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Abstract - This work discusses automated tests performed on 

an optical network for high-capacity triple-play services (voice, 

video and TV). Given that high availability and reliability are 

important requirements for this kind of network system, it is 

mandatory to apply regression testing every time it is updated. 

For automatic execution of the regression testing a test robot 

was developed. It is responsible for collect the outputs and 

compare them with the expected results. In order to 

complement the regression testing, fault injection campaigns 

were performed, which were based on state machines of the 

embedded software, seeking a more comprehensive coverage of 

tests. For this purpose the robot was adapted to send a trigger 

to the algorithm that controls the fault injection. The fault 

injection used an optical switch that interrupted the 

communication among the board’s system components. The 

results show the effectiveness of fault injection in detecting 

bugs that were not detected during several months when other 

types of tests were applied. 
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I. INTRODUTION 

 

Telecommunications systems must operate without 

interruption and without loss of data, since these events may 

cause several financial losses to telecommunications 

operators and users.  

According to Sommerville [1], reliance on computer 

systems is a property that reflects the degree of confidence 

that users may have on the system and it depends on 

reliability and availability of telecommunication system. 

Moreover, according to Clark and Pradhan [2], availability is 

the ability to be operational at any given time without 

failures, while reliability is the ability to operate without 

failure for a certain period. However reliability cannot be 

expressed numerically; other classification can be used such 

as: "unreliable", "very reliable" and "ultra reliable" [1]. 

Disregarding reliability and availability during software 

development can result in the occurrence of several failures 

in the operational phase of the system. Software test can be 

applied to help in disclosing the faults responsible for these 

failures. 

Software testing is time consuming, therefore the 

automation of software test is designed to allow performing 

a large volume of test cases (TC) in a shorter time. Also, 

automation helps to achieve greater reliability in results and 

to reduce costs in the testing process. 

  
 

Fig. 1. Operation of GPON network [4]. 

 

The use of tools to automate tests is a challenge in 

embedded systems as each type of embedded software has a 

specific interface. Thus, each embedded software requires a 

customization for automation to be successful.  

The optical networks are gaining new followers every 

day, mainly in European and Asian continents [3]. The 

increase of the number of users occurs due to high rates of 

transmission of these networks can provide, which can 

reach 2.5 Gbit/s in the downstream direction and 1.25 Gbit/s 

in the upstream direction besides the possibility of their 

diversity of services [4].  

Aiming to ensure the reliability and availability of 

embedded software for optical networks, two experiments 

will be discussed in this paper. The first one is the 

regression testing automation and the second one is the 

automatic fault injection, both applied in GPON (Gigabit 

Passive Optical Networking), a project of CPqD (Centre for 

Research and Development in Telecommunications). 

GPON networks are solutions for high-capacity triple-

play services access (voice, video and TV) using data 

transmission over fiber [3]. The connections are established 

between the OLT (Optical Line Termination), located at the 

service provider, and the ONU (Optical Network Unit), 

located at residential or corporate areas, as shown in Fig. 1. 

GPON consists of software units that are embedded on 

OLT and ONU’s boards. Each OLT fiber must be connected 



to almost 128 ONU’s and at a distance of up to 12 miles 

(The standard ITU-T sets 37 miles) [4].   

At CPqD, the GPON pilot project has been placed on 

trial in conjunction with the Experimental Design High-

Speed Network - GIGA, also developed at CPqD [3], and 

has been in operation for at least six months. This pilot also 

includes mobility network of Wimax, WI-Fi and Ad Hoc. In 

this project, the GPON network proved to be an efficient 

mode of transmission, and was able to carry data over long 

distances with high transmission capacity and quality [5]. 

Due to the large number of features of GPON system 

and also due to GPON design has over a million lines code, 

a technique of regression testing was used. The regression 

tests are often used when some correction is made in the 

software or when some functionality is inserted or deleted. 

It is a very popular technique and extensively used, since all 

features can be reviewed in new versions. It is currently the 

best technique to be applied for this purpose. According to 

Rothermel [6], regression testing is a technique performed 

on a modified program to ensure that changes are correct, 

and without damage of unchanged portions of the program. 

In this project, the regression testing were automated and 

executed in the GPON system, ensuring reliable results in a 

shorter execution time. In order to succeed in it a 

customization was necessary and for this purpose a robot 

was developed to perform the tests.  

A complementary test technique is also used, that is a 

validation that automates the fault injection in GPON 

system. . Fault injection is applied based on state machines 

that describe the transition among the possible system 

states, which are used to define TC’s in order to achieve 

greater coverage of the system. The greater the amount of 

coverage of the code exercised, the greater the quality of 

software (less failure). However, to increase the code 

coverage implies to improve the mechanism for fault 

tolerance [7]. 

This later experiment has used finite state machines, 

which consist of a single set of states. They have an initial 

state, and one or more final states, depending on their 

execution flow. The state transitions occur when an event is 

generated, and when this happens, the states are updated [9]. 

The bugs found by these experiments are classified 

according to the following criteria: (i) low priority bugs - 

are trivial flaws or improvements to be made, which do not 

affect the operation of the system; (ii) average critical bugs - 

are defects that can affect network performance, but do not 

lead to crash or interruption of its operation; (iii) highly 

critical bugs - can interrupt the system or compromise 

network performance; (iv) very highly critical bugs - can 

totally undermines the functioning of the system or some 

basic functionality. 

The test automation experiments have brought 

significant results, requiring great effort to run only at the 

beginning of each implementation for the generation of  

 

 
 

 

TC’s and tests the adequacy of the robot. Later, this effort  

was rewarded by the possibility of running the tests on each 

new version, only updating TC’s. 

After this introduction, Section II discusses the 

regression tests executed manually and automatically 

through experiment executed in the GPON network. Section 

III comprehends the fault injection experiments and its 

automation. And Section IV discusses the advantages 

achieved in the implementation of the automation of 

regression testing and automated fault injection and the 

conclusions. 

 

II. REGRESSION TESTING 

  

The GPON project development has been taking four 

years, and at least once a month a new functionality is 

released.  Due to the extensibility of its functionality and 

project size, it is necessary to check each new version in 

order to verify if new errors were not inserted in areas of the 

system that were previously tested. 

The features of the GPON project can be represented by 

commands. Currently, the project has 110 commands with 

more than 850 TC’s. 

The development of TC’s in GPON was created from a 

test plan document, and they are based on submitted inputs, 

and the outputs (black-box testing). The inputs are sent to 

the software, and each command has its own respective 

parameters and preconditions. The results of these 

commands are displayed to the operator. For example, an 

input command to enable the ONU is sent, and the expected 

output is the activation and deployment of this device.  

Another instance is the “activate_link” command that 

has two parameters, device_id and link_id, each parameter 

can vary from 0 to 7. Based on these conditions, as shown in 

Table 1, TC’s “activate_link” (al) command may be 

designed: within these limits, outside the limits, or error 

conditions, among other cases. These conditions were held 

for the creation of TC’s of all available commands. 

 

A. MANUAL REGRESSION TESTING  

 

In the execution of manual tests, the commands are sent 

by the operator to the OLT software through an interface, as 

shown in Fig. 2. This interface displays the output, and 

TABLE 1: Preparation of Test Cases 

Test Type Test 

Within the limits 

(success)  

al 0 0, al 7 7, al 1 5, ...  

Outside the limits 

(error)  

al -1 -1, al 8 8, al 8 4, ...  

Errors test  Non-execution of pre-

conditions, re-executing the 

same command, ...  



 
Fig. 2. Execution of manual tests 

 

events and alarms generated by the application can also be 

seen. All TC’s stored in spreadsheets had: the preconditions, 

the test itself, the expected result and the priority of the test 

run. A defect is observed when the result of TC is not equal 

to the expected output. 
However, when regression testing is performed 

manually they are usually very repetitive and their 

conduction requires considerable effort. Due to the volume 

of TC’s developed, the execution has become unfeasible. It 

required the development of tools that automate it, as 

discussed in the next topic. 

 

B.  REGRESSION TESTING AUTOMATION 

 

Automatic execution of regression testing allows the 

reduction of the execution time of the TC’s, and may lead to 

increased coverage of the software as the testers are able to 

conduct a large number of tests. Moreover, testers are free 

to focus their efforts on other types of test or tests that 

cannot be automated. 

A test robot was developed at CPqD to automate 

regression testing. It was implemented in C language, Linux 

operating system and it communicates with the OLT 

equipment through TCP/IP sockets. The robot is responsible 

for collecting the outputs and comparing them with the 

expected results. 

TC’s that were manually developed were stored in a 

database consisting of text files. These files have the test 

script to be executed, and the expected results. Only one of 

the commands cannot be automated, due to the hardware 

characteristics. 

After the execution of TC’s, the robot generates a report 

composed by these executed TC’s and the execution 

statistics, such as TC’s that were successful and the 

presented errors. This report can be sent to the entire team 

automatically. 

 
C. RESULT OF REGRESSION TESTING AUTOMATION 

 

During one year of automatic execution of regression 

tests in GPON, we found 206 failures (distributed during the 

time), as shown in Fig. 3. In this chart, one can see that the 

period of deployment of the robot (June-October, 2009) a 

large number of bugs were found. Another period when the 

number of bugs has increased was the one between March 

and June 2010, which was the time when critical new 

features were implemented. In Fig. 4, the reported bugs 

were separated by criticality. 

 
Fig. 3. Total of found bugs 

The execution time of regression testing has been 

reduced from 4 days to 10 hours. This resulted in time 

saving and allows executing the tests  overnight. During 

business hours it is only necessary to check the generated 

report, the registration bugs and updating TC’s. With the 

time saving it was possible to think of our features for the 

robot, allowing the creation of another experiment that will 

be addressed in Section III.  
 

III. FAULT INJECTION 

 

Telecommunications systems must have high 

availability and they must be able to provide the requested 

services, even in adverse conditions. Thus, one way to 

validate these systems is to verify if they are fault tolerant, 

i.e., they are able to deliver the service correctly even in the 

presence of faults [8]. Fault-tolerance is one of the essential 

characteristics for systems that need to ensure high 

dependability.  
By developing systems that require high dependability, 

just implementing fault-tolerance mechanisms is not 

enough. It is also equally important to validate them in order 

to ensure they are correctly implemented, i.e., that all the 

services offered by the system are provided according to 

their specifications. To validate the implementations one 

can use any means designed to achieve dependability, such 

as: prevention, tolerance, removal and fault forecasting [8]. 

 
 Fig. 4. Criticality of found bugs 



A technique that can be used to check whether the 

system is fault-tolerant or not is the application of fault 

injection, which aims to observe the behavior of the system 

in the presence of faults that were deliberately included in 

order to validate the system under analysis.  

 

A. MANUAL FAULT INJECTION  

 

The tests performed attempted to emulate the 

interruption of communication between the OLT and the 

ONU’s. In an operational system, these failures may occur 

due to breakage of optical fibers or loss of signal, for 

instance. In an ideal system, when such events occur, after 

the fibers are replaced or the signal is recovered, the 

components must be reconnected. The OLT and the ONU’s 

connected to this OLT should return to their previous state 

without human interaction. 

To conduct this test manually, the fiber connected to the 

ONU’s and the OLT was removed and the behavior of the 

system was observed. However, there were two main 

difficulties: when a failure was discovered: it is difficult to 

reproduce it since the exact moment of the interruption is 

unknown and it is difficult to ensure that all these moments 

are being covered by tests. 

To minimize these difficulties and increase test 

coverage, it was decided to perform the fault injection based 

on state machines of the embedded software, which will be 

detailed in the next subsection. 

 

B. AUTOMATIC FAULT INJECTION 

 

The experiment is detailed in Fig. 5 that is composed by 

OLT and ONU’s, a Test Robot containing OXC (Optical 

Cross Connection) equipment and controller software, and a 

switch. The switch performs the connections between 

network devices.  
The OXC was inserted into the environment to control 

the communication between the ONU’s and the OLT. It is 

composed by optical switches that are able to connect and 

disconnect the fibers by commands, and it was used to inject 

faults in the test environment. 

 

 
 

Fig. 5.  Operation of the experimental tests 

 
 

Fig. 6.  Example of ONU state machine 

 

The robot used in regression testing has been adapted to 

run this experiment. In this case it is responsible for: 

 sending commands to the OLT; 

 receiving the system logs (the logs have 

communication information between the OLT 

and the ONU’s); 

 sending commands to the OXC and;  

 Running the TC’s and analyzing their results.  

 

The TC’s were derived from the OLT’s state machine, 

therefore it is in the state transition that a greater likelihood 

of unexpected events normally takes place. In Fig. 6, there 

is an example of the ONU state machine. Specific 

commands are required to enable or disable an ONU. In 

case of failure during activation or deactivation of the ONU, 

its status can be changed to Error. In the case the failure is 

tolerated, the ONU returns to the state prior to the failure 

event. In Fig. 6, due to confidentiality reasons; the state 

machine was modified in this paper.  

Automated tests will run from the receipt of logs by an 

instance of the tests robot.  As shown in the sequence 

diagram in Fig. 7, the robot sends commands to an instance 

of GPON.  When a specific state log is received, the 

instance of the robot will send a command to the instance of 

the OXC to interrupt the communication between the OLT 

and the ONU, injecting the fault in the system. After a 

period of time, the communication is re-established, and the 

logs are analyzed in order to verify the behavior of the OLT 

and the ONU’s. While the robot does not receive these logs, 

the system continues processing the normal execution flow. 

 

TABLE 2  

Scenario Explored on Tests 

 

Scenario 

Testing 

Situation 

Scenario 1 1 ONU connected without flow 

Scenario 2 3 ONU’s connected without flow 

Scenario 3 1 ONU connected with 1 flow 

Scenario 4 2 ONU’s connected with 1 flow 

Scenario 5 1 ONU connected with 5 flows 

Scenario 6 2 ONU’s connected with 5 flows 



. Robot of Tests . GPON . OXC

Send commands

Send response

Send events, alarms and Logs

Send fault injection

Fault Injection

Send events, alarms and logs

[Expected State]

 
Fig. 7.  Sequence Experiment Diagram 

 

The period that the application was inoperative, i.e., with 

no critical event, the test results obtained were the same if 

interruption duration is 2 seconds or 2 minutes. 

We used nine state machines with presented from 3 to 

24 transitions states, as shown in Table 3. In this way, some 

tests were performed with the interoperation of the states, 

when two or more state machines operate concurrently by 

threads, being processed in a seemingly simultaneous way, 

as shown in Fig. 8. 

In Fig. 8, the ACTIVE state of Fig. 6 is detailed. This 

state is composed by other state machines as CONTROL 

and VERIFY. The execution of these "sub-state machines" 

occurs concurrently until all state machines reach the final 

state. When the CONTROL and VERIFY states reach their 

final states, the controls of the two sub-states competitors 

come together again  in  a  single stream, and the state is 

updated to ACTIVE. 

The model states represent the possible behaviors of the 

system, and the test scenarios derived from them. For the 

tests execution, 95 TC’s was executed that comprehended 

all the transitions of states machines listed. In each 

execution of TC’s, the scenario was changed, the number of 

ONU’s connected and the number of these flows connected 

to ONU’s could be altered, as shown in Table 2. 

 

 
Fig. 8.  Example of interworking between state machines 

 

 
TABLE 3  

RESULTS OBTAINED WITH EXPERIMENT 

 
C. RESULTS OF THE AUTOMATIC FAULTS INJECTION  

 

After assembling the scenario shown in Fig. 5, the three 

TC’s created for the experiment were applied in different 

scenarios (Table 2), and the results are shown in Table 3. 

The first column of Table 3 shows the state machines. The 

number of transitions of each state machine is presented at 

the second column. The number of bugs found in medium 

criticality is shown in the third column and the number of 

bugs with high criticality is in the fourth column. The last 

column shows the total number of bugs found regardless of 

their criticality. Most of the problems found were bugs of 

medium criticality. However, high criticality bugs were also 

found, which could have stopped the system or 

compromised its normal performance, making the system 

work partially, if the faults had been inactivated. 

In Table 3, the state machines identified as D and E 

presented more bugs than any other state machines. A 

possibility is that they have a higher frequency of use, and 

therefore are the most critical. In the state machine D, 

highly critical bugs were found, leading the system to crash. 

It is noteworthy that the system has been operating in a 

pilot project for six months, and prior to this experiment, 

white box tests were also carried out in the code of 

implementing each state machine, in order to check if the 

algorithm was consistent with the proposed diagrams during 

the development project. Moreover, during previous phases 

of testing during the development, manual fault injection 

tests were performed, in which the fibers were simply 

removed and replaced in the equipment at randomly. 
All bugs found in the fault injection experimental tests 

reported in this paper had not been previously observed. 

These faults in a commercial system in operational phases 

put at risk the reliability and availability of the system and 

must be corrected. Besides the system reliability, the 

organization credibility is also at stake as the system is 

critical for the client. 

  

 

 

State 

Machine 

Number of 

transitions 

Medium 

criticality 

bug 

High 

criticality 

bug 

Total 

bugs 

A 12 2 0 2 

B 4 3 0 3 

C 3 0 0 0 

D 22 6 2 8 

E 12 11 0 11 

F 4 2 0 2 

G 6 0 0 0 

H 8 0 0 0 

I 24 0 0 0 



IV. CONCLUSIONS 

 

With the aim of achieving greater reliability and 

availability of systems, the use of automation in testing 

optical networks is essential. Test automation can improve 

the coverage of tests, reduce redundant manual test 

execution, maximize the accuracy of test results and 

increase repeatability.  

The results of the experiments provided from 

automation of regression test revealed a large number of 

bugs. Moreover, automation of regression testing saves time 

that allowed the test team to think of making new types of 

tests. This resulted in the automation of fault injection 

testing to be included in the process.  

The use of automation of fault injection validation in 

the state machines brought improvements to the 

development and debugging process of the organization. 

Without using these techniques developers would have 

much more work trying to reproduce manually failures 

found by testers. Besides, the preparation of TC’s from state 

machines allowed a better coverage once all states of the 

OLT can be covered.  

The joint use of the techniques to automate tests and to 

inject the faults allows validating the operation of state 

machines in the presence of unexpected situations, 

improving the quality of the tests performed. 

The failures reported by the tests that used automatic 

fault injection technique could not be identified with the 

manual techniques, once this technique has a wider breadth 

of coverage of state machines when compared to previously 

used techniques. After the failures detection, their removal 

was facilitated by their knowledge of the exact location of 

the bug, and the exact time the crash occurred. This 

information is a precious one for the development team and 

greatly facilitated the system traceability. 

This technique increases the probability of finding 

faults that are difficult to reproduce manually. The 

transitions from one state to another are short-lived (few 

milliseconds) and due to the short transition interval the 

manual test is impracticable, causing an inadequate 

coverage of the system. 

The bugs found had not been reproduced manually and 

are more critical than those who had already been found by 

manual testing. 

For the team responsible for the GPON system, the use 

of this technique was very suitable as failures could be 

reproduced as they occur in the field. Before the use of this 

technique it was not known if the system was able to treat 

them. The results of these experimental tests showed that 

the system must still be improvement to meet the needs of 

systems with high dependability. Thus, one of the next steps 

is to inject faults in the communication among components, 

in order to adjust the system so that it does not behave in 

unexpected ways, making it tolerant to such failures. 

The fault injection experiment can be applied in any 

software application that can be represented by a state 

machine, and where communication can be interrupted. 

Also, in future work, the objective is to observe the 

behavior of the GPON system when faults are inserted in 

the communication protocol called OMCI (ONU 

Management and Control Interface), which controls 

communication between the OLT and ONU’s. 
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