finite automaton on different states 

on each cell. Figure 2.4(b) shows the CA finite automata neighborhood relationship. 
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Figura 2.4 – Cellular Automata: (a) same finite automaton on each cell - the cellular 

structure is functionally homogeneous, and (b) same neighborhood 
relationship on each cell - the cellular structure is isotropic and stationary. 

2.4.4 Situated agents 

In an attempt to capture the dynamic of phenomena whose are outcomes of several 

individual interactive systems act over the space, researchers have proposed the use of 

agent-based models immersed in a cellular space (Parker, Berger et al. 2001). There 

are different and sometimes conflicting definitions of the concept of an ‘agent’ 

(Wooldridge and Jennings 1995). This work adopts the definition provided by Russel 

(1995). An agent is an abstract model for an entity that is embedded in an environment. 

The agent is capable of sensing the environments and of acting on it. We consider that 

an agent has three properties: autonomy, social ability, and reactivity. To be 

autonomous, an agent has to control its actions and its internal state. Granting social 

ability to an agent requires that agents communicate. The agent should be able to 

perceive its environment and react accordingly. To combine the theory of agents to that 

of cellular automaton, each automaton has to perform as an agent. In this section, we 

consider an agent model (situated agents) that allows embedding agents in CAs 

(Rosenschein and Kaelbling 1995). A situated agent is defined by the structure M = (S, 

∑, A, δ, λ, s0), where: 

(a) S is a set of finite internal states. 

(b)  ∑ is a set of inputs (stimulus). 

(c)  A is the set of outputs (actions). 

(d) δ: S×∑  S is a function that determines the agent’s next internal state. 

 

(a) (b)
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(e)  λ: S A is the function that determines the agent’s next action. 

(f) s0 is the agent initial state.  

An environment state φ can be distinguished if the modeler develops a transition 

function δ in such way that the agent will be in internal state s for any sequence of 

inputs σ* that leads the environment to a condition φ from an initial condition φ0. This 

establishes a correlation between the agent’s internal state and the environment’s state, 

and one can say that the agent is capable of recognizing the environment state.  

In this model, agents are purely reactive. The environment E generates inputs to the 

agent M. The agent receives this input and performs some actions. These actions result 

in the agent reaching an internal state. One can then say that the situated agent is 

capable of taking decisions based on the state of the environment. The important aspect 

of situated automata theory is modeling systems such that, for each state of the 

environment E, there will be a corresponding state of the automaton M. The Figure 2.5 

shows the coupling between a situated agent and its environment. 

 
Figure 2.5 – A situated agent M coupled to its environment E.  

Source: Rosenschein (1995) 

2.5 Conclusion 

This chapter provides a brief introduction to the basic concepts of LUCC modeling and 

identifies a common structure of most LUCC models. Then, it examines the process of 

LUCC modeling and identifies the requirements of each modeling phase. Based on 

these requirements, we review the concept of ‘scale’, considered a foundational notion. 

We discuss the issues related to the spatial, temporal, and behavioral representations of 

scale. The conclusion is that a single choice of extent and resolution in each of scale 

dimensions is not sufficient to simulate geographical processes and reproduce spatial 

patterns. The chapter also examines models of computation that will be used in the 
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LUCC modeling framework of the next chapters. In the next Chapter, we will show how 

these properties can be combined. 
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CHAPTER 3 

THE Nested-CA MODEL 

3.1 Introduction 

This chapter describes the nested cellular automata (nested-CA) model and its use for 

LUCC modeling. The motivation for the nested-CA model is the need for adequate 

computational support for multiscale modeling.  To understand this need, we examine 

the proposed extensions of the CA model on the LUCC modeling literature. Several 

theoretical papers have proposed CA extensions for a better representation of 

geographical phenomena (Couclelis 1985; Couclelis 1997; Takeyama and Couclelis 

1997; Batty 1999; O'Sullivan 2001).  In the specific case of LUCC modeling,  recent 

works extend the original CA model and make it more suitable for representing the 

complexity of human-environment interaction (White, Engelen et al. 1998; Straatman, 

Hagen et al. 2001; Pedrosa, Câmara et al. 2002; Soares, Cerqueira et al. 2002; Almeida 

2003).  

Nevertheless, these CA extensions for LUCC modeling share one limitation: the 

application of a single set of rules to the whole cellular lattice. This approach has led to 

criticism since it cannot convey the complex motivations that drive human actions. As 

an alternative, researchers have proposed the use of agent-based models immersed in a 

cellular space (Parker, Berger et al. 2001; Batty 2005). However, current agent-based 

models still fall short of modeling one crucial aspect of landscape and human dynamics: 

scale-dependent change. The cause-effect relationships that control the environmental 

dynamics at a smaller scale will be different from those at a larger scale (Turner II, 

Skole et al. 1995; Verburg, Schot et al. 2004). Agent-based models that use a single 

scale will not be able to represent scale-dependent behavior.  

As an alternative for single-scale modeling of environmental changes, some authors 

have proposed the layered CA model (Straatman, Hagen et al. 2001). The layered CA, 

shown in Figure 3.1, consists of two or more layers of cells. Every cell in one layer has 
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one parent cell in the upper layer and an arbitrary number of child cells in the lower 

layer. This arrangement allows the combination of models that operate in different 

spatial resolutions. However, the layered CA model requires a decision about the spatial 

stratification, where each cell is dependent on a parent cell and controls a number of 

child cells. The layered CA falls short of providing adequate support for multiscale 

modeling, since it handles only layers of fixed spatial resolutions. This approach 

constrains the generality of the system, since the different processes are constrained to 

fit the hierarchical spatial structure. In a layered CA, “spatial structure comes before 

spatial processes”.  

 
Figure 3.1 – Layered cellular automata.  

Source: adapted from (Straatman et al. 2001).  

To overcome the shortcomings of traditional CAs and agent-based models for 

environmental change modeling, we propose a new type of computational model: nested 

cellular automata, as described in the next sections.  

3.2 Nested CA: a general view 

The idea of a nested CA is to support multiscale LUCC modeling, where scale is 

defined as a particular combination of spatial, temporal, and analytical resolution and 

extent. A nested-CA allows scales to be defined independently and then nested to form 

a multiscale model.  Each scale is modeled by one single nested CA which embodies all 

its dimensions: analytical, spatial and temporal. Each nested CA is composed of one or 

more cellular spaces, one or more state machines that operate in these spaces, and one 

or more discrete-event schedulers that control the temporal extent and resolution. 

Nested CAs can be embedded producing a hierarchical structure, as shown in Figure 
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3.2. This allows the definition of models with embedded cellular spaces, each one with 

its state machine changing the cell attributes at different time resolutions. 

Figure 3.2 – A nested CA as a composition of nested CAs. 

The nested-CA architecture is a flexible design. All possible combinations of spatial, 

temporal, and analytical components are allowed. One nested-CA can have two cellular 

spaces that share the same state machine and the same temporal resolution. Another 

nested-CA can have a single cellular space where different state machines operate, each 

with its own temporal resolution. Therefore, the concept of a nested-CA includes spatial 

nesting (one spatial extent inside another with different resolutions), temporal nesting 

(one temporal extent inside another with different temporal resolutions) and analytical 

nesting (a more general process that controls other processes of smaller granularity).  

The possibility of embedding nested-CAs is beneficial for multiscale analysis, since it 

allows each process to be associated to the appropriate scale. The idea is that each 

spatial dynamical process has a suitable scale. The user should then define the spatial, 

temporal and analytical resolution associated to each process. Each process is then 

associated to a nested CA. In this way, one can develop simulations where spatial 

dynamic models are embedded in others. This flexibility allows diverse processes to 

operate in the same landscape, at different scales.  In a nested CA, “spatial processes 

come before spatial structures”.  
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3.3 Nested-CA: formal definitions 

Definition 3.1 [Time Base]. The execution of a nested-CA requires a continuous time 
base T  ⊂ R where discrete instantaneous events can occur.  

Definition 3.2 [Event] An event is a control structure that defines when a computation 

must be done. Given a time base T, each event is defined by a structure e = (to, λ, ρ), 

where: 

• to ∈ T  represents the instant of time in which event must occur. 

• λ ∈ R is periodicity in which the event must be repeated. 

• ρ is an integer that represents the event priority. 

Definition 3.3 [Interface Functions]. Each nested-CA has a set of interface functions 

F that can be called, and that perform actions in the automaton. A typical set of 

interface functions includes loading, saving, and drawing the state of a cellular space, 

and to execute a specific automaton.  

Definition 3.4 [Message]. The primary means of requesting actions from a nested-CA is 

by sending a message to it. Messages are used to invoke nested CA interface functions. 

Each message is associated to an event; when this event is triggered, the message is 

executed. Given a set of events E and a set of hybrid automata H, and a set of interface 

functions F associated to a nested-CA, an input message x is a structure (e, h, f, {true| 

false}), where e ∈ E, h ∈ H, and f ∈ F. The Boolean parameter {true| false} is used to 

control whether the message is to be executed periodically or not.  

Definition 3.5 [Message queue]. A message queue is a partially-ordered set (Q, ≤)  = 

{(e,x) | e∈ E, m ∈ M }. Each element of the queue is a pair (event, message). The partial 

order relation ≤:ExE {true, false} is defined as  

≤(e1,e2)= true  if e1.to < e2.to 

   = false  if e1.to > e2.to 
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 = true   if (e1.to = e2.to) and (e1.ρ ≤ e2.ρ) 

 = false   if (e1.to = e2.to) and (e1.ρ > e2.ρ) 

Definition 3.6 [Discrete-event scheduler]. A discrete-event scheduler determines when 

the event will be sent as input to the associated cellular automata. Given a message 

queue (Q, ≤), a discrete-event scheduler d is a structure (t, tr, Q), where t ∈ T  is the 

scheduler internal timer that controls the simulation time. The time reference tr ∈ T  is 

the time of the first event in the queue (Q, ≤). When the scheduler is executed, it 

removes the pair event-message (e, m) which is at the head of its queue, updates its 

internal timer to event time (t = e.to), and executes the message m. If the Boolean 

parameter of message m is true, the discrete-event scheduler reinserts this pair event-

message on its queue, according to the event’s periodicity. In this case, it updates the 

event’s time (e.to = e.to + e.λ).  

Definition 3.7 [Cellular Space]. The nested CA cellular space is a set of cells defined 

by the structure (S, A, N, I, R), where: 

• S ⊆ Rn is a Euclidian space which serves as support to the nested CA. The set S 

is partitioned into subsets S ={S1,..., Sn |  Si∩Sj=∅, ∀i≠ j, ∪Si =S}. 

• A= {A1, ...,An} is the set of domains of cell attributes, and where ai is a possible 

value of the attribute Ai (i.e., ai  ∈  Ai).  

• N = {N1, ...,Nn} is a set of GPMs – Generalized Proximity Matrix (Aguiar, 

Câmara et al. 2003) used to model different non-stationary and non-isotropic 

neighborhood relationships (Couclelis 1997). The GPM allows the use of 

conventional relationships, such as topological adjacency and Euclidian 

distance, but also relative space proximity relations (Couclelis 1997), based, for 

instance, on network connection relations. 

• I = {(I1, ≤), (I2, ≤), ..., (In, ≤)} is a set of  domains of indexes where each  (Ii, ≤) is 

a partially ordered set of values used to index cellular space cells. 
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• R = {R1, R2, ..., Rn } is a set of spatial iterators defined as functions of form  

Rj:(Ii, ≤) S which assigns a cell from the geometrical support S to each index 

from (Ii, ≤). Spatial iterators are useful to reproduce the spatial patterns of 

change since they permit easy definition of trajectories that can be used by 

automata to traverse the space applying their rules. For instance, the distance to 

urban center cell attribute can be sort in an ascendant order to form a index set 

(Ii, ≤) that, when traversed, allows an urban growth model to expand the urban 

area from the city frontier. 

Definition 3.8 [Nested CA]. A nested CA is a structure of the form N = (T, H, F, E, M, 

D, tr, C, J), where: 

• T is a time base. 

• H = {h1,...,hn} is a set of hybrid automata.  

• F is a set of interface functions.  

• E is a set of discrete instantaneous events. 

• M is a set of messages. 

• (D,≤) is partially-ordered set of discrete event schedulers, where each scheduler 

contains a message queue (Q, ≤).  The schedulers are ordered by their time 

references: 

≤(d1,d2)= true  if d1.tr ≤  d2.tr 

   = false  if d1.to > d2.tr 

• tr is a time reference for the nested-CA. The time reference tr ∈ T is the time of 

the first event scheduler in (D,≤).  
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• C = {c1,...,cn} is a set of cellular spaces. Although it is possible to define any 

arbitrary structure for model the space, in this thesis we assume a regular grid 

structure for simplicity. 

•  (J,≤) is partially-ordered set of nested-CAs {j1,...,jn}. The nested-CAs are 

ordered by their time references: 

≤(j1,j2)= true  if j1.tr ≤  j2.tr 

   = false  if j1.to > j2.tr 

3.4 The Nested-CA models of computation 

A nested-CA provides two different models of computation for spatial process modeling 

and simulation. The global automaton model allows the development of models based 

on the agent approach. A global automaton is an individual that traverses the cellular 

space, one cell after another, evaluating its rules at each position. Changes occur 

sequentially in the cellular space. The global automaton has a single internal state. The 

local automaton model allows the development of models based on the cellular 

automata approach. Each cell has its own internal state. At each iteration, each cell 

changes its state independently, based on a common set of rules. Changes occur in 

parallel in the cellular space, and all locations may change simultaneously (see Figure 

3.3). 

 
 

Figure 3.3 – The internal state of a hybrid automaton keeps track of the current active 
control mode and of the continuous variables values.  
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Another way to compare the global automaton and local automaton models is shown in 

Figure 3.4. The sequence of changes in the model state during the simulation of a global 

automaton is shown in Figure 3.4(a). Changes in the space follow the trajectory of the 

process. The automaton state is represented by a global value shared in all cells. When 

the automaton is executed in a cell, changes in its internal state are perceived 

instantaneously in all cells. In the local automaton model, the processes are 

autonomous. At each location, they can be in different state and exhibit a different 

behavior. Figure 3.4(b) shows the sequence of changes in the model state during the 

simulation of a local automaton. When the automaton is executed in a cell, only the 

copy of the automaton internal state in that cell will be updated. Changes in the internal 

state are perceived locally. 

 
Figure 3.4 – Changes in the cellular space and in the automaton internal state in: (a) A 

global automaton model; (b) A local automaton model. 

Definition 3.9 [Global Automaton]. The global automaton is an abstract model for a 

system whose internal state does not depend on a determined location. A global 

automaton is a hybrid automaton hg = (X, G, init, flow, jump, method), as defined in 

section 2.4.2. Recalling the definition of hybrid automaton, the graph G has a set of 

vertices V (control modes) and a set of edges S (control switches). In a global 

automaton, the flow conditions and jump conditions are defined as:  

• flow(v) is a node labeling function that assigns to each control mode (vertex) v ∈ 

V a function f:V×B B that describes the automaton continuous behavior, where  

B = E×I×A×N×X. E is the set of events associated to the nested-CA. I is a set of 

(a) (b) 
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spatial iterators. A is the set of domains of cell attributes, and N is the set of 

proximity matrixes. X is the set of the automaton continuous variables. The 

function f is defined by bt = f(vt-1,bt-1), where bt is a value in B at time t, bt-1 is a 

value in B at time t-1, and vt-1 is the automaton control mode at time t-1. A flow 

condition selects an action based on the current automaton control mode, on the 

event that triggers it, on the index (location) of a cell where it is being evaluated, 

on the values of the cell attributes, on the cell neighborhood, and on the 

continuous variables of the automaton.  

• jump(s) is a edge labeling function, named jump condition. It assigns to each 

control switch (edge) in S a function j: V×B V that determines if the control 

switch will be triggered and the automaton is transferred to a new discrete state. 

B and V are as defined above. The function j is defined by vt = f(vt-1,bt-1), where 

bt-1 ∈ B, and vt and vt-1 are the automaton control modes at times t and t-1. 

Definition 3.10 [Local Automaton]. The local automaton is an abstract model for a 

system which internal state depends on the location in which it is evaluated. A local 

automaton is a hybrid automaton hl = (Xc, G, init, inv, flow, jump, method), where: 

• G, init, flow, jump, and method are defined as above. 

• Xc = {(ci, Xi) | ci is the i-th cell from the nested CA cellular space,  

Xi = {x1
i,...,xn

i} is the finite set of real variables associated to ci }. 

3.5 The semantics of the Nested-CA model: a situated hybrid automaton 

The preceding sections describe the structural aspects of the nested-CA model. The 

above definitions indicate that the nested-CA model has a rich semantics, which 

combines the idea of hybrid automata, multiscale models, and global and local models 

of computation. This section discusses how the nested-CA structure works.  

The first important issue is the situated semantics of the nested-CA. The original 

definition of a hybrid automaton (Henzinger 1996) and its adaptation to LUCC 

modeling (Pedrosa, Câmara et al. 2002) do not describe how to guarantee a consistent 
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behavior between an automata and its surrounding environment. The nested-CA model 

therefore requires the combination of hybrid automata theory with situated agent theory 

(Rosenschein and Kaelbling 1995). When an automaton is simulated, all the jump 

conditions of the current control mode are evaluated, before any flow conditions of this 

control mode are executed. If a transition to another control mode occurs, all jump 

conditions of the new control mode are checked. This process goes on until a control 

mode that reflects the nested-CA state is reached. When the correct control model is 

reached, its flow conditions are executed.  

The second issue is the semantics of scheduling. Events must occur in a chronological 

order from a given initial time t0. When a pair (event, message) is removed from or 

inserted into a discrete-event scheduler queue, this scheduler changes its position in the 

partially-ordered set of schedulers (D,≤) associated to the nested-CA. This leads to a 

reorganization of the partially-ordered set (J,≤) of internal nested-CAs.  

The third issue is the semantics of synchronization. A nested-CA has one or more 

automata, which share a common set of model variables. Each variable has a timestamp 

registering the instant of its last updated. The cell space attributes are example of 

variables shared by all automata. To guarantee the consistency of its models of 

computation, all automata must agree with the order the changes have occurred. For the 

same input data, any computation on shared variables should always result in the same 

output value, and all automata should agree on this value. However, if two automata 

attempt to update the cellular space attributes simultaneously, a race condition occurs 

and the cell values might become unsynchronized. To solve this problem, the nested-CA 

model requires the modeler to explicitly synchronize the shared variables. At any point 

of the simulation, the modeler can call the interface function synchronize. It is used to 

synchronize either a cell (all attributes values will receive the same timestamp), a 

cellular space (all cells have will receive the same timestamp), or a nested-CA (all 

cellular spaces and internal nested-CA will receive the same timestamp). In this way, 

the modeler controls the synchronization and allows changes to be propagated. There 

are no hidden assumptions on the order that simultaneous automata will update the 

shared variables.  
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The nested-CA concurrency model guarantees that all automata will record the changes 

in the same chronological order. It provides four synchronization schemes, as shown in 

Table 3.1, where the method execute is a nested-CA interface function that executes an 

automaton: 

• Sequential in space and time: The automata act sequentially in space (they 

are global automata) and in time (the outcomes of the first automaton 

actions are input for the second automaton rules). After each automaton is 

executed, it must synchronize its results with the shared variables. 

• Sequential in space, parallel in time: The automata execution is sequential 

in space (global automata) and parallel in time (changes occur 

simultaneously). The shared variables are synchronized after the execution 

of both automata. 

• Parallel in space, sequential in time: The automata act simultaneously on 

several space locations (local automata) and are serialized in time. The 

shared variables are synchronized after the execution of each automaton. 

• Parallel in space, parallel in time: The automata act simultaneously on 

several space locations (local automata) and changes occur simultaneously. 

The shared variables are synchronized after the execution of both automata. 
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TABLE 3.1 – The Nested-CA Synchronization Schemes. 

 Sequential in Time Parallel in Time 

Sequential in Space execute(globalAutomaton1); 

synchronize( ); 

execute(globalAutomaton2); 

synchronize( ); 

execute(globalAutomaton1); 

execute(globalAutomaton2); 

synchronize( ); 

Parallel in Space execute(localAutomaton1); 

synchronize( ); 

execute(localAutomaton2); 

synchronize( ); 

execute(localAutomaton1); 

execute(localAutomaton2); 

synchronize( ); 

The last issue is the semantics of communication. Communication between automata 

uses remote method invocation. By calling these methods, an automaton can obtain 

information about the current control mode and continuous variables of the others. 

Since automata are autonomous, one can never set the control mode of another. 

However, it can use the methods to update the values of the continuous variables of 

another.  

3.6 Modeling using a nested-CA: an example 

When using a nested-CA to model a specific problem, the modeler should follow a 

general guidance: 

• Identify processes that have global rules and global behavior as agents. Model 

those as global automata.  

• Identify processes whose states are location-dependent rules. Model those as 

local automata.  

• For each automaton, define the discrete behavior using jump conditions and the 

different types of continuous behavior using flow conditions. 
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• For each automaton, define the methods that will be used for 

intercommunication. 

• Create one of more nested-CAs, each with its spatiotemporal resolution and 

extent, defining a cellular space (spatial resolution and spatial extent) and an 

event scheduler. 

• Associate each automaton to a nested-CA.   

• Embed one nested-CA inside another, if required for multiscale modeling.   

3.6.1 A hydrologic balance spatial dynamic model 

As an example a nested-CA, consider a very simplified hydrological balance process. 

The idea is to simulate rain drainage in a terrain. Only superficial drainage is 

considered. The analytical dimension of the model is composed of two automata: a 

global automaton that simulates the rain and a local automaton that simulates the water 

balance process, as shown in Figure 3.5. The rain automaton has one control mode, with 

one flow condition: a constant rain. The water balance automaton has two control 

modes: dry and wet. In the dry control mode, there are no flow conditions. In the wet 

control mode, the amount of water retained is made equal to the infiltration capacity, 

and them the surplus water is sent downhill. In this example, there is no 

intercommunication between the automata. 

 
 

Figure 3.5 – The rain model (left) and the water balance model (right). 
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The next step is to determine the extent and resolution of the cellular space and 

discrete-event scheduler used in the model. Based on SRTM (Shuttle Radar 

Topographic Mission) data, we model the space by a 90 x 90 meter regular cellular 

space, as shown in Figure 3.6. The cell space uses a 3x3 neighborhood, which is 

composed by the eight immediately adjacent cells of a certain cell.  The cell attributes 

are: amount of water in the soil (soilWater), cell elevation (altitude), and cell infiltration 

capacity (infCap). An infiltration capacity of 0.5 mm/hour has been considered for all 

cells and the initial amount of water in each cell is zero. The flow condition of the rain 

automaton is a rain of 2 mm at the start of the simulation.  

 
 

Figure 3.6 – Terrain digital model (left) based on the SRTM data (right). Light gray 
pixels denote higher locations while dark gray lower ones. The maximal 
elevation is 1550 meters and the lowest is 1100 meters. 

The nested-CA has a temporal resolution of one minute. A discrete-event scheduler, 

with two pairs (event, message) is inserted into the nested CA. The event e1 = (0, 3600, 

0) triggers the message m1(e1, rain, “execute(rain); synchronize( );”, false) at the start 

of the simulation.  The event e2 = (0, 1, 0) triggers the message m2(e2, waterBalance, 

“execute(waterBalance); synchronize( );”, true) at each minute. The message m1 

activates the rain automaton and synchronizes the nested-CA. The event e1 will never 

be reinserted on the scheduler queue. The message m2 activates the waterBalance 

automaton and synchronizes the nested-CA. The event e2 will be inserted into scheduler 

queue every minute. Figure 3.7 shows the spatial pattern of water balance process at 

different simulation times. 



 57

 
 

Figure 3.7 – Spatial temporal pattern of precipitation being drained: from the top left to 
the bottom right map.  

3.7 Properties of the nested-CA model 

This section considers the properties of the nested-CA model. Given the formal 

definitions presented above, the nested-CA model has the following properties: 

• Space can be structurally heterogeneous in terms of scale and driving 

forces. The cellular space in each nested CA will determine the spatial 

resolution and the cell attributes perceived by all automata inside it. Multiscale 

models, as shown in Figure 3.8, can be constructed composing various nested 

CAs, which can have different spatial extents and resolutions. 

 

 

 

 
 
 

Figure 3.8 – Nested cellular automata (a), multiple scales (b) and multiple resolutions in 
different space partitions (c).  

(a) (b) (c) 
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• Behaviour can be heterogeneous in space and time. Different processes act 

upon different space partitions, with different time resolutions, as exemplified in 

Figure 3.9. In Figure 3.9.a, the ocean could be modelled as one nested CA (with 

specific processes, such as salinity variation or oil spill spreading), and the land 

as a different nested CA, also with land specific processes (such as deforestation 

or natural vegetation growth). The total scene could be modelled as a third 

nested CA with common process (such as climate or weather) that includes the 

two other nested-CAs as its components. In Figure 3.9.b, in a typical Amazon 

area of intense deforestation, one can notice different actors and processes that 

could be modelled in different ways. In more consolidated area, an 

intensification process is beginning to happen, with more capitalized actors. In a 

recent deforestation area, the actors are non-capitalized small farmers, living on 

subsistence agriculture. 

 
Figure 3.9 – Different processes act on distinct space partitions: (a) coastal area, (b) 

settlements area in Rondônia, Brazil.  
 Source: adapted from (Escada 2003). 

• Space can be structurally heterogeneous in terms of proximity relations, 

trough the use of diverse non-isotropic and non-stationary neighborhood for 
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different space partitions or scales. Figure 3.10 illustrates the use of generalized 

proximity matrix (GPM) to establish neighborhood relations considering a 

transportation network. Two traditional 3x3 neighborhoods (shown in the two 

figures on top) are compared with two GPMs that capture the topological 

relationships induced by the road network. 
 

 
 

 

 
Figure 3.10 – Generalized Proximity Matrix for modeling non-isotropic processes: 

Amazon deforestation processes and roads (a), Moore neighborhood 
(b) and road geometry based neighborhood (c) for the red central cell.  
Source: adapted from (Aguiar et al. 2003). 

• Spatial dynamic processes can be asynchronous. Since each nested-CA can 

be independently synchronized, the associated automata can operate at different 

spatial partitions at distinct temporal frequencies.  
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3.8 Comparison with previous works 

The nested-CA is a model of computation where all scale dimensions (spatial, temporal 

and analytical) can be modeled independently.  Multiscale models can be structured by 

the composition of several nested-CA. In this section, we provide a comparison between 

the nested-CA model, and other models: the layered CA model (Straatman, Hagen et al. 

2001) and agent-based models (Parker, Berger et al. 2001). 

The layered CA model provides a structure where the spatial dimension of the scale 

concept can be modeled in diverse extents and resolutions. It is not clear how the 

various extents and resolutions of the temporal and analytical dimensions are related to 

the spatial ones to represent each scale. This architectural approach does not provide a 

clear and direct answer to simple questions involved in multiple scale modeling. For 

example: If a cellular layer is removed from the model, what analytical models should 

be removed? How to represent processes that are confined in different space partitions 

that have the same resolution (e.g. salinity variation in the ocean and deforestation in 

the land)? How to represent processes that are driven by different driving forces in 

distinct space partitions, that is, how to represent space partitions where cells have 

distinct attributes? By contrast, all of these problems can be modeled using a nested-

CA.  

The agent-based model is not spatially explicit. It does not provide high level 

abstractions for representing spatial processes, scale dependent behavior, or spatial 

patterns of change. Therefore, it does not provide suitable abstractions for multiple scale 

modeling as discussed in this work. A nested-CA can simulate an agent-based model by 

using global automata. Using a nested-CA with local automata provides a flexibility 

which is not possible in agent-based model.  

The nested CA architecture allows different scales or space partitions to be occupied by 

discrete or continuous process, and non-isotropic and non-stationary neighborhood 

relations. Neither the layered CA model nor the agent-based models provide devices to 

represent continuous process and such proximity relations. The concept of spatial 
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iterator allows a nested-CA to reproduce spatial patterns of change. Neither the layered 

CA model nor the agent-based models provides abstraction for this purpose.  

3.9 Conclusion 

In this Chapter, we identified the main requirements of a computational model for 

multiscale environmental change modeling. We proposed a new model of computation, 

called Nested Cellular Automata (nested-CA) that satisfies these requirements. The 

nested-CA structure allows the development of complex dynamic spatial models from 

hierarchically organized simple ones. It is possible to build models in which different 

geographical space partitions have several actors and processes.  A nested-CA simulates 

discrete or continuous behavior. Neighborhood relations may be defined in non-

isotropic and non-stationary topologies. Spatial iterators reproduce how different spatial 

patterns change. The nested-CA model also supports the development of LUCC models 

based on the traditional CA or agent-based approaches. We argue that: 

• The nested CA is a model of computation suitable to support multiple scale 

environmental change model development and assessment. 

• Both agent-based and CA-based models for environmental change simulation 

can be expressed as specialization of the nested-CA model. 

The nested CA model has been implemented in a software platform named Terra 

Modeling Environment – TerraME, which will be detailed in the next Chapter. In 

Chapter 6, some multiple scale land use and land cover change models that have been 

developed through the use of the TerraME Framework will be discussed. 
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CHAPTER 4 

TerraME: A LUCC MODELING FRAMEWORK 

4.1 Introduction 

In this Chapter, we present the design and implementation issues involved in the 

development of a software platform for nested-CAs. This software platform uses the 

TerraLib spatial library developed by INPE (Câmara, Souza et al. 2000) and is called 

TerraME (Terra Modeling Environment).  The TerraME environment implements the 

nested-CA model and services for spatiotemporal data analysis and management, model 

development, simulation, and assessment. This chapter discusses critical design 

decisions, system architecture, and implementation strategies.  

Several modeling environments have been developed or used for LUCC modeling, 

including SME (Maxwell and Costanza 1995), Swarm (Minar, Burkhart et al. 1996), and 

Kenge (Box 2002). The SME framework (Maxwell and Costanza 1995) integrates a 

cellular space with GIS systems and embeds a STELLA model in each cell. The STELLA 

modeling tool (Roberts, Anderson et al. 1983) is an implementation of the dynamic 

system description language proposed in (Forrester 1968). This language uses flow 

diagrams, feedbacks loops, and differential equations to describe continuous systems.  

Swarm is a library of classes and objects for the development of multi-agent 

simulations, where several discrete-event schedulers can be declared to allow agents to 

act on different time resolutions (Minar, Burkhart et al. 1996). It does not provide 

spatial abstractions. The Kenge toolkit implements a GIS integrated cellular space for 

the Swarm platform (Box 2002). Several others agent-based platforms have been used 

for LUCC modeling and are compared in (Parker, Berger et al. 2001). The most 

powerful property of STELLA and Swarm platforms is the existence of abstractions to 

organize models in a hierarchical way, allowing complex models to be developed from 

the composition of simpler models in a “black box” fashion. 
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Despite the positive aspects of modeling environments such as SME (that uses STELLA) 

and Kenge (that uses Swarm), they do not provide support for the full set of 

requirements for multiscale modeling, as discussed in the previous Chapter. 

4.2 Design choices 

This section describes the design decisions for building a computational environment 

that implements the nested-CA architecture. This environment requires five main 

services: model description, model representation, simulation engine, model assessment, 

and spatiotemporal data management.  

Supporting model description requires an expressive modeling language to allow quick 

prototyping. Although a graphic representation is useful to depict parts of a model, the 

rules of any model will always need to be defined by the modeler. The language should 

have high-level constructs to allow easy model understanding. It also should be 

extensible to include new data types. To support this needs, we chose LUA as the basis 

for the model programming language. LUA is an extensible programming language 

especially designed for extending applications (Ierusalimschy, Figueiredo et al. 1996). 

LUA is an open source project, and the language is very simple and expressive.  

The use of a well known extension language avoids the costs of a new language design 

and interpreter development. LUA has a large amount of programmers in the game 

development community, an activity that has many requirements in common with 

simulation. Among the existing extension languages (such as Phyton, Tcl, Perl, and 

Visual Basic), LUA presents simpler syntax and best performance (Ierusalimschy, 

Figueiredo et al. 1996). A LUA plug-in for the Eclipse development environment 

provides syntax highlight for the programs, improving model legibility. 

Model representation requires data structures that define hierarchically organized scales 

where the higher levels in the hierarchy provide overall control over the lower levels. 

The simulation engine should support concurrent programming, where geographical 

processes are represented by independent control flows. This requires data structures 



 65

and algorithms for scheduling, communication and synchronization of model 

components.  

Model assessment includes calibration and validation methods that compare the 

agreement between two maps in several resolutions (Costanza 1989) and attempt to 

distinguish between errors of location (allocation) and quantity (demand) (Pontius 2002; 

Pontius, Huffaker et al. 2004).  

To support spatiotemporal data management, the best solution is to integrate the 

modeling environment in a GIS. However, there should be no dependence of a specific 

GIS technology. To this end, a properly-designed application programming interface 

(API) should encapsulate all data management services. Specific versions of this API 

allow the environment to communicate with different spatiotemporal databases. We 

have chosen to implement the modeling environment using the TerraLib GIS library, 

which implements a spatiotemporal database over relational database systems (e.g. 

MySQL, PostgreSQL, Access, Oracle) (Câmara, Vinhas et al. 2001). TerraLib provides 

support for cellular spaces, whose neighborhood relations can be defined trough the use 

of generalized proximity matrices (Aguiar, Câmara et al. 2003).  

4.3 TerraME: a general view 

TerraME is a modeling environment that implements the nested-CA model to allow the 

development of spatially explicit LUCC models where several temporal, spatial and 

analytical resolutions and extents are taken in account. The TerraME modeling 

language is a LUA programming language extension. Using this language, the nested 

CA model can be specialized to implement models for specific cases. TerraME is 

coupled with the open source TerraLib GIS library (Câmara, Vinhas et al. 2001), which 

provides services for model input and output data storage. Data can be visualized and 

explored using the TerraView software, a viewer that demonstrates the visualization, 

spatiotemporal query, and spatiotemporal analysis functions of TerraLib. TerraME 

implements calibration and validation methods to spatially explicit dynamic models 

assessment (Costanza 1989) (Pontius 2002; Pontius, Huffaker et al. 2004). 
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Figura 4.1 – TerraME modules and services. 

 

The LUCC modeling services provided by TerraME architecture are distributed in 

software modules (Figure 4.1). Two of these modules were developed in this work: the 

TerraME Framework and the TerraME interpreter. The other modules are the TerraLib 

GIS library and the TerraView GIS application (Câmara, Souza et al. 2000), the LUA 

programming language (Ierusalimschy, Figueiredo et al. 1996), and Eclipse software 

development platform (Bott 1989). 

The modeler can use any text editor to develop its models in TerraME modeling 

language. Preferably, she should use the Eclipse software development platform, which 

has a free plugin for LUA that can be configured to invoke the TerraME interpreter. 

This way, the modeler develops, executes and debugs the model inside an integrated 

environment. 

The model source code is sent to the TerraME interpreter. The TerraME interpreter is 

the application that put all modeling services together, providing syntax and semantic 

checking, model simulation, and model assessment. It receives a set of text files 

containing models described in TerraME Modeling Language and executes them in the 
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order they have been passed as parameters. The TerraME/LUA interface registers new 

types for spatial dynamic modeling in the LUA interpreter virtual machine. The LUA 

interpreter calls functions provided by the TerraME framework which implements these 

types.   

For data management and analysis, TerraME reads model input data from and saves 

model output to TerraLib spatiotemporal database. This database can be constructed 

using the TerraView application. The TerraLib API provides several methods for 

computation of cell attribute values from raster and vector data. TerraView provides 

spatial query and spatial statistical functionalities. 

4.4 TerraME system architecture 

 
Figura 4.2 – TerraME modeling environment architecture. 

Figure 4.2 shows the layered TerraME architecture. Lower layers provide basic services 

over which upper layer services are implemented. In the first layer, TerraLib offers 

typical GIS spatial data management and analysis services, and additional functions for 

temporal data handling. The TerraME framework is the dynamic modeling architecture 

core implemented in this work. It provides the simulation engine and the calibration and 

validation services. It is an open source ANSI C++ implementation of the nested-CA 

model, portable for Windows and Unix-like operating systems. This framework can be 

used directly for model development. Since the development of models in C++ can be a 

challenge for non-programmers, TerraME provides a high-level modeling language.  
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The third layer of the architecture implements the TerraME modeling language 

interpreter and runtime environment. The TerraME/LUA interface extends LUA with 

new data types for spatial dynamic modeling and services for model simulation and 

evaluation. Using the LUA library API, it exports the TerraME framework API to the 

LUA interpreter so that it recognizes the TerraME types. If required, other C or C++ 

applications (such as statistical libraries) can have their APIs exported to the LUA 

interpreter and integrated in the architecture. The last layer, called application layer, is 

where the end user models are located.  

4.5 The TerraME framework architecture 

We compared two alternative software architectures for the TerraME core. If developed 

as a library of spatial dynamic modeling classes and objects, the TerraME core would 

be very flexible and would not impose a rigid structure for the applications that reuse it. 

The drawback is that it would have a steep learning curve and it would be more difficult 

to develop new models. For better reuse, TerraME has been developed as a framework 

to capture the common design decisions in the development of spatial dynamic models. 

A framework is more expressive than a library, allowing more efficient prototyping 

(Gamma, Helm et al. 1994; Schmidt, Fayad et al. 1996; Buschmann, Meunier et al. 

1996).  

To reuse a library, a programmer writes the main application code from where library 

objects are instantiated and functions are invoked. Using a framework, she reuses the 

framework architecture that calls user defined functions. A TerraME Framework 

application is a discrete-event simulator (Zeigler, Kim et al. 2005) for the nested-CA 

model. Using the TerraME framework API, the modeler defines the variables and rules 

that represent the spatial, analytical and temporal aspects of all scales of the model. 

Then, the TerraME Framework simulation engine executes the model, providing 

services for scale and automata scheduling and synchronization. 

These services provided by the TerraME framework includes: (a) data structures for 

storage of model representation in memory; (b) a virtual machine that executes the 

model representation, and (c) analysis methods for assessing the model results.  
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4.5.1 Model representation services 

The TerraME Framework building block is the type Scale, which represents a spatial 

dynamic system. As shown in Figure 4.3, a Scale has been implemented a composite of 

Models. Scales can be nested, allowing multiscale model development. When executed, 

it simulates its internal Scales executing each model in chronological order. Automaton 

models (i. e. local and global automata) represent the biophysical and socio-economic 

systems or actors who cause the changes. When simulated, they evaluate their rules over 

the cellular space, possibly changing the cell attribute values. CellularSpace models 

define which properties will be accessible to the automata in each space location. Timer 

models determine the order in which the automata will be simulated. When executed, 

they advance the simulation clock and execute the models that must be simulated at that 

moment.  

Automaton

execute() : bool

CellularSpace

execute() : bool

Model

execute() : bool

Scale

execute() : bool

Timer

execute() : bool

 
Figura 4.3 – UML diagram: TerraME Framework represents scale as a composite of 

models. 

As shown in Figure 4.4, an Automaton has a set of ControlModes. Each ControlMode 

represents a discrete state of a hybrid automaton. It has two sets of rules: 

JumpConditions and FlowConditions. JumpCondition rules control a discrete state 

transition between ControlModes. FlowCondition rules describe the continuous 

behavior of an automaton in a ControlMode. For instantiating a rule, the modeler must 

inherit one of these classes and implement the abstract method execute( ). 
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Automaton

execute() : bool

JumpCondition
target : ControlMode

execute() : bool

FlowCondition

execute() : bool

Model

execute() : bool

ControlMode

execute() : bool

transit

1 1..*1 1..*

Rule

execute() : bool0..*0..*0..*

LocalAutomaton

execute() : bool

GlobalAutomaton

execute() : bool

0..*

 
Figura 4.4 – UML diagram: TerraME Framework global and local automaton structure. 

There are two kinds of automata. A GlobalAutomaton has the same active ControlMode 

for all CellularSpace locations. A LocalAutomaton has a different active ControlMode 

for each Cell. When an Automaton is simulated, it calls the method execute() of its 

active ControlMode. The active ControlMode executes its JumpCondition rules in the 

order they have been inserted. If a JumpCondition execute() method returns true, the 

JumpCondition target becomes the new active ControlMode. Then, the JumpCondition 

rules of the active ControlMode are evaluated. The process continues until it finds a 

ControlMode from which all JumpCondition rules return false. The FlowConditions of 

this ControlMode are executed in the order they have been inserted. 

The TerraME Framework spatial model is formed by three components: (a) a cellular 

space providing, in certain spatial resolution, attributes describing the space (e.g., soils, 

climatic, socio-economic, etc.); (b) one or more alternative neighborhood relationships 

between the cells (e.g., Moore, Euclidian distance, or network connection, etc.); (c) one 

or more alternative spatial iterators for describing a trajectory that indicates the order 

that a cellular space shall be traversed by an Automaton when it is simulated. Some 

examples of trajectories are: northeast to southwest; concentric from a given Cell (urban 

centre), ascending order of the values of a given Cell attribute (deforestation potential). 
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CellularSpace

Model

execute()

ControlMode

Neighborhood

Map<Coord2D, Cel l> Map<Coord2D, pair<f loat, Cell> >

Cell
latency  : f loat
past : Cell 1 0..*1 0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*0..*

0..*

 
Figure 4.5 – UML diagram: TerraME Framework cellular space structure. 

Figure 4.5 shows the UML diagram of the CellularSpace and Cell classes. A 

CellularSpace uses the C++ Map<T1, T2 > parameterized class, which implements a 

table for mapping objects of type T1 in objects of type T2. The CellularSpace is a 

Map<Coord2D, Cell> that maps 2D coordinates into Cells. Each Cell can have several 

alternative Neighborhoods. Each Neighborhood is a Map<Coord2D, (float, Cell)> that 

maps 2D coordinates in pairs (weight, neigh), where weight is the intensity of the 

relationship of the current cell to the cell neigh. Each Cell has two attributes: past – a 

copy of the cell attribute past values, and latency – the period of time since the last 

change in any cell attribute value. A Cell keeps track of all active ControlMode 

associated of all LocalAutomaton models. This way, it is possible to know the current 

discrete state of any LocalAutomaton in each Cell. 

Map<T, Cell> SpatialItertor<f loat>

 
Figure 4.6 – UML diagram: TerraME Framework spatial iterator structure. 

The modeler can define a SpatialIterator to represent a trajectory in a CellularSpace as 

an instance Map<T, Cell> that maps objects of type T in Cell objects. The modeler 

needs to provide the operator <:T×T {true, false} for each iterator class. Figure 4.6 

shows a SpatialIterator that maps float values (e. g. deforestation potential) in Cell 

objects. 
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Model
Timer

time : float

Event
time : float
period : float0..*1

Message

execute()

11

trigger1 0..*

 
Figure 4.7 – UML diagram: TerraME Framework spatial iterator structure. 

A Timer is a discrete-event scheduler. It has a set of chronologically ordered Event 

objects. As shown in Figure 4.7, each Event has two attributes: time – the simulation 

clock time that the Event will occur, and period – the periodicity in which the Event 

must occur. Each Event has an associated Message. A Message has an execute() method 

that must be implemented by the modeler. It will be used for calling functions from the 

TerraME framework API to request services during the simulation.  

When a Timer is executed, it removes its first Event, updates the internal simulation 

clock (Timer.time = Event.time) and calls the method execute() from the Message 

associated to the Event. If this execute( ) method returns true, the time attribute of the 

Event is updated (time = time + period) and the Event is reinserted in the Timer.  

4.5.2 Model simulation services 

The simulation services in TerraME are controlled by the Timer type, where each Timer 

implements a discrete-event scheduler. Each Scale can have several Timers. To keep the 

Events of all Timer objects ordered inside each Scale, the TerraME virtual machine 

maintains the Timers for each Scale in a balanced binary tree, called Timer tree. This 

tree is indexed by the time of the first Event of each Timer, as shown in Figure 4.8.a. 

Since Scales can be nested, the Events of all nested Scales are chronologically ordered. 

The Scales are stored in a Scale tree that is indexed in chronological order of the first 

Event of its associated Timer tree (Figure 4.8.b).  When the machine executes an Event, 

the associated Timer is removed from the Timer tree and the associated Scale is 

removed from Scale tree. The Message attached to Event is executed and the Timer and 

Scale objects are reinserted in the data structures. This process keeps Scale, Timer, and 

Event objects in a chronological order during simulation. 
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Figure 4.8 – TerraME scheduling data structures: Timer tree (a) and Scale tree (b). 

4.6 The TerraME modeling language 

The TerraME Modeling Language is a LUA extension. LUA is a dynamically typed 

language: variables do not have types; only values do. There are no type definitions in 

TerraME. The basic value types are number (double) and string. The value nil is 

different from any other value in the language and has the type nil. Functions in LUA 

are first class values. That is, a function definition creates a value of type function that 

can be stored in variables, passed as arguments to other functions and returned as 

results. The only structured data type LUA is table. It implements associative arrays, 

that is, arrays that can be indexed not only with integers, but with string, double, table, 

or function values. For table indexing, both table.name and table[''name''] are 

acceptable. Tables can be used to implement records, arrays, and recursive data types. 

They also provide some object oriented facilities, such as methods with dynamic 

dispatching (Ierusalimschy, Figueiredo et al. 1996).  
 
cell = { cover = "forest", distRoad = 0.3, distUrban = 2 }; 
cell.desfPot = cell.distRoad + cell[ "distUrban" ];  
... 
cell.reset = function( self )  
  self.cover = "";  self.distRoad = 0.0; self.distUrban = 0.0;  
       end 
for i=1,10,1 do cellularSpace:add (cell); end 
... 
ForEachCell( cellularSpace, (function( cell ) cell:reset(); end )); 
 

Figure 4.9 – The use of associative table and function values in LUA. 
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Figure 4.9 shows the use of table and function values. A table with three attributes (land 

cover, road distance, and urban centre distance) is created and stored in the variable cell. 

A new attribute is calculated and added to cell (deforestation potential is the sum of the 

road and urban center distances). A second attribute called reset is added to cell, defined 

as a function that receives the table self as parameter. Then, a cellular space of 10 cells 

is created, using the TerraME utility function add. Finally, the program calls the 

TerraME utility function ForEachCell, which traverses a CellularSpace and applies the 

reset function to each cell. The token “:” is a syntactic mechanism for method 

invocation: the modeler can write table:name(…) instead of table.name( table, …).  As a 

result, all cells are reset. 

LUA has a powerful syntactical mechanism, called constructor, which provides an 

abstraction similar to the concept of object in the object oriented paradigm. When the 

modeler writes name{…}, the LUA interpreter replaces it by name({… }), passing the 

table {…} as a parameter to the function name( ). This function typically initializes, 

checks properties values and adds auxiliary data structure or methods (Ierusalimschy, 

Figueiredo et al. 1996). In figure 4.10, this mechanism is used to construct the “type” 

MyCell. When the table c is instantiated, the distRoad property value is corrected.  
 
function MyCell( table ) 
 if( table.distRoad < 0 ) then table.distRoad = 0; end 
 return table; 
end 
... 
c = MyCell{..., distRoad = -0.1, ... } 
  

Figure 4.10 – The use of the constructor mechanism in LUA. 

To allow the description of spatial dynamic model as nested CAs, we included several 

new value types in LUA using the constructor mechanism. These values are: Scale, 

CellularSpace, Cell, Neighborhood, SpatialIterator, GlobalAutomaton, 

LocalAutomaton, ControlMode, JumpCondition, FlowCondition, Timer, Event and 

Message. We describe each type and its operations in what follows. The TerraME 

implementation of the hydrological balance model described in section 3.6.1 is used to 

exemplify the use of all values. For a single scale, this model simulates the rain water 

being drained according to the 9x9 km terrain digital model of a small village in Minas 

Gerais state, Brazil, called “Cabeça de Boi”. 
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4.6.1 The multiple scale model 

Multiple scales models can be developed by nesting several Scales values. A Scale 

represents a spatial dynamic system in a specific extent and resolution, for instance, the 

LUCC system. It models all analytical, spatial, and temporal aspects of the system. 

4.6.1.1 The Scale type 

A Scale is a container for automata, cellular spaces and timers, as shown in Figure 4.11. 

The automata represent the actors or processes that change the space. The cellular 

spaces represent the properties in each location. Timers define the order in which the 

automata are simulated. The modeler can add any finite number of Scale, 

CellularSpace, LocalAutomaton, GlobalAutomaton and Timer values to a Scale. All 

Scale values have an identifier to help in model debugging. 
 
myScale = Scale{ 
  
 id = "MyScale", 
  
 -- Add cellular spaces to this scale (spatial scale dimension) 
 cs1 = CellularSpace{ … }, 
 cs2 = CellularSpace{ … }, 
 … 
 csN = CellularSpace{ … }, 
 
 -- Add automata to this scale (analytical scale dimension) 
 aut1 = LocalAutomaton{ … }, 
 aut2 = GlobalAutomaton{ … }, 
 … 
 autN = LocalAutomaton{ … }, 
  
 -- Add timers to this scale (temporal scale dimension) 
 t1 = Timer{ … }, 
 t2 = Timer{ … }, 
 … 
 tN = Timer{ … }, 
 
 -- Add subscale to this scale (multiple scale modeling) 
 sc1 = Scale{ … }, 
 sc2 = Scale{ … }, 
 … 
 scN = Scale{ … }, 
 
} 
 

Figure 4.11 – Defining Scales in TerraME Modeling Language. 
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In Figure 4.12, a Scale value is defined and stored in the variable cabecaDeBoi. A 

CellularSpace is added to the Scale to model the terrain. A GlobalAutomaton models 

the rain and a LocalAutomaton models the hydrologic balance process. A Timer defines 

when the automata is executed.   
 
-- The "Cabeça de Boi" spatial dynamic model 
cabecaDeBoi = Scale{ 
  
 id = "CabecaDeBoi", 
  
 -- Add cellular spaces to this scale (spatial scale dimension) 
 csCabecaDeBoi = CellularSpace{ … }, 
 
 -- Add global and local automata to this scale (analytical scale dimension) 
 autRain = GlobalAutomaton{ … }, 
 autHidBalance = LocalAutomaton{ … }, 
  
 -- Add timers to this scale (temporal scale dimension) 
 t = Timer{ … } 
 
} 
 

Figure 4.12 – A spatial dynamic hydrologic model  in TerraME Modeling Language. 

4.6.2 The spatial model  

The TerraME modeling language spatial model provides three different types: 

CellularSpace, Cell, and Neighborhood. 

4.6.2.1 The CellularSpace type 

A CellularSpace is a multivalued set of Cells that is associated to a TerraLib 

spatiotemporal database. The modeler should specify the properties of the 

CellularSpace before using it. The host and database values indicate where the input 

data is stored.  The dbType property identifies the database management system 

(MySQL, PostgreSQL, etc). The layer and theme properties are the names of the 

TerraLib database layer and theme that are used as input data. A theme is a TerraLib 

database structure that contains a set of objects. These objects are selected using a 

database query function over their attribute values, spatial relations, and temporal 

relations. The select property contains the names of the cell attributes loaded into the 

model from the input data set. The property where is used to filter the data, as in SQL 

statements. The select and where properties are optional. 
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-- Loads the TerraLib cellular space 
csCabecaDeBoi = CellularSpace { 
 dbType = "MySQL", 
 host = "localhost", 
 database = "CabecaDeBoi ", 
 user = "", 
 password = "", 
 layer = "cells90x90", 
 theme = "cells", 
 select = { "altitude", "infCap" } 
 where = "mask <> ‘noData’"; 
} 
 

Figure 4.13 – Defining a CellularSpace in TerraME Modeling Language. 

In Figure 4.13, the “csCabecaDeBoi” CellularSpace is linked to the “cells” theme from 

the “cells90x90” layer of the “CabecaDeBoi” TerraLib database. For each cell, two 

attributes are loaded: elevation (altitude) and infiltration capacity (infCap). Only cells 

whose “mask” attribute value is different from “noData” will be loaded in the 

CellularSpace. 

A CellularSpace has a special attribute called cells. It is a one-dimensional table of 

references for each Cell in the CellularSpace. The first Cell index is 1. Figure 4.14 

shows how i-th Cell from a CellularSpace is referenced. 
 
-- c is the seventh cell in the cellular space 
c = csCabecaDeBoi.cells[ 7 ]; 
 
-- Five equivalent ways of update the attribute “infcap” from the seventh cell 
c.infcap = 0; 
c["infCap"] = 0; 
csCabecaDeBoi["cells"][7]["infCap"] = 0 
csCabecaDeBoi.cells[7]["infCap"] = 0 
csCabecaDeBoi.cells[7].infCap = 0 
 

Figure 4.14 – Referencing Cells from a CellularSpace in TerraME Modeling Language. 

4.6.2.2 The Cell type 

A Cell represents a space location, its properties, and its nearness relationships. A Cell 

is a table that includes persistent and runtime attributes. The persistent attributes are 

loaded from and saved to the database. The runtime attributes exist only in memory 

during the model execution. Section 4.6.5 describes the database management routines. 

Section 4.6.6 shows how runtime attributes can be defined for all TerraME values. A 

Cell value has two special attributes: latency and past. The latency attribute registers the 

period of time since the last change in a cell attribute value. It is used for rules that 

depend of how long the cell remains in a state. The past attribute is a copy of all cell 
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attribute values in the instant of the last change. For example, Figure 4.15 shows the 

command “if the cell cover is abandoned land during 10 year then the cover transit to 

secondary forest”. Figure 4.15 also shows a rule for simulating rain in a cell, which 

adds 2mm of water to the past amount of water in the cell.  
 
if( cell.cover == "abandoned" and cell.latency >= 10 ) then cell.cover = "secFor"; end 
… 
cell.water = cell.past.water + 2; 
 

Figure 4.15 – In TerraME cells have two especial attributes: latency and past. 

4.6.2.3 The Neighborhood type 

Each cell has one or more Neighborhoods to represent proximity relations. A 

Neighborhood is a set of pairs (weight, cell), where cell is a neighbor Cell and weight is 

the neighborhood relationship strength. Figure 4.16 shows two equivalent pieces of 

code to traverse a cell neighborhood.  
 
n = cell:getNeighborhood(1); 
n:first(); 
while( not n:isLast() ) do 
 neigh = n:getNeighbor(); 
 print( neigh.distRoad ); 
 print( n:getWeight() ); 
 n:next(); 
end 
… 
ForEachNeighbor(   
 cell, 1,  
 function( cell, neigh)  
  print( neigh.distRoad ); 
  print( neigh:getWeight() ); 
 end 
); 
 

Figure 4.16 – Traversing a Neighborhood in TerraME Modeling Language. 

The method getNeighborhood(index) of a Cell value recovers its i-th Neighborhood. A 

Neighborhood has several methods. The methods first( ) and last( ) point to the first and 

last neighborhood cell. The methods next() and previous() move back and forth. The 

methods isFirst() and isLast() return true if the current neighbor is the first or last 

neighbor, respectively. The method getNeighbor() returns the current neighbor Cell. 

The method getWeight( ) returns the intensity of the neighborhood relationship between 

the cell and its current neighbor. ForEachNeighbor is a TerraME utility routine that 

receives a function as parameter and traverses the i-th Neighborhood of a Cell applying 

this function to all cells in it.  



 79

4.6.3 The analytical model 

TerraME implements the nested-CA different models of computation for spatial process 

simulation, described in Section 3.4. The GlobalAutomaton model allows the 

development of models based on the agent approach. The LocalAutomaton model 

allows the development models based on a cellular automata approach. A 

GlobalAutomaton traverses a CellularSpace sequentially, evaluating its rules on each 

Cell. A LocalAutomaton has a copy of its internal state in each cell. Changes occur in 

parallel, all locations may change simultaneously. 

4.6.3.1 The GlobalAutomaton and LocalAutomaton types 

The GlobalAutomaton and LocalAutomaton  types are containers of ControlMode and 

SpatiaIterator objects, as shown in Figures 4.17 and 4.18. A ControlMode represents a  

discrete state of the automaton. A SpatialIterator defines the spatial trajectory of the 

automaton. When an automaton is executed, it uses this trajectory to traverse a 

CellularSpace subset, visiting the Cell values in a predetermined order. At each Cell, 

the current ControlMode determines the set of possible actions (rules). The initial 

ControlMode of an automaton is the first one defined in its interior. 
 
aut = GlobalAutomaton{ 

 
SpatialIterator{…}, 
SpatialIterator{…}, 
… 
SpatialIterator{…}, 

   
 ControlMode{…}, 
 ControlMode{…}, 
 … 
 ControlMode{…}  
} 
 

Figure 4.17 – Defining a GlobalAutomaton in TerraME Modeling Language. 
 
aut = LocalAutomaton{ 
     

SpatialIterator{…}, 
SpatialIterator{…}, 
… 
SpatialIterator{…}, 

   
 ControlMode{…}, 
 ControlMode{…}, 
 … 
 ControlMode{…} 
} 
 

Figure 4.18 – Defining a LocalAutomaton in TerraME Modeling Language. 
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4.6.3.2 The SpatialIterator type 

SpatialIterator values are useful to reproduce spatial patterns or represent process 

preferential directions (anisotropy). Even for LocalAutomaton values, which are parallel 

spatial processes, SpatialIterators are useful to define change suitability surfaces, which 

associate each Cell to a real number that indicates how prone the Cell is to specifics 

types of change (forest to pasture, pasture to abandonment, pasture to urban, etc).  

A SpatialIterator is defined by three values. The first is the CellularSpace over which 

the trajectory will take place. The second value is a function that receives a Cell as 

parameter and returns a Boolean value. It is used to filter the Cells. If this function 

returns true, the cell is included in the trajectory. The third value is a function used to 

order this subset of Cells. It receives two Cell values as parameters and returns true if 

the first one is greater than the second. Figure 4.19 shows an example of SpatialIterator 

useful to simulate the deforestation process in LUCC models. The SpatialIterator it for 

the CellularSpace cs is defined by two functions. The first function select only cells 

whose land cover is “forest”. The second orders the Cells according to their distance to 

the nearest road, making Cells closer to roads more suitable to change. If the second 

function is not defined, the Cells are traversed from North to the South and from West 

to the East. If both functions are not defined, all Cells are included in the trajectory. 
 
it = SpatialIterator{  
 cs,  
 function( cell ) return cell.cover == "forest"; end, 
 function( c1, c2 ) return c1.distRoad > c2.distRoad; end 
} 
 

Figure 4.19 – Defining a SpatialIterator in TerraME Modeling Language. 

4.6.3.3 The ControlMode type 

A ControlMode is a container of two kinds of rules: JumpCondition and FlowCondition, 

Figure 4.20. A JumpCondition represents discrete state transition of an automaton. The 

JumpConditions of a ControlMode are executed in the order they have been defined. 

FlowConditions are rules that define behavior of the automaton in a specific state. The 

FlowConditions of a ControlMode are executed only if no JumpCondition has caused a 
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state transition. They are executed in the order they have been defined. All 

ControlMode has a unique identifier used by JumpConditions to adreess it. 
   
ControlMode{ 
 id = "working", 
 
 Jump{…}, 
 Jump{…}, 
 … 
 Jump{…}, 
 
 Flow{…}, 
 Flow{…}, 
 … 
 Flow{…} 
} 
 

Figure 4.20 – Defining a ControlMode in TerraME Modeling Language. 

4.6.3.4 The JumpCondition type 

   
Jump{ 
 function(event, automaton, cell)  
  return cell.water>cell.capInf;  
 end, 
 target = "wet" 
} 
 

Figure 4.21 – Defining a JumpCondition in TerraME Modeling Language. 

A JumpCondition is defined by two properties. The first property is a user defined 

function that must return a Boolean value. The second property, called target, is a string 

containing the identifier of the target ControlMode. If the user defined function returns 

true, the automaton goes to the ControlMode indicated by the target property. If the 

function returns false, the automaton stays in the current ControlMode. The 

JumpCondition function receives three parameters: the event that causes its execution, 

the automaton that owns the JumpCondition, and a Cell where the JumpCondition is 

being evaluated.  Using these parameters, the user can define JumpConditions which 

depends on the current simulation time ("if (event.time > 1) then..."), automaton state 

("if(automaton.age > 20) then..."), or spatial properties ( "if ( cell.distRoad > 10) then 

..."). Figure 4.21 shows a JumpCondition that causes a transition to the "wet" 

ControlMode when the amount of water in the cell is grater than the cell infiltration 

capacity. 
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4.6.3.5 The FlowCondtion type 

   
Flow{  
 function(event, automaton, cell)  
  cell.water = cell.past.water + 2; 
 end  
} 
 

Figure 4.22 – Defining a FlowCondition in TerraME Modeling Language. 

A FlowCondition is an user defined function that receives three parameters: the event 

that cause the FlowCondition execution, the automaton that owns the FlowCondition, 

and the Cell where the FlowCondition is being evaluated. Figure 4.22 shows a 

FlowCondition that add 2 units to the amount of water in a cell. 

4.6.3.6 The hydrologic balance model example 

To exemplify the use of the TerraME analytical models, Figures 4.23 and 4.24 show the 

definition of two automata used in the implementation of the hydrological balance 

model described in section 3.6.1. The GlobalAutomaton "agRain" simulates the rain 

phenomenon. It uses a spatial iterator that limits its actions to the cells whose elevation 

is greater or equal to 1500 meters. When executed, it adds 2 units to the past amount of 

water in each cell.  
 
-- The rain GLOBAL automaton 
agRain = GlobalAutomaton{ 
  

it = SpatialIterator{  
csCabecaDeBoi,  
function( cell ) return (cell.altitude >= 1500); end  

}, 
    
 ControlMode{ 
  id = "working", 
  Flow{  
   function(event, agent, cell)  
     cell.water = cell.past.water + 2; 
    return 0; 
   end  
  } 
 } 
} 
 

Figure 4.23 – Simulating the rain in TerraME Modeling Language. 
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-- The soil water balance LOCAL agent 
agWaterBalance = LocalAutomaton{ 
     

it = SpatialIterator{  
  csCabecaDeBoi,  
  function( cell ) return true; end 
 }, 
    
 ControlMode{ 
  id = "dry", 
 
  Jump{ 
   function(event, automaton, cell)  
    return cell.water>cell.capInf;  
   end, 
   target = "wet" 
  } 
 }, 
   
 ControlMode{ 
  id = "wet", 
 
  Jump{ 
   function( event, automaton, cell ) 
    return cell.water<=cell.capInf;  
   end, 
   target = "dry" 
  }, 
    
  Flow{ 
   function( event, automaton, cell ) 
 
    -- calculates the water overflow 
     overflow = cell.water - cell.capInf; 
     cell.water = cell.capInf; 
       
     -- how many neighbours are lower than the cell? 
     countNeigh = 0; 
     height = cell.altitude; 
     ForEachNeighbor(   

cell, 0,  
     function( cell, neigh)  
      if (cell~=neigh) and 

   (height>=neigh.altitude) then  
         countNeigh = countNeigh + 1; 
      end  
     end 
     ); 
         
     -- send water to the neighbors 
     ForEachNeighbour(  

cell, 0,  
     function( cell, neigh ) 
      if (cell~=neigh) and 

   ( height>=neigh.altitude) then 
        neigh.water =  neigh.water +  

overflow/countNeigh; 
       end; 
     end 
     ); 
   end 
  } 
 } 
} 
 

Figure 4.24 – Simulating the water balance process in TerraME Modeling Language.  
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The LocalAutomaton "agWaterBalance" simulates the water balance process. It has two 

ControlModes: "dry" and "wet". In the "dry" ControlMode the automaton checks if the 

amount of water in a cell is greater than the cell infiltration capacity. If true the 

automaton transit to the "wet" ControlMode. Otherwise, it does nothing. In the "wet" 

ControlMode it first checks if it must transit to "dry" ControlMode. If the transition is 

not necessary, it calculates the surplus of water and equally divides the surplus to the 

lower neighbor cells. 

4.6.4 The temporal model  

The TerraME temporal model provides three types: Timer, Event and Message. A Timer 

maintains a queue of pairs (Event, Message) to control the simulation time. The pairs 

are ordered by the Event times. An Event represents a time instant when the simulation 

engine must execute some computation (Message). A Message is a user defined 

function from where simulation engine services can be called. Among these services, 

there are services to load data from the database, to save data in the database, to execute 

a specific automaton, to synchronize a cellular space, and to check if an automaton has 

been well defined.  

4.6.4.1 The Timer type 

A Timer is a container for pairs (Event, Message), Figure 4.25. Any finite number of 

pairs (Event, Message) can be added to a Timer. 
 
time = Timer{ 
 Pair{ 
  Event{ ... }, 
  Message{ ... } 
 }, 
 Pair{ 
  Event{ ... }, 
  Message{ ... } 
 }, 
 ... 
 Pair{ 
  Event{ ... }, 
  Message{ ... } 
 } 
} 
 

Figure 4.25 – Defining a Timer in TerraME Modeling Language. 
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4.6.4.2 The Event type 

An Event is defined by two mandatory properties (time and period) and an optional one 

(priority).  The time property defines the next instant of time (in the simulation clock) 

when the event must occur. The period property defines the periodicity in which the 

event must occur. The priority property is used to decide what event must occur first 

when two events have the same value for the time property. The default priority value is 

0 (zero). Smaller values have higher priority.  Figure 4.26 presents an Event that must 

occur at the year 1985, repeat every year, and has priority equal to -1. 
 
Event{ time = 1985, period = 1, priority = -1 } 
 

Figure 4.26 – Defining a Event in TerraME Modeling Language. 

4.6.4.3 The Message type 

A Message is an user defined function whose parameter is the Event that has caused its 

execution. Figure 4.27 shows a Message that prints the simulation time in the screen, 

executes the automaton "agRain", and prints the word "Rained" in the screen. 
 
Message{ 
 function( event ) 
  print(event.time); 
  agRain:execute( event ); 
  print("\tRained"); 
  return 0; 
 end 
} 
 

Figure 4.27 – Defining a Message in TerraME Modeling Language. 

4.6.5 Database management routines 

A TerraME CellularSpace provides three functions for database management. The 

load() function loads the cell attributes from the spatial database. Since the GPM 

neighborhoods are not yet stored in the TerraLib database, the loadNeighborhood( 

fileName) can be used to load a GPM neighborhood from a file whose name is received 

as parameter.  Figure 4.28 shows how these functions are invoked for the CellularSpace 

called csCabecaDeBoi.   
 
csCabecaDeBoi:load(); 
csCabecaDeBoi:loadNeighborhood("MooreGPM"); 
 

Figure 4.28 – Loading space attributes in TerraME Modeling Language. 
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The TerraME CellularSpace also provides a function to save the cell attribute values in 

the associated TerraLib database. Its syntax is  save (time, themeName, attrNameTable). 

The parameter time is the timestamp that will be associated to the data.  The parameter 

themeName is the TerraLib theme where the data will be saved. The parameter 

attrNameTable is a table with the names of the cell attributes to be saved. If the third 

parameter is an empty table or a nil value, all cell attributes will be saved. When the 

save(...) function is executed, a view named Result is created in the TerraLib database 

and a theme containing the saved data is inserted in this view. The name of the theme is 

composed concatenating the parameters themeName +  time. When the save(...) function 

is called with the parameters shown in Figure 4.29, the values of the attribute "water" of 

all cells from the CellularSpace "csCabecaDeBoi" are saved in the themes: "sim1985", 

"sim1986", "sim1987", and so on. 
 
csCabecaDeBoi:save(event:getTime(),"sim", {"water"}); 
 

Figure 4.29 – Saving cell attributes values in TerraME Modeling Language. 

4.6.6 Defining runtime variables 

The user can define runtime variables for any TerraME type by defining it in a 

statement (variable "." newVariable "=" value). One can define runtime variables for 

Cell, LocalAutomaton, or Event values. In Figure 4.30, the runtime variable "name" is 

added to an Event and receives the value "initialEvent", and a runtime attribute called 

"water" whose value is 0 (zero) is added to each cell from the CellularSpace 

"csCabecaDeBoi".  
 
-- Creating new event attributes 
ev = Event{ time = 1985, period = 1 }; 
ev.name = "initialEvent"; 
 
-- Creating new cell attributes 
ForEachCell( csCabecaDeBoi, function( cell ) cell.water = 0; end ); 
 

Figure 4.30 – Defining a runtime attribute in TerraME Modeling Language. 

4.6.7 Synchronizing the space 

TerraME implements the nested-CA synchronization model described in section 3.5. 

The Cell:synchronize(), CellularSpace::synchronize() and Scale:synchronize() functions 

can be used for synchronization, as shown is Figure 4.31. The variable 
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"csCabecaDeBoi" is a 10 x 10 CellularSpace where the cover of each Cell is “forest”. 

The first time this code will be executed, all cells will be "deforested" and the sentence 

"Number of deforested cells: 100" will be printed. The second time, the sentence 

"Number of deforested cells: 0" will be printed because the cells have already been 

deforested. However, if the function "cell:synchronize()" had been excluded, the 

changes would not have been committed. Then, the output would always be "Number of 

deforested cells: 100". 
 
count = 0; 
for i, cell ipairs( csCabecaDeBoi ) do 
 if( cell.past.cover == "forest") then  
  cell.cover = "deforested"; 
  count = count + 1; 
 end 
 cell:synchronize(); 
end 
print("Number of deforested cells:"..count); 
 

Figure 4.31 – Synchronizing a CellularSpace in TerraME Modeling Language. 

4.6.8 Configuring and starting the simulation  

Before starting the simulation, it is necessary to verify if the syntax of the model is 

correct. This requires that each automaton has all its ControlModes identified in the 

target properties of its JumpConditions. This verification can be performed through the 

function build() from both LocalAutomaton and GlobalAutomaton types. If there is a 

syntax error, the build() function aborts the model and prints an error message 

identifying the wrong JumpCondition target.  

The simulation will start at the instant of the first Event value. It is necessary to 

configure the final simulation time. The function Scale:config(finalTime) serves this 

purpose. It receives the value of the final simulation time as its parameter. In Figure 

4.32 the automata "agRain" and "agWaterBalance" from the Scale "cabecaDeBoi" are 

verified, the Scale is configured to stop at the year 1987, and the simulation is started 

when the function executed() from the Scale "cabecaDeBoi" is called.  
 
cabecaDeBoi.agRain:build( ); 
cabecaDeBoi.agWaterBalance:build( ); 
cabecaDeBoi:config(1987); 
cabecaDeBoi:execute(); 
 

Figure 4.32 – Configuring and starting the simulation in TerraME Modeling Language. 
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4.7 Comparison with previous work 

This section compares the TerraME modeling environments with the most relevant 

platforms used to LUCC modeling: Swarm, STELLA and GEONAMICA. In opposition 

to GEONAMICA (Engelen, White et al. 1997) and TerraME, tools originally conceived 

to aid spatial dynamic modeling, Swarm (Minar, Burkhart et al. 1996) and STELLA 

(Roberts, Anderson et al. 1983), are based on non-spatial foundations: agent theory and 

system theory. GEONAMICA implements the Layered-CA model and TerraME uses the 

nested-CA model. All of these environments provide abstractions to allow problem 

decomposition. In STELLA, a system is a composition of other systems. In Swarm, 

objects swarm are containers for sets of agents that can be nested, forming a hierarchy 

of swarm objects. In GEONAMICA, model building block (MBB) objects can be 

composed of several MBBs. In TerraME, Scales can be nested for multiscale models. 

The STELLA modeling tool (Roberts, Anderson et al. 1983) is an application that 

provides a graphical interface for model design: in the flow diagram, systems 

(rectangles) are connected by flows of energy (arrows). Systems are represented by a set 

of continuous variables, and input and output flows. The flows are represented by 

differential equations. The model is continuous, sequential, and predetermined by the 

modeler. It is not possible to represent processes whose behavior depends on external 

events. The spatial modeling framework SME (Maxwell and Costanza 1995) integrates 

a cellular space with GIS systems and embeds a STELLA model in each cell. 

Swarm (Minar, Burkhart et al. 1996) is an open source library of classes and objects for 

the development of multiagent simulations. Actors and processes are modeled as 

communication agents. The modeler used the inheritance and dynamic binding 

mechanisms from the host programming language to extend the Swarm basic models. 

The model behavior is specified in the host programming language. The model needs to  

be recompiled each time its code is updated. Several discrete-event schedulers can be 

defined to coordinate agents in time, allowing multiple temporal extents and resolutions. 

The Kenge toolkit implements a GIS integrated cellular space for the Swarm platform 

(Box 2002).  
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GEONAMICA is a set of C++ templates and ActiveX components (Engelen, White et al. 

1997) that depend on the object oriented properties (inheritance, dynamic binding) of 

the host language to be extended. A model building block (MBB) component represents 

an actor or a process. Models are described graphically in a system diagram where 

several MBB (rectangles) are connected by flows of information (arrows). For each 

MBB, the modeler should describe, in the host programming language, the rules that 

will be executed when four different types of events occur: on read, init, step, and on 

write. After this, GEONAMICA generates the source code of the described model. Then, 

the model is compiled and linked with the simulation engine. The GEONAMICA spatial 

model is integrated with a GIS. 

The STELLA, Swarm, and GEONAMICA platforms do not satisfy the full requirements 

for multiscale LUCC modeling. They do not provide a special abstraction to represent 

the concept of scale. Their foundations are two restrictive to represent complex 

heterogeneous spatial dynamic models where different space partitions are represented 

in several scales. These platforms do not provide abstractions to reproduce the spatial 

patterns of change, or spatial process trajectories. Their analytical models do not 

distinguish between sequential and parallel spatial process, whereas TerraME provides 

the concept of LocalAutomaton, GlobalAutomaton and SpatialIterator. GEONAMICA 

and Swarm do not have special abstractions for continuous behavior modeling.  

Swarm and STELLA do not provide methods for spatial model calibration and 

validation. The GEONAMICA framework provides methods that assess the model 

performance in several spatial resolutions. However, these methods do not distinguish 

between errors in the amount of change project by the model from errors on the location 

of the changes proposed by the model (Pontius 2002; Pontius, Huffaker et al. 2004).  

4.8  Conclusion 

In this work, we have presented the design and implementation issues involved in the 

development of a software platform for multiscale LUCC modeling. This software 

platform, called TerraME, implements the nested-CA model and services for 

spatiotemporal data analysis and management, model development, simulation, and 
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assessment. The TerraME Modeling language has been described in detail. Finally, the 

TerraME platform has been compared with relevant modeling tools used to LUCC 

model development: Swarm, STELLA, and GEONAMICA. The main contributions of 

TerraME are:  

(a) The Scale model for representing, in a specific resolution and extent, all analytical, 

spatial, and temporal aspects of a geographical phenomenon. The nested Scales can be 

used to represent heterogeneous space, where each partition is characterized by different 

cell attributes, non-isotropic and non-stationary neighborhood relations, and processes 

or actors acting on specific temporal and spatial resolutions. 

(b) The LocalAutomaton and GlobalAutomatont concepts, that enable the development 

of models that combine the agent-based and the cellular automata approaches. This 

allows the simulation of individual processes that change the space sequentially and of 

processes whose behavior is location dependent.  

(c) The synchronization scheme allows the development of models where several 

sequential and parallel spatial processes or actors change the space in a asynchronous 

way.  

(d) The SpatialIterator allows the representation of spatial trajectories and provides a 

mechanism to reproduce the spatial pattern of changes.  

(e) The TerraME foundations allow the simulation of discrete, continuous, event-driven 

and situated behavior. 

Since The TerraME is the only platform that satisfies all requirements of multiple scale 

modeling, we argue that TerraME is a suitable platform for LUCC modeling. 
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CHAPTER 5 

APPLICATION OF NESTED CA FOR MODELING OF LAND USE CHANGE 

IN BRAZILIAN AMAZON 

5.1 A brief review on LUCC modeling in Brazilian Amazon 

This Chapter presents a review on LUCC modeling in Brazilian Amazon. To 

demonstrate the nested-CA properties, two multiple scale LUCC models have been 

implemented using the TerraME modeling environment. The main concepts of these 

models are briefly introduced. The general structures of their implementations in 

TerraME are presented. The simulation results are shown. In last sections, we highlight 

the mains contributions of the work and describe the future work directions. 

One of the important areas of environmental change modeling is the Amazonia Rain 

Forest. The Brazilian Institute for Space Research (INPE) carries out a yearly 

comprehensive survey of deforested areas, using remote sensing images from the 

LANDSAT (30 m resolution) and CBERS (20 m resolution) satellites. From 1985 to 

2005, INPE’s data indicates that more than 350,000 km2 of forest have been converted 

to agriculture and pasture (INPE 2005). INPE’s most recent results indicate a 

deforestation rate of 27.300 km2 for the period August 2003- July 2004 and of 18.900 

km2 for the period August 2004- July 2005. In the extreme case, deforestation rates can 

be as high as 10.000 km2 in a single month.  

The process of change in Amazonia is relevant for global primary production1 (Dixon, 

Brown et al. 1994; Malhi, Meir et al. 2002), for global biodiversity (Wilson 1989; 

Demiranda and Mattos 1992; Dale, Pearson et al. 1994). Deforestation in Amazonia has 

impacts on the public health system (Coura, Junqueira et al. 1994; Githeko, Lindsay et al. 

2000; Vasconcelos, Travassos da Rosa et al. 2001), on atmospheric chemistry (Ganzeveld 

and Lelieveld 2004), on the climate system (Nobre, Sellers et al. 1991; Laurance and 

                                                 
1 Primary production is the production of biological organic compounds from inorganic materials through 
photosynthesis or chemosynthesis. Organisms that can create biomass in this manner (notably plants) are 
known as primary producers, and form the basis of the food chain. 



 92

Williamson 2001; Werth and Avissar 2002; Oyama and Nobre 2003; Negri, Adler et al. 

2004), and on global warming (Fearnside 1996). 

LUCC studies have been made in the Amazon region in order to determine 

proximate causes and driving forces of deforestation (Pfaff 1999; Geist and Lambin 

2002; Laurance, Albernaz et al. 2002; Aguiar, Kok et al. 2005; Fearnside 2005). LUCC 

models have been applied to the region in an attempt to understand the dynamics land 

use change dynamic and its consequences (Dale, Oneill et al. 1994; Pfaff 1999; Evans, 

Manire et al. 2001; Laurance, Cochrane et al. 2001; Soares, Assuncao et al. 2001; 

Soares, Cerqueira et al. 2002; Deadman, Robinson et al. 2004; Walker 2004; Walker, 

Drzyzga et al. 2004; Aguiar, Kok et al. 2005; Arima, Walker et al. 2005; Neeff, Graca et 

al. 2005).  

There is currently no agreement as to the main causes of Amazon deforestation 

(Câmara, Aguiar et al. 2005). This is partly due to the lack of an established theory on 

human-environment interaction. 

5.2 Applications 

In this Section, we present the TerraME implementation of two multiple scale LUCC 

models: 

• The Conversion of Land Use and its Effects (CLUE) (Veldkamp and Fresco 

1996) model is applied to the Brazilian Amazon region (Figure 5.1), to simulate 

the deforestation process from 1997 to 2015. The allocation module is the CLUE 

model core. It answers the question where the demanded amount of change will 

take place (Verburg, Veldkamp et al. 1999). It includes two scales at which land 

use is allocated. A coarse scale is used to calculate the trends of the changes in 

land use pattern and to capture the influence of land use drivers that act over 

considerable distance. Based upon the pattern of land use change calculated at 

the coarse scale, but taking local constraints into account, the land use pattern is 

calculated at a finer scale. In this work, the allocation module had been 
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implemented in a generic way; so that it can be parameterized to be applied to 

other regions. The amount of change at each time step is a model parameter.  

 
Figure 5.1 - Example 1: Legal Amazon study area, Brazil. 

Source: INPE (2005) 

• We have developed a LUCC model for the center-north region (Figure 5.2) of 

the Rondônia state, Brazil, which occupation history is associated to 

colonization projects created by the Brazilian National Institute of Agrarian 

Reform (INCRA), to induced migratory flows, to the BR-364 construction, and 

to the establishment of poles of development (Becker 1997). A TM/Landsat 

image series, from 1985 to 2000, agrarian maps, filed data, and census data have 

been used to partitioning the space in homogenous land units, called occupation 

unit - UOP (Escada 2003). The homogenous space partitions have been 

delineated visually on the satellite images, defining regions formed by the 

repetition of texture elements, and linking different land cover patterns to 

different deforestation processes in specific temporal and spatial extents and 

resolutions. In this work, each UOP is represented as Scale. The whole study 

area is represented by a multiple scale model built by the composition of the 

UOPs Scales. In the right side of Figure 5.2, the UOPs are classified according 

to the farms size. Small farms UOPs appears in light blue. The large farms 
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UOPs are colored in dark blue. The medium farms UOPs are in an intermediary 

tonality. Urban center are in red, and reserve areas in green. 

 
Figure 5.2 – Example 2: Rondônia study area, Brazil.  

Source: adapted from Escada (2003). 

5.2.1 The CLUE model in TerraME 

In the CLUE model, the land cover is represented by the continuous variable coverx,y,t,c 

that records the proportion of each land cover type c in a cell (x, y) at the instant t. 

Aguiar (2005) has used a multiple regression method to analyze the descriptive data 

collected about the land use system at the two allocation scales, cell of 25×25 km2 (local 

scale) and 100×100 km2 (coarse scale), and at the instant t0, initial time of the modeling 

exercise (1997). Figure 5.3 show the local and coarse allocation scales. 
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Figure 5.3 – Two allocation scales: cells of 100×100 km2

 (left), and cells of 25×25 km2 
(right). 

As a result, for the year of 1997, two set of regressions equations have been obtained: 

one for each allocation scale.  Each set of equations contains a regression equation that 

correlates the spatial pattern of each land use type c with other spatial attributes i: 

coverx,y,t,c = βo + β1· Attrx,y,t,1+ β2· ATTRx,y,t,2 +…. This method has been used to identify 

the most important biophysical and socio-economic drivers of land use change (cell 

attributes which will be the dependent terms on the regression equations, Attrx,y,t,i), as 

well as the quantitative relationships between these drivers and the surface area of the 

different land use types (the coefficient from the equations, βi). At each simulation step, 

the first set of rules is used to allocate changes at the coarse scale. Then, the spatial 

pattern at the coarse scale is used with the second set of rules to allocate changes at the 

local scale. 
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allocationCLUE = Scale{ 
  
 id = "Amazon", 
 
 landUseTypes = {   
  "log_luc_pasture", "log_luc_temp", "log_luc_perm",    
  "log_luc_nused", "log_luc_plant", "luc_forest" 
 } 
 
 landUseDrivers = {  
  "conn_mkt", "log_dist_road", "prot_all", "agr_small",  
  "log_setl", "log_dist_urban", "log_dist_mineral", "log_dist_river",  
  "soils_fert_B1", "soils_fert_B3", "clima_humid", "log_dist_wood",  
  "conn_port", 
 } 
 
 demand = {...}, 
  
 scLocal = Scale{  
 
  regrParam = {...},  
 
  cs = CellularSpace{...}, 
  aut = GlobalAutomaton{ ... }, 
  t = Timer{ ... } 
 
 }, 
 
 scCoarse = Scale{  
 
  regrParam = {...},  
 
  cs = CellularSpace{...}, 
  aut = GlobalAutomaton{ ... }, 
  t = Timer{ ... } 
 
 } 
 
} 
 

Figure 5.4 – CLUE allocation scales in TerraME Modeling Language. 

Figure 5.4 shows the general structure of the CLUE allocation model represented in the 

TerraME modeling language. It is a scale composed by: 

• A landUseTypes table that contains the name of each land use types in the input 

data. The land use categories in the input land use maps are: pasture, temporary 

agriculture, permanent agriculture, non-used land, and forest.   

• A landUseDrives table that contains the name of each biophysical or socio-

economic driver of land use change identified in the regression analysis. Aguiar 

(2005) have identified the following drivers: connection through roads to 

national markets, logarithm of the Euclidian distance to roads, percentage of 
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protected areas, percentage of small farms, logarithm of the number of settled 

families, logarithm of the Euclidian distance to urban centers, logarithm of the 

Euclidian distance to mineral deposits, logarithm of the Euclidian distance to 

large rivers, percentage of high and medium fertility soils area, average humidity 

in the three drier subsequent months of the year, logarithm of the Euclidean 

distance to wood extraction poles, and connection through roads network to 

main ports. 
 
demand =  {  
 { 26579657.13,  5218327.69, 1316347.75,  5331225.00, 234325.00, 252132617.44 }, 
 { 28406152.43,  5576919.64, 1406804.26,  5697575.00, 250427.30, 249474621.37 }, 
 { 30232647.74,  5935511.58, 1497260.77,  6063925.00, 266529.59, 246816625.31 }, 
 { 32059143.05,  6294103.53, 1587717.28,  6430275.01, 282631.89, 244158629.25 }, 
 { 33885638.36,  6652695.48, 1678173.79,  6796625.01, 298734.18, 241500633.18 }, 
 { 35712133.67,  7011287.43, 1768630.29,  7162975.01, 314836.48, 238842637.12 }, 
 { 37538628.97,  7369879.38, 1859086.80,  7529325.01, 330938.78, 236184641.05 }, 
 { 39365124.28,  7728471.33, 1949543.31,  7895675.02, 347041.07, 233526644.99 }, 
 { 41191619.59,  8087063.28, 2039999.82,  8262025.02, 363143.37, 230868648.93 }, 
 { 43018114.90,  8445655.22, 2130456.33,  8628375.02, 379245.67, 228210652.86 }, 
 { 44844610.21,  8804247.17, 2220912.84,  8994725.02, 395347.96, 225552656.80 }, 
 { 46671105.51,  9162839.12, 2311369.35,  9361075.03, 411450.26, 222894660.73 }, 
 { 48497600.82,  9521431.07, 2401825.86,  9727425.03, 427552.55, 220236664.67 }, 
 { 50324096.13,  9880023.02, 2492282.36, 10093775.03, 443654.85, 217578668.61 }, 
 { 52150591.44, 10238614.97, 2582738.87, 10460125.03, 459757.15, 214920672.54 }, 
 { 53977086.75, 10597206.91, 2673195.38, 10826475.03, 475859.44, 212262676.48 }, 
 { 55803582.06, 10955798.86, 2763651.89, 11192825.04, 491961.74, 209604680.41 }, 
 { 57630077.36, 11314390.81, 2854108.40, 11559175.04, 508064.04, 206946684.35 }, 
 { 59456572.67, 11672982.76, 2944564.91, 11925525.04, 524166.33, 204288688.29 } 
} 
 

Figure 5.5 – Model parameters: land use demand from each land use type from 1997 to 
2015. 

• A demand table that defines the total area demanded for each land use type at 

each simulation year, Figure 5.5. Each line of the demand table is associated to a 

specific year starting from 1997, and contains the total area (in m2) required to 

each land use type in table landUseTypes.  

•  Two internal scales: scLocal and scCoarse. Each scale has a table to store the 

parameters of the regression equations, called regrParam, a GlobalAutomata 

that calculate the new spatial pattern for each land use type based on these 

parameters, a CellularSpace that store the percentage of each land use type and 

the values of each land use driver at each location, and a Timer that annually 

executes the Automaton and immediately synchronized the CellularSpace.  
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-- regrParam = { 
--  land_use1 = { regrConstant, regError,  
--   { beta1, beta2, ..., betaN }, 
--    { attr1, attr2, ..., betaN }, 
--   log transformed? (true or false), 
--       elasticiy (defaul MIN_ELASTICITY), 
--   static? (0: dynamic, 1: static, -1: change towards demand dir.) 
--  } 
-- ... 
-- } 
 

Figure 5.6 – Format of the parameters of the regression equations for a scale. 

Figure 5.6 presents the format of the table regrParam. For each land use type in 

landUseType, there is a line in the regrParam table that associates this land use 

type to a set (table) of parameters. The first parameter in this set is the value of 

the regression constant. The second is the value of regression error. A table 

containing the value of each regression coefficient is the third parameter. The 

fourth parameter is a table of indexes of the land use drives in the table 

landUseDrivers. To calculate the regression, the value of the land use driver at 

the i-th position in the fourth parameter table will be multiplied by coefficient in 

the same position in the third parameter table. The fifth parameter indicates 

whether the input data have been logarithm transformed during the regression 

analysis. The sixth parameter establishes the minimal elasticity accepted for the 

land use type (a CLUE parameter), and the seventh parameter indicates if the 

land use is static or dynamic (other CLUE parameter). Figures 5.7 shows the 

regression parameters used in this work for the scLocal allocation scale, a 

similar structure is used to the scCoarse scale. 
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regrParamLocalScale = { 
 
 log_luc_pasture = {  
  3.958597, 0.63189, 
  { -0.641055, -0.463439, -0.316293, 0.943192, -0.131481, 0.750784,  
  0.328109, -0.052798 }, 
  { 1, 2, 3, 4, 6, 8, 9, 10}, 
  true, 
  0.01, 
  0 
 }, 
  
 log_luc_temp = {  
  1.498353, 0.49275, 
  { -0.465827, -0.279017, 0.31186, 0.627869, 0.072989,-0.099603, 0.522392, 
  0.500685, -0.03818, 3.384578 }, 
  { 1, 2, 3, 4, 6, 7, 8, 9, 10, 12 }, 
  true, 
  0.01, 
  0 
 }, 
 
 log_luc_perm = {  
  -1.45349, 0.36059, 
  { -0.29376, -0.1618, 0.19072, 0.23094, -0.09049, 0.41573, 0.23233, 
  4.44311 }, 
  { 1, 2, 3, 4, 7, 8, 9, 12 }, 
  true, 
  0.01, 
  -1 
 }, 
 
 log_luc_nused = {  
  1.981744, 0.46427, 
  { -0.473846, -0.291643, 0.426325, 0.091095, -0.120919, 0.467058,  
  0.379051, -0.03735, 5.962671 }, 
  { 1, 2, 4, 6, 7, 8, 9, 10, 12 }, 
  true, 
  0.01, 
  0 
 }, 
 
 log_luc_plant = {  
  -2.46878, 0.22932, 
  { -0.12336, -0.06894, 0.04335, 0.16928, -0.0566, 0.0131, 0.14906,  
  0.05723, 1.41639 }, 
  { 1, 2, 3, 4, 6, 7, 8, 9, 12 }, 
  true, 
  0.01, 
  -1 
 }, 
 
 luc_forest = {  
  -0.813838, 0.16291, 
  { 0.148098, 0.071349, -0.091813, -0.187958, 0.020614, 0.026632,  
  -0.239035, -0.062135, 0.014885 }, 
  { 1, 2, 3, 4, 6, 7, 8, 9, 10 }, 
  false, 
  0.01, 
  -1 
 }   
}         
 

Figure 5.7 – Local scale regression parameters. 
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The figure 5.8 shows the model results for some time instants: 1999, 2005, 2010, and 

2015. Changes are too concentrated the Deforestation Arc, and there is a little pressure 

on the central area. 

 
Figure 5.8 – CLUE results: deforestation process for the whole Brazilian Amazon 

region. 

5.2.2  A deforestation model for heterogeneous spaces: the Rondônia case. 

The main goal of developing this model is to test the TerraME modeling environment in 

the construction of multi-resolution models, with different actors, with distinct 

behaviour acting on contiguous space partitions. To accomplish this, we developed a 

deforestation model based on the assumption that small and large/medium farmers 

convert the forest to agriculture based on different behavioural rules, both for choosing 

the location of change and for defining the speed of change. In this work, we discuss 

only some of the main features of the model. A complete description of a full model 

being developed for this area using nested-CA, in the context of the GEOMA Project, is 

out of the scope of this work, and will be presented in future publication. 

1999 2005

2010 2015
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As farm properties and amount of capital available for different actors are so discrepant 

(small farms are less then 100 ha; medium from 100 to 1000 ha; large greater than 

1000ha), we decided to test if different spatial resolutions would better represent the 

processes for different actors. The TerraME Scale type has been extended to generate 

two new types of Scale values: smallScale and largeScale. Then, each UOP has been 

represented as an instance of one of this Scales types, according to its classification: 

small farms area, or medium/large farms area.  

The smallScale type is a composite of:  

(a) A Cellularspace that has a categorical attribute to model the land cover, {forest, 

non-forest}, in each 500×500 m2 cell.  

(b) A GlobalAutomaton called autSmallDemand that calculates the rate of change based 

on the age of the INCRA settlement in the UOP, on the size of the land parcels, and on 

the installation of credit received from the Government in first years.  

(c) Another GlobalAutomaton called autSmallAllocation that allocates the changes 

along the roads based on two spatial properties: the proximity to already established 

farmers through the roads network, and proximity to urban areas.  

(d) A Timer is defined to every simulated year and executes the autSmallDemand 

automaton before the autSmallAllocation automaton execution.  

One the other hand, the largeScale type is a composite of:  

(a) A Cellularspace that has a continuous attribute to model the land cover, {percentage 

of forest}, in each 2500×2500 m2 cell.  

(b) A GlobalAutomaton called autLargeDemand that calculates the rate of change based 

on the age of the INCRA settlement in the UOP and on the size of the land parcels. 

 (c) Another GlobalAutomaton called autLargeAllocation that allocates the changes 

along the roads based on three spatial properties: the proximity to already established 



 102

farmers through the roads network, and the proximity to established farms which limits 

are in the same line of its frontiers (not necessarily where a road exists).  

(d) A Timer is defined to every simulated year executes the autLargeDemand 

automaton before the autLargeAllocation automaton execution. 

 
Figure 5.9 – Deforestation process in non-homogeneous space: forest (light gray) and 

deforest (dark gray). 

Figure 5.9 illustrates two UOPs, one representing a small farms official settlement, 

established in 1985, called Vale do Anari (right); and another representing large farm 

area, being occupied since the 70ies, called Burareiro (left).  Figure 5.10 presents the 

main differences between the automata autSmallDemand and autLargeDemand. Figure 

5.11 describe the nearness relationships used by the automata autSmallAllocation (left) 

and autLargeAllocation (right).  Figure 5.12 illustrates some simulation results. As the 

nested-CA model is a generic framework, several alternative space configurations and 

behavioural rules can be tested, allowing for a rich environment for hypothesis testing.  
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Figure 5.10 - Allocation module: The automata autSmallDemand (left) and 

autLargeDemand (right). 

 
Figure 5.11 – Space partitions with alternative nearness relationships: roads (black 

lines), farms frontier line (light blue lines). 

 
Figure 5.12 – Simulation results for deforestation process in Rondônia, Brasil, from 

1985 to 1997. 

In Figue 5.10, the AutSmallDemand automaton initial state is Idle. The automaton 

remains in this state until the simulation clock reaches the year of implantation of the 

UOP. Then, it transits to the Newly Implanted state, and establishes a higher 
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deforestation rate because the small farmers receive credit from the Government in the 

first 6 years after the settlement implantation. After this period, the automaton transits 

the Deforesting state, where the rate of deforestation is moderate and calculated 

according the UOP characteristics (age, parcel size). When the percentage of the total 

deforested are in the UOP is greater than 80%, the automaton transits to the Slowing 

Down state, where the deforestation rate progressively decrease, proportionally to the 

remaining amount of forest in the UOP. When there is no forest in the UOP, the 

automata transit to the state: Idle. rate of change is null while the UOP is not implanted. 

The autLargeDemand automaton does not have the Newly Implanted state because 

medium and large farmer do not receive credit. 

5.3 Conclusion and future work  

A model of computation, called Nested Celluar Automata (nested-CA), has been 

developed to support multiscale LUCC modeling. This model has been implemented in 

a modeling platform, called TerraME, which provides services for all stages of the 

spatial dynamic modeling process. Two multiscale LUCC models have been developed 

to test the nested-CA and the TerraME properties.  

The nested-CA architecture facilitates integrated model developments, allowing 

complex dynamic spatial models to be constructed from hierarchically organized simple 

ones, in a black box fashion. It is possible to construct models in which different 

geographical space partitions are: inhabited by several specific actors and processes 

acting upon them in different spatial and temporal extents and resolutions; and are 

characterized by distinct local constraints and nearness relationship. It is possible to 

simulate discrete or continuous behavior, moving and communicating actors, and 

situated behavior. Neighborhood relations may be defined in alternative ways, including 

not only the conventional local relations, such as adjacency, Euclidean distance, etc., 

but also influence relations, such as connection through networks (e.g., roads or 

telecommunication), allowing for non-isotropic and non-stationary space relations. 
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The future work will be conducted within three different research areas: 

• Models of computation for multiple scale spatial dynamic modeling: We believe 

that the nested-CA theoretical foundation needs to be explored to a better 

understanding of the nested-CA properties and their improvement. The situated 

behavior of the nested-CA models of computation has not been sufficiently 

investigated. It is necessary to perform experiments to test how this property can 

be used to represent the knowledge-based decision taking process. A map 

algebra over the cellular space can be developed to provide easier automata rules 

implementation.  

• Software platforms for multiple scales LUCC modeling: The TerraME modeling 

environment will be in constant development. The short time projects are to 

parallelize the TerraME framework source code to obtain high performance 

computing, and to develop a visual interface where the modeler could describe 

the models graphically.  

• Multiple scale LUCC model development: There is a huge demand for LUCC 

models for assess the land use system and for support the decision taking 

process. Using the TerraME modeling environment, we will continue to develop 

LUCC model to allow better understanding of the Brazilian Amazonian space 

and to support the planning of Government actions on this region. 
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