
Automated validation of embedded optical

network software

Aline Cristine Fadel, Regina Moraes

School of Technology – UNICAMP
R. Paschoal Marmo, 1888 – CEP: 13484-332

Limeira, Brazil

alinecfadel@gmail.com, regina@ft.unicamp.br

Eliane Martins

Institute of Computing – UNICAMP

Av. Albert Einstein, 1251

Campinas, Brazil

eliane@ic.unicamp.br

Abstract - This work discusses automated tests performed on

an optical network for high-capacity triple-play services (voice,

video and TV). Given that high availability and reliability are

important requirements for this kind of network system, it is

mandatory to apply regression testing every time it is updated.

For automatic execution of the regression testing a test robot

was developed. It is responsible for collect the outputs and

compare them with the expected results. In order to

complement the regression testing, fault injection campaigns

were performed, which were based on state machines of the

embedded software, seeking a more comprehensive coverage of

tests. For this purpose the robot was adapted to send a trigger

to the algorithm that controls the fault injection. The fault

injection used an optical switch that interrupted the

communication among the board’s system components. The

results show the effectiveness of fault injection in detecting

bugs that were not detected during several months when other

types of tests were applied.

Keywords: embedded software validation, fault injection,

regression test, GPON

I. INTRODUTION

Telecommunications systems must operate without

interruption and without loss of data, since these events may

cause several financial losses to telecommunications

operators and users.

According to Sommerville [1], reliance on computer

systems is a property that reflects the degree of confidence

that users may have on the system and it depends on

reliability and availability of telecommunication system.

Moreover, according to Clark and Pradhan [2], availability is

the ability to be operational at any given time without

failures, while reliability is the ability to operate without

failure for a certain period. However reliability cannot be

expressed numerically; other classification can be used such

as: "unreliable", "very reliable" and "ultra reliable" [1].

Disregarding reliability and availability during software

development can result in the occurrence of several failures

in the operational phase of the system. Software test can be

applied to help in disclosing the faults responsible for these

failures.

Software testing is time consuming, therefore the

automation of software test is designed to allow performing

a large volume of test cases (TC) in a shorter time. Also,

automation helps to achieve greater reliability in results and

to reduce costs in the testing process.

Fig. 1. Operation of GPON network [4].

The use of tools to automate tests is a challenge in

embedded systems as each type of embedded software has a

specific interface. Thus, each embedded software requires a

customization for automation to be successful.

The optical networks are gaining new followers every

day, mainly in European and Asian continents [3]. The

increase of the number of users occurs due to high rates of

transmission of these networks can provide, which can

reach 2.5 Gbit/s in the downstream direction and 1.25 Gbit/s

in the upstream direction besides the possibility of their

diversity of services [4].

Aiming to ensure the reliability and availability of

embedded software for optical networks, two experiments

will be discussed in this paper. The first one is the

regression testing automation and the second one is the

automatic fault injection, both applied in GPON (Gigabit

Passive Optical Networking), a project of CPqD (Centre for

Research and Development in Telecommunications).

GPON networks are solutions for high-capacity triple-

play services access (voice, video and TV) using data

transmission over fiber [3]. The connections are established

between the OLT (Optical Line Termination), located at the

service provider, and the ONU (Optical Network Unit),

located at residential or corporate areas, as shown in Fig. 1.

GPON consists of software units that are embedded on

OLT and ONU’s boards. Each OLT fiber must be connected

to almost 128 ONU’s and at a distance of up to 12 miles

(The standard ITU-T sets 37 miles) [4].

At CPqD, the GPON pilot project has been placed on

trial in conjunction with the Experimental Design High-

Speed Network - GIGA, also developed at CPqD [3], and

has been in operation for at least six months. This pilot also

includes mobility network of Wimax, WI-Fi and Ad Hoc. In

this project, the GPON network proved to be an efficient

mode of transmission, and was able to carry data over long

distances with high transmission capacity and quality [5].

Due to the large number of features of GPON system

and also due to GPON design has over a million lines code,

a technique of regression testing was used. The regression

tests are often used when some correction is made in the

software or when some functionality is inserted or deleted.

It is a very popular technique and extensively used, since all

features can be reviewed in new versions. It is currently the

best technique to be applied for this purpose. According to

Rothermel [6], regression testing is a technique performed

on a modified program to ensure that changes are correct,

and without damage of unchanged portions of the program.

In this project, the regression testing were automated and

executed in the GPON system, ensuring reliable results in a

shorter execution time. In order to succeed in it a

customization was necessary and for this purpose a robot

was developed to perform the tests.

A complementary test technique is also used, that is a

validation that automates the fault injection in GPON

system. . Fault injection is applied based on state machines

that describe the transition among the possible system

states, which are used to define TC’s in order to achieve

greater coverage of the system. The greater the amount of

coverage of the code exercised, the greater the quality of

software (less failure). However, to increase the code

coverage implies to improve the mechanism for fault

tolerance [7].

This later experiment has used finite state machines,

which consist of a single set of states. They have an initial

state, and one or more final states, depending on their

execution flow. The state transitions occur when an event is

generated, and when this happens, the states are updated [9].

The bugs found by these experiments are classified

according to the following criteria: (i) low priority bugs -

are trivial flaws or improvements to be made, which do not

affect the operation of the system; (ii) average critical bugs -

are defects that can affect network performance, but do not

lead to crash or interruption of its operation; (iii) highly

critical bugs - can interrupt the system or compromise

network performance; (iv) very highly critical bugs - can

totally undermines the functioning of the system or some

basic functionality.

The test automation experiments have brought

significant results, requiring great effort to run only at the

beginning of each implementation for the generation of

TC’s and tests the adequacy of the robot. Later, this effort

was rewarded by the possibility of running the tests on each

new version, only updating TC’s.

After this introduction, Section II discusses the

regression tests executed manually and automatically

through experiment executed in the GPON network. Section

III comprehends the fault injection experiments and its

automation. And Section IV discusses the advantages

achieved in the implementation of the automation of

regression testing and automated fault injection and the

conclusions.

II. REGRESSION TESTING

The GPON project development has been taking four

years, and at least once a month a new functionality is

released. Due to the extensibility of its functionality and

project size, it is necessary to check each new version in

order to verify if new errors were not inserted in areas of the

system that were previously tested.

The features of the GPON project can be represented by

commands. Currently, the project has 110 commands with

more than 850 TC’s.

The development of TC’s in GPON was created from a

test plan document, and they are based on submitted inputs,

and the outputs (black-box testing). The inputs are sent to

the software, and each command has its own respective

parameters and preconditions. The results of these

commands are displayed to the operator. For example, an

input command to enable the ONU is sent, and the expected

output is the activation and deployment of this device.

Another instance is the “activate_link” command that

has two parameters, device_id and link_id, each parameter

can vary from 0 to 7. Based on these conditions, as shown in

Table 1, TC’s “activate_link” (al) command may be

designed: within these limits, outside the limits, or error

conditions, among other cases. These conditions were held

for the creation of TC’s of all available commands.

A. MANUAL REGRESSION TESTING

In the execution of manual tests, the commands are sent

by the operator to the OLT software through an interface, as

shown in Fig. 2. This interface displays the output, and

TABLE 1: Preparation of Test Cases

Test Type Test

Within the limits

(success)

al 0 0, al 7 7, al 1 5, ...

Outside the limits

(error)

al -1 -1, al 8 8, al 8 4, ...

Errors test Non-execution of pre-

conditions, re-executing the

same command, ...

Fig. 2. Execution of manual tests

events and alarms generated by the application can also be

seen. All TC’s stored in spreadsheets had: the preconditions,

the test itself, the expected result and the priority of the test

run. A defect is observed when the result of TC is not equal

to the expected output.
However, when regression testing is performed

manually they are usually very repetitive and their

conduction requires considerable effort. Due to the volume

of TC’s developed, the execution has become unfeasible. It

required the development of tools that automate it, as

discussed in the next topic.

B. REGRESSION TESTING AUTOMATION

Automatic execution of regression testing allows the

reduction of the execution time of the TC’s, and may lead to

increased coverage of the software as the testers are able to

conduct a large number of tests. Moreover, testers are free

to focus their efforts on other types of test or tests that

cannot be automated.

A test robot was developed at CPqD to automate

regression testing. It was implemented in C language, Linux

operating system and it communicates with the OLT

equipment through TCP/IP sockets. The robot is responsible

for collecting the outputs and comparing them with the

expected results.

TC’s that were manually developed were stored in a

database consisting of text files. These files have the test

script to be executed, and the expected results. Only one of

the commands cannot be automated, due to the hardware

characteristics.

After the execution of TC’s, the robot generates a report

composed by these executed TC’s and the execution

statistics, such as TC’s that were successful and the

presented errors. This report can be sent to the entire team

automatically.

C. RESULT OF REGRESSION TESTING AUTOMATION

During one year of automatic execution of regression

tests in GPON, we found 206 failures (distributed during the

time), as shown in Fig. 3. In this chart, one can see that the

period of deployment of the robot (June-October, 2009) a

large number of bugs were found. Another period when the

number of bugs has increased was the one between March

and June 2010, which was the time when critical new

features were implemented. In Fig. 4, the reported bugs

were separated by criticality.

Fig. 3. Total of found bugs

The execution time of regression testing has been

reduced from 4 days to 10 hours. This resulted in time

saving and allows executing the tests overnight. During

business hours it is only necessary to check the generated

report, the registration bugs and updating TC’s. With the

time saving it was possible to think of our features for the

robot, allowing the creation of another experiment that will

be addressed in Section III.

III. FAULT INJECTION

Telecommunications systems must have high

availability and they must be able to provide the requested

services, even in adverse conditions. Thus, one way to

validate these systems is to verify if they are fault tolerant,

i.e., they are able to deliver the service correctly even in the

presence of faults [8]. Fault-tolerance is one of the essential

characteristics for systems that need to ensure high

dependability.
By developing systems that require high dependability,

just implementing fault-tolerance mechanisms is not

enough. It is also equally important to validate them in order

to ensure they are correctly implemented, i.e., that all the

services offered by the system are provided according to

their specifications. To validate the implementations one

can use any means designed to achieve dependability, such

as: prevention, tolerance, removal and fault forecasting [8].

 Fig. 4. Criticality of found bugs

A technique that can be used to check whether the

system is fault-tolerant or not is the application of fault

injection, which aims to observe the behavior of the system

in the presence of faults that were deliberately included in

order to validate the system under analysis.

A. MANUAL FAULT INJECTION

The tests performed attempted to emulate the

interruption of communication between the OLT and the

ONU’s. In an operational system, these failures may occur

due to breakage of optical fibers or loss of signal, for

instance. In an ideal system, when such events occur, after

the fibers are replaced or the signal is recovered, the

components must be reconnected. The OLT and the ONU’s

connected to this OLT should return to their previous state

without human interaction.

To conduct this test manually, the fiber connected to the

ONU’s and the OLT was removed and the behavior of the

system was observed. However, there were two main

difficulties: when a failure was discovered: it is difficult to

reproduce it since the exact moment of the interruption is

unknown and it is difficult to ensure that all these moments

are being covered by tests.

To minimize these difficulties and increase test

coverage, it was decided to perform the fault injection based

on state machines of the embedded software, which will be

detailed in the next subsection.

B. AUTOMATIC FAULT INJECTION

The experiment is detailed in Fig. 5 that is composed by

OLT and ONU’s, a Test Robot containing OXC (Optical

Cross Connection) equipment and controller software, and a

switch. The switch performs the connections between

network devices.
The OXC was inserted into the environment to control

the communication between the ONU’s and the OLT. It is

composed by optical switches that are able to connect and

disconnect the fibers by commands, and it was used to inject

faults in the test environment.

Fig. 5. Operation of the experimental tests

Fig. 6. Example of ONU state machine

The robot used in regression testing has been adapted to

run this experiment. In this case it is responsible for:

 sending commands to the OLT;

 receiving the system logs (the logs have

communication information between the OLT

and the ONU’s);

 sending commands to the OXC and;

 Running the TC’s and analyzing their results.

The TC’s were derived from the OLT’s state machine,

therefore it is in the state transition that a greater likelihood

of unexpected events normally takes place. In Fig. 6, there

is an example of the ONU state machine. Specific

commands are required to enable or disable an ONU. In

case of failure during activation or deactivation of the ONU,

its status can be changed to Error. In the case the failure is

tolerated, the ONU returns to the state prior to the failure

event. In Fig. 6, due to confidentiality reasons; the state

machine was modified in this paper.

Automated tests will run from the receipt of logs by an

instance of the tests robot. As shown in the sequence

diagram in Fig. 7, the robot sends commands to an instance

of GPON. When a specific state log is received, the

instance of the robot will send a command to the instance of

the OXC to interrupt the communication between the OLT

and the ONU, injecting the fault in the system. After a

period of time, the communication is re-established, and the

logs are analyzed in order to verify the behavior of the OLT

and the ONU’s. While the robot does not receive these logs,

the system continues processing the normal execution flow.

TABLE 2

Scenario Explored on Tests

Scenario

Testing

Situation

Scenario 1 1 ONU connected without flow

Scenario 2 3 ONU’s connected without flow

Scenario 3 1 ONU connected with 1 flow

Scenario 4 2 ONU’s connected with 1 flow

Scenario 5 1 ONU connected with 5 flows

Scenario 6 2 ONU’s connected with 5 flows

. Robot of Tests . GPON . OXC

Send commands

Send response

Send events, alarms and Logs

Send fault injection

Fault Injection

Send events, alarms and logs

[Expected State]

Fig. 7. Sequence Experiment Diagram

The period that the application was inoperative, i.e., with

no critical event, the test results obtained were the same if

interruption duration is 2 seconds or 2 minutes.

We used nine state machines with presented from 3 to

24 transitions states, as shown in Table 3. In this way, some

tests were performed with the interoperation of the states,

when two or more state machines operate concurrently by

threads, being processed in a seemingly simultaneous way,

as shown in Fig. 8.

In Fig. 8, the ACTIVE state of Fig. 6 is detailed. This

state is composed by other state machines as CONTROL

and VERIFY. The execution of these "sub-state machines"

occurs concurrently until all state machines reach the final

state. When the CONTROL and VERIFY states reach their

final states, the controls of the two sub-states competitors

come together again in a single stream, and the state is

updated to ACTIVE.

The model states represent the possible behaviors of the

system, and the test scenarios derived from them. For the

tests execution, 95 TC’s was executed that comprehended

all the transitions of states machines listed. In each

execution of TC’s, the scenario was changed, the number of

ONU’s connected and the number of these flows connected

to ONU’s could be altered, as shown in Table 2.

Fig. 8. Example of interworking between state machines

TABLE 3

RESULTS OBTAINED WITH EXPERIMENT

C. RESULTS OF THE AUTOMATIC FAULTS INJECTION

After assembling the scenario shown in Fig. 5, the three

TC’s created for the experiment were applied in different

scenarios (Table 2), and the results are shown in Table 3.

The first column of Table 3 shows the state machines. The

number of transitions of each state machine is presented at

the second column. The number of bugs found in medium

criticality is shown in the third column and the number of

bugs with high criticality is in the fourth column. The last

column shows the total number of bugs found regardless of

their criticality. Most of the problems found were bugs of

medium criticality. However, high criticality bugs were also

found, which could have stopped the system or

compromised its normal performance, making the system

work partially, if the faults had been inactivated.

In Table 3, the state machines identified as D and E

presented more bugs than any other state machines. A

possibility is that they have a higher frequency of use, and

therefore are the most critical. In the state machine D,

highly critical bugs were found, leading the system to crash.

It is noteworthy that the system has been operating in a

pilot project for six months, and prior to this experiment,

white box tests were also carried out in the code of

implementing each state machine, in order to check if the

algorithm was consistent with the proposed diagrams during

the development project. Moreover, during previous phases

of testing during the development, manual fault injection

tests were performed, in which the fibers were simply

removed and replaced in the equipment at randomly.
All bugs found in the fault injection experimental tests

reported in this paper had not been previously observed.

These faults in a commercial system in operational phases

put at risk the reliability and availability of the system and

must be corrected. Besides the system reliability, the

organization credibility is also at stake as the system is

critical for the client.

State

Machine

Number of

transitions

Medium

criticality

bug

High

criticality

bug

Total

bugs

A 12 2 0 2

B 4 3 0 3

C 3 0 0 0

D 22 6 2 8

E 12 11 0 11

F 4 2 0 2

G 6 0 0 0

H 8 0 0 0

I 24 0 0 0

IV. CONCLUSIONS

With the aim of achieving greater reliability and

availability of systems, the use of automation in testing

optical networks is essential. Test automation can improve

the coverage of tests, reduce redundant manual test

execution, maximize the accuracy of test results and

increase repeatability.

The results of the experiments provided from

automation of regression test revealed a large number of

bugs. Moreover, automation of regression testing saves time

that allowed the test team to think of making new types of

tests. This resulted in the automation of fault injection

testing to be included in the process.

The use of automation of fault injection validation in

the state machines brought improvements to the

development and debugging process of the organization.

Without using these techniques developers would have

much more work trying to reproduce manually failures

found by testers. Besides, the preparation of TC’s from state

machines allowed a better coverage once all states of the

OLT can be covered.

The joint use of the techniques to automate tests and to

inject the faults allows validating the operation of state

machines in the presence of unexpected situations,

improving the quality of the tests performed.

The failures reported by the tests that used automatic

fault injection technique could not be identified with the

manual techniques, once this technique has a wider breadth

of coverage of state machines when compared to previously

used techniques. After the failures detection, their removal

was facilitated by their knowledge of the exact location of

the bug, and the exact time the crash occurred. This

information is a precious one for the development team and

greatly facilitated the system traceability.

This technique increases the probability of finding

faults that are difficult to reproduce manually. The

transitions from one state to another are short-lived (few

milliseconds) and due to the short transition interval the

manual test is impracticable, causing an inadequate

coverage of the system.

The bugs found had not been reproduced manually and

are more critical than those who had already been found by

manual testing.

For the team responsible for the GPON system, the use

of this technique was very suitable as failures could be

reproduced as they occur in the field. Before the use of this

technique it was not known if the system was able to treat

them. The results of these experimental tests showed that

the system must still be improvement to meet the needs of

systems with high dependability. Thus, one of the next steps

is to inject faults in the communication among components,

in order to adjust the system so that it does not behave in

unexpected ways, making it tolerant to such failures.

The fault injection experiment can be applied in any

software application that can be represented by a state

machine, and where communication can be interrupted.

Also, in future work, the objective is to observe the

behavior of the GPON system when faults are inserted in

the communication protocol called OMCI (ONU

Management and Control Interface), which controls

communication between the OLT and ONU’s.

ACKNOWLEDGEMENTS

This research was conducted with the support of the

Graduate Program of FT/UNICAMP - School of

Technology and the Centre for Research and Development

in Telecommunications (CPqD). Also, the work is partially

supported by CAPES.

REFERENCES

[1] Sommerville, I.: Software Engineering. Sixth Edition.

Pearson Addison Wesley. (2003).

[2] Clark, J., Pradhan, D.: Fault Injection: A Method for

validating computer–system dependability. IEEE. Computer

Society Press, Los Alamitos, CA, USA (1995).

[3] Tendências em Redes Ópticas de acesso e Tecnologia

GPON – “Trends in Optical Networks and Technology

Access GPON” – CPqD. Available at:

<http://www.cpqd.com.br/file.upload/p-3_cpqd-giga_atilio-

e-regiane_14-05-08.pdf>. Last accessed on August 1, 2010.

[4] ITU-T G.984.1: Gigabit-capable passive optical

networks (GPON): General characteristics (03/2008).

Available at: <http://www.itu.int/rec/T-REC-G.984.1-

200803-I/en>. Last accessed on August 1, 2010.

 [5] Martins, L.; Pozzuto, J.; Mokarzel, M.; Giolo, F.;

Bonon, E.; Freire, M.; Junqueira, I.: Fornecimento de

Acesso em Banda Larga com Solução Híbrida GPON,

WiMAX, WiFi-Adhoc e Mesh CPQD – “Provision of

Broadband Access Solution with Hybrid GPON, WiMAX,

WiFi-Mesh and Adhoc CPQD”. Infobrasil. (2010).

[6] Rothermel, G., Harrold, M.: Framework for evaluating

regression test selection techniques. Proc. of the 16
th

 Int’l.

Conference on Software Engineering, Sorrento, Italy, p.

201-210. (1994).

[7] DeMillo, R., Li, T., Mathur, A.: Architecture of

TAMER: A Tool for Dependability Analysis of Distributed

Fault-Tolerant Systems (1994).

[8] Avizienis, A., Laprie, J. C., Randell, B.: Fundamental

Concepts of Dependability. UCLA CSD Report n. 010028,

LAAS Report n. 01-145, Newcastle University Report n.

CS-TR-739 (2001).

[9] Thomas, D.; Hunt, A.: State Machines, IEEE Software,

v.19 n.6, p.10-12 (2002).

