
Security Validation through Fault Injector Plug-in

Renato Galantini
State University of Campinas, UNICAMP, Brazil

Limeira, Brazil
renato.galantini@gmail.com

Abstract—Secure Socket Layer (SSL) and Transport Layer
Security (TLS) are the protocol above TCP most widely
deployed for guarantee privacy and authenticity of
information exchanged between a Web Server and a Web
client. SSL/TLS Handshake Protocol employs cryptosystem to
ensure confidentiality, integrity and source authentication of
sensitive data. This is an important protocol, but, due to the
expansion of Internet, in fact, there is a long way to make the
SSL/TLS protocol perfectly secure. In addition, there are still
shortcomings and problems during the development of
SSL/TLS and correctly configuration in Web Server.
Successive attack is fatal for both the user and the company
who uses these protocols to establish a safe channel to transfer
information and can compromise the reliability of the whole
software system. This work presents a plug-in developed to
perform the security validation that is provided by SSL/TLS
Handshake. The plug-in introduces typical attacks, selected
from reported attacks, using the fault injection technique and
was developed according to the architecture of current version
of csXception tool, where the plug-in was integrated, allowing
to perform the validation of security issues, preparing the tool
to adequate itself to security aspects of evolving software
system.

Keywords: fault injection; software faults; software test;
security tes

I. INTRODUCTION

Internet and Web Services have become popular,
increasing the importance of considering the system security.
The SSL/TLS can set up a valid secure channel between
server and client, which can encode the plaintext, so that the
third part, who intercept the message, can not disclose the
original message without decode it.

SSL/TLS consists of two phases: handshake and data
transfer. During the handshake process, the client and server
use cipher suites to determine the parameters of security used
during data transfer. There are potential dangers both during
handshake and data transfer state, and, although the latest
TLS version has fixed several secure hole of the old version,
the successive attack, in practice, is not only a terrible event
for the user who trusts the SSL/TLS, but also a challenge for
software security area.

The work of Lee et al. [1] showed that in a study of more
than 19.000 Web Servers, 98.36% of the servers have
support for TLS, 97.92% of these servers have support for
SSL 3.0, and still 85.37% have support for SSL 2.0. This
statistical result, even related to 2006, shows the importance
of SSL/TLS. This knowledge causes us to direct our efforts

for the development of security tool and the validation using
software fault injection techniques seems to be appropriated.

Fault injection techniques are widely used to assess the
level of reliability and availability of a system and validate
their mechanisms for handling errors, allowing solutions that
are designed to handle exceptional situations to assist in
discovering and implementing fault location and project with
low interference in the system under test [2]. The plug-in
presented in this paper aims to validate the systems security,
which can improve higher levels of reliability in these
systems. It is a prototype to test the handshake phase of
SSL/TLS, developed in Java and tested using the architecture
of current version of csXception tool [3].

The structure of the paper is as follows: Section II
presents the related work, which established the basis of this
work; Section III describes the approach for developing the
plug-in. Section IV presents a case study using the plug-in
and validating its operation. Section V presents the
discussion about the results of the case study and Section VI
presents conclusions and future works.

II. RELATED WORK

To develop this work was necessary to study different
fields: fault injections, security protocols, mechanisms for
security analysis, and attacks on protocols. We are focusing
on guns of failure that can emulate communication failures
and applications, the specification of SSL/TLS, and models
and analysis of attacks reported in various sources.

A. Fault Injections

Fault injectors offer all features needed to test a system
under faults. On the other hand, the known fault injectors
limit the test experiment scope, because they are also
responsible to offer the mechanisms to define the faults that
can be injected.

The main drawback concerning the tools for fault
injection is related to their unavailability for practical use.
Both source code and binary files are, most of time,
unavailable. The next paragraphs describe some tools and
csXception, the tool that the proposed plug-in was integrated
in and for this reason it was used in this work.

MENDOSUS implements fault injection into emulated
networks. The faults that can be injected are related to crash
and delay, applied to network components. To describe
faultloads, this tool uses a script language.

FIRMAMENT is a fault injector that works at operating
system level. The faults that can be injected are drop and
delay of packets, besides arbitrary modification and
duplication of packets.

JACA is based on computational reflection to inject
interface faults in Java applications and is adequate to
robustness tests. It does not need the source code of the
application to be tested and has a graphical interface to make
easy the specification of the characteristics of the system to
be tested and the faults to be injected. Although Jaca tool
injects faults in Java applications, its use is limited because it
can inject only interface faults, which causes different impact
in the system when compared with software faults, according
to empirical evidences.

The csXception is a Software Implemented Fault
Injection (SWIFI) and Monitoring tool that takes advantages
on Processor Function Units. The csXception is the tool used
in this work, boasts an automatic fault injection allows the
verification and validation of a flexible manner. It was
designed to accommodate a variety of techniques for fault
injection and emulate software faults in embedded devices
(hardware) and applications (software). The graphical user
interface (GUI) provides a means for defining the faults to be
loaded (faultload), running the experiment and analyzing the
results, task that is provided by Easy Fault Definition (DPD)
and csXception Analysis Tool (Xtract). It uses a standard
SQL database to manage and to automate the experiments.
Being used in several fields, it can deal with a set of injection
techniques such as Boundary Scan Based Fault Injection
(BSFI), Pin-Level Fault Injection (PLFI) beyond the
traditional Software Implemented Fault Injection (SWIFI),
allowing the use of a specific or multiple scenarios in
accordance with the conditions (source code, others) and
purposes.

Its architecture has characteristics of client/server model.
It has a front-end application - Experiment Manager
Environment (EME), which runs on a host computer is
responsible for the control, management experience,
collection, and statistical analysis. A core of the injection
system to be evaluated (Target System) is responsible for the
insertion of faults, in connection using TCP/IP. Fig. 1
illustrates this architecture.

Figure 1. Xception Arquitecture [3]

Originally developed in C language [3], currently uses
Java version, thus allowing the portability needed to run on
multiple platforms or operating systems. In his structure
coupling of new plug-ins, demanding that it fits the
requirements of EME, the injection logic-based campaigns,
and their way of communicating with the target (InfoBus) for

TCP/IP or dedicated link. Keeping to these features our plug-
in was done without any interference in the tool.

B. SSL/TLS

SSL/TLS implement security mechanisms based on
cryptographic techniques, in order to meet security needs in
the exchange of information. of the parties (client/server)
through negotiation, mutual authentication, encrypted
communication and integrity protection.

TLS is the standardization of SSL by IETF (Internet
Engineering Task Force), which created a working group
that established the versions RFC2246 [4], RFC4346 [4],
RFC5246 [4] and RFC5746 [4]. The basic structure was
maintained and there are occasional differences between
TLS and SSL, for example, different cryptographic
algorithms and new mail alerts.

The SSL/TLS is essentially composed of two main
phases. The authentication phase handshake involving the
parties to the exchange of keys and one with configuration
information. Once the handshake is completed begins the
process of information exchange encrypted.

The phase handshake is a multiphase process operating in
general there are four main operational steps that are initiated
by one party (client/server) in creating and closing a
connection SSL/TLS. The phases are illustrated in Fig. 2 and
a brief description of each phase [5]

Figure 2. Handshake Protocol – SSL/TLS [5].

Phase 1: Setting up a TCP connection. At this stage,
basically runs a three-way handshake between client and
server in order to establish a TCP connection. The
connection is peer-to-peer network between two nodes. The
session is the association between a client and a server, to
define a set of security parameters, such as the cryptographic
ciphers supported.

Phase 2: Handshake Protocol. Responsible for
establishing the connection SSL/TLS. At this stage,
basically, two processes occur. The first is the key exchange,
which means that the client and server must use asymmetric
cryptographic techniques, and this process called pre-master
secret. The pre-master secret is used independently to
calculate a shared key or symmetric, called the master secret,
which will be used later to derive the keys needed to ensure
the integrity and confidentiality of communication. The

second process is the authentication of the parties normally
done through digital certificates, and optional customer
certification.

Phase 3: Data transfer. At this stage, the application data
is exchanged between client and server. The SSL/TLS
protocol encrypts all application layer data with a symmetric
encryption algorithm and session key negotiated by the
handshake protocol. The symmetric algorithm can be used to
stream ciphers or block ciphers, depending on the ciphersuite
negotiated during the handshake.

Phase 4: Closure. The main role of this phase is to close
the connection SSL/TLS so that the parties client/server is
notified that all application data has been transferred and the
connection will be terminated.

C. Security analysis.

In our work we analyze the set of common properties of
protocols (handshaking, message formats) and the correct
usage of cryptographic ciphers (or cipher suites).

The tests are organized into three (3) procedures for
evaluating the handshake phase of SSL/TLS, these can be
run individually or in combinations:

• Test Charge Message: Test applied for the analysis
of distributed systems, to change the contents of
messages between the client and the server after
establishing the initial parameters of connection.
Allows the analysis of the behavior of the
exceptions in the content of their broadcasts.

• Test Cipher Suites: Test to analyze the correct use
of cryptographic ciphers. In the establishment phase
connection (handshake) the set of cryptographic
ciphers supported by both parties (client/server) are
determined.

• Truncation Test: The Truncation Test does not
allow you to receive the alert message
(close_notify), closing the connection between the
client and the server. Several types of security
compromise such as embodiment, data tampering,
are allowed.

The tests covering respectively the phases: transmission
between the parties (client/server), connection establishment
with all appropriate cipher suites, and the communication
termination. The definition of the type of tests to
implemented were based on a set of reports of public
knowledge from several sources (NIST - National
Vulnerability Database (NVD), SANS Institute, CERT
Coordination Center) and adapted to the peculiarities of the
tool. The tool was developed in Java language and is
flexible to allow the inclusion of other attacks.

III. PLUG-IN

The plug-in is developed in Java using the package
javax.net, the JESSIE (Java Secure Sockets Extension) and
GNU Crypto that provides the facilities necessary to use the
cryptographic ciphers. These packages do not have
restrictions on use and changes, allowing their suitability to
interact with the EME graphical user interface (GUI) of
csXception.

csXception is an environment and platform-based
development tool that is flexible enough to couple a plug-
in. The work methodology used in this work conforms to
the environmental circumstances of csXception and is
schematic represented by the flow in Fig. 3.

Figure 3. Flow Diagram of the project (partial and simplified).

The diagram of Fig. 3 shows that the tool follows a
stream, which begins with the determination of the test
campaign. Subsequently the experiment is defined. Given the
workload (Workload), the system feature (Target System)
defines the representative scenarios and, apply the injection
of faults at runtime of these scenarios (Injection Run), taking
into account the Faultload (defined in the class "Fault").
Finally, the analysis of experiments is performed
(WAppOutcome). After these definitions, the tool presents
the main interface of the plug-in, shown in Fig. 4.

Figure 4. Interface plug-in for Validation of Computer Security.

The plug-in interface was developed aiming to be as
simple and intuitive as possible. The final result is an
interface that needs little configuration and that demands
almost no experience of the user to use it. The interface
areas that are emphasized in Fig. 4 correspond to:

Server (A): This field is intended to identify the address
of the application (server) to be tested.

Port (B): Allows the user to entry the port for the
application (server) that provides the services of SSL/TLS.

Being the port (443) standard, the field is filled by the same
set and may be amended when necessary.

Data do send (C): Allows insertion of command to
establish connection. Fig. 4 presents in this field the
appropriated command for HTTPS (Hyper Text Transfer
Protocol Secure) requesting and can be changed to other
protocols that also use the concepts of SSL/TLS.

Test Charge Message (D): Must be selected to run the
first type of test of the plug-in, which realizes the change of
messages between the client and the server to verify/validate
their behavior.

Test Cipher Suites (E): Must be selected to run the
second type of test of the plug-in that attempts to connect to
weak cryptographic ciphers that do not provide adequate
security to existing software products.

Enable Cipher Suites – Configure (F): Allows the user to
specify the cipher suites to be used in the second type of test
of the plug-in. This selection requires the knowledge of
cryptographic ciphers, given the completion of weak
cryptographic ciphers and may be amended when necessary,
using the items described in Supported Cipher Suites –
Reference (G).

Supported Cipher Suites – Reference (G): Allows the
selection of the set of cryptographic ciphers to be tested.
The list was obtained through the use of GNU Crypto
providers and Bouncy Castle that have no government
restrictions and allow changes (add, delete) to adapt to your
set of cryptographic ciphers.

Test Truncation (H): Must be selected to run the third
type of test, which runs the truncation of the alert message
to close the connection.

Basic Control Tool (I).

IV. CASE STUDY

The tests were run on a laptop with an Intel Core 2 Duo
P8400 2.26GHz, 4GB RAM, 250GB hard drive in Windows
7 Enterprise Edition. The Database Management System
(DBMS) used was the PostgreSQL 9.0.2 for Windows 64bit
and was installed on the same machine where the tests were
performed.

The Test Cases specifications are defined as follows:

TABLE I. TEST CHARGE MESSAGE

URL Define the server of the application
Port 443 (or specify another)

Box to Check Test Change Message

TABLE II. TEST CIPHER SUITES

URL Define the server of the application
Port 443 (or specify another)

Box to Check Test Cipher Suites
Cipher Suite
to Transfer

Define cipher suite in box Reference
(G) and transfer to box Configure (F)

TABLE III. TEST 3: TRUNCATION

URL Define the server of the application
Port 443 (or specify another)

Box to Check Test Truncation

TABLE IV. TEST CHARGE MESSAGE AND CIPHER SUITES

URL Define the server of the application
Port 443 (or specify another)

Box to Check Test Change Message and Test Cipher
Suites

TABLE V. TEST CIPHER SUITES AND TRUNCATION

URL Define the server of the application
Port 443 (or specify another)

Box to Check Test Cipher Suites and Test Truncation
Cipher Suite
to Transfer

Define cipher suite in box Reference
(G) and transfer to box Configure (F)

V. RESULTS AND DISCUSSIONS

The plug-in integration and the execution of test
campaign were performed by Critical Software,
organization that is the owner of csXception tool.

This campaign was the first performed with the plug-in
after it was integrated in the csXception. All testing
equipment used and applications (server) were tested in
controlled environments. At this moment new tests
campaigns are scheduled to be performed in a commercial
environment.

VI. CONCLUSIONS

 The results show that it is possible to easily integrate a
new plug-in to csXception tool. They show also that a fault
injection techniques for software validation aspects of
computer security can complement existent SWIFI tools, in
our case the handshake phase of the SSL/TLS protocol. The
plug-in is still a prototype that must undergo improvements
in many aspects before being released as a commercial
product.

ACKNOWLEDGMENT

Project being developed in collaboration with Critical
Software SA.

REFERENCES
[1] Lee H.K.; Malkin, T.; and Nahum, E. Cryptographic strength of

SSL/TLS servers: current and recent practices. In IMC ’07:
Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement, pages 83-92, New York, NY, USA, 2007. ACM.

[2] Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J., Laprie, J.,
Martins, E. and Powell, D. “Fault Injection for Dependability
Validation–A Methodology and some Applications”, IEEE
Transactions on Software Engineering, 16 (2), Feb/1990, pp. 166-
182.

[3] Xception. Available in http://www.csxception.com, December/2010.

[4] RFC(s). Availabe in http://www.ietf.org/rfc.html, December/2010.

[5] Berbecaru, D.; Lioy, A.; “On the Robustness of Applications Based
on the SSL and TLS Security Protocols”, LNCS 2007, pp.248-264.

