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ABSTRACT: 
 
This paper presents new methods for the semi-automatic detection of some kinds of cultural heritage in forested areas in Norway, 
and reports on a work in progress. Some areas have a large number of old pitfall traps that were used for deer hunting 2000-500 
years ago. Other areas have a large number of iron production sites that were in use 1400-700 years ago. These two kinds of cultural 
heritage manifest themselves as pits in the terrain. We have developed methods for the automatic detection of such pits in lidar data 
with at least 5 emitted pulses per m2. We are now extending the automatic detection methods to locate grave mounds, stone fences, 
and old roads in the lidar data. 
 
Experience from on-going archaeological field work clearly demonstrates the benefits of combining automatic detection methods 
with visual inspection of the lidar data to achieve a map of possible cultural heritage remains, before the actual field survey. The field 
work can be performed much more efficiently. Since the archaeological feature candidates have already been geo-referenced and 
measured in the lidar data, the field work is reduced to accepting or rejecting the candidates. Thus, a much larger number of 
archaeological features can be mapped per day. 
 

 
 
 
 
 

1. INTRODUCTION 

Several Norwegian municipalities are experiencing growing 
pressure on forested land for development, being it new 
residential areas, new mountain cabins and hotels, or new 
highways. The traditional mapping of cultural heritage, mainly 
based on chance discovery and inaccurate positioning, has 
proven inadequate for land use planning. Therefore, the 
Norwegian Directorate for Cultural Heritage, in cooperation 
with some counties and municipalities, are investing in the 
development of new methods, using new technology, for a more 
systematic mapping of cultural heritage.  
 
A project was started in 2002 by the Norwegian Directorate for 
Cultural Heritage, aiming at developing cost-effective methods 
for surveying and monitoring cultural heritage on a regional and 
national scale. During the first years, the focus was on the 
automatic detection of crop marks and soil marks in cereal 
fields in satellite and aerial images (Aurdal et al., 2006; Trier et 

al., 2009). Several of these detections have been confirmed to 
be levelled grave mounds, dating to 1500-2500 years ago.  
 
However, methods based on optical images are of limited value 
in forested areas, since the archaeology tends to be obscured by 
the tree canopies. By using airborne laser scanning data, also 
called airborne lidar data, and by only keeping the ground 
returns and not the returns from trees and buildings, the forest 
vegetation can be removed from the data, and a very detailed 
digital elevation model (DEM) of the ground surface can be 
constructed (Devereux et al., 2005). This makes it possible to 
detect archaeology in a semi-automatic fashion, provided the 
archaeology manifests itself as features in the digital elevation 
model of the lidar ground returns, and that these features may 
be described using some appropriate kind of pattern. 
 
 

Figure 1. Lidar data from some Norwegian municipalities. Left: Kongsberg, with stone fences. Middle: Nord-Fron, with pitfall traps 
for moose hunting, which appear as pits. Right: Larvik, with grave mounds, which are seen as heaps in the terrain. 
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2. DATA AND METHODS 

2.1 Airborne lidar height measurements 

For an area surrounding the lake Olstappen in Nord-Fron 
municipality, Oppland County, data was acquired by helicopter, 
with a minimum of 10 emitted laser pulses per m2. The data set 
covered a total area of 29.3 km2, with 7.3 ground hits per m2 on 
average. This terrain is dominated by open pine forest, allowing 
a large proportion of hits from the ground. This area is known 
to contain several systems of pitfall traps that were used in 
moose hunting 500-2000 years ago, and some iron extraction 
sites with charcoal burning pits dating to 700-1400 years ago. 
The data set is split geographically in two halves, one western 
training set, and one eastern test set. 
 

 
Figure 2. A 210 m × 225 m part of the Kaupang, Larvik training 
data set for heap detection. True (green) and false (red) grave 
mounds have been labelled manually. 
 
Larvik municipality in Vestfold County is known to contain a 
large number of grave mounds in forested areas. From a lidar 
data set that covers about 150 km2 of the southern part of Larvik 
municipality, 12 small portions containing known grave 
mounds were extracted. Four of these are used as a training set: 
Kaupang (Figure 2), Store Sandnes, Tanum, and Ødelund. The 
remaining eight comprise a test set: Berg, Bommestad, 
Bøkeskogen (Figure 3), Hvatumskjeet, Kjerneberget, Lunde, 
Valby, and Valbysteinene. 
 
2.2 Automatic detection of circular features 

For the detection of circular features, the following general 
method is applied (Trier and Pilø, 2012): 

1. Convert the input LAS files (LAS Specification, 
2010), containing individual (x, y, z) point measurements 
to a regular grid of interpolated height measurements, i.e., 
a digital elevation model (DEM). Only the (x, y, z) points 
labelled as ‘ground’ are used to construct the DEM. 
2. Convolve the image with templates of varying sizes. 
Threshold each convolution result to obtain detections. 
3. Merge detections that are overlapping, keeping the 
strongest detections 

4. For each detection, compute various attributes that 
measure the deviation from an ideal model, using different 
measures than the convolution in step 2 
5. Remove detections that have attributes in step 4 
outside prescribed intervals. 
6. Assign confidence values to the remaining detections. 
 

The above method is applied for each class of archaeological 
feature. The same templates (Figure 2) may be used to detect 
pitfall traps, charcoal burning pits, and grave mounds. However, 
for grave mounds, the range of template sizes is different than 
for pitfall traps and charcoal pits. Further, a pit template will 
give negative convolution values for heaps (e.g., grave 
mounds). 
 

 
Figure 3. A 245 m × 200 m part of the Bøkeskogen, Larvik test 
data set for heap detection. True (green) and false (red) grave 
mounds have been labelled manually. 
 

 
Figure 4. Pit template, shaped as a half-dome circumscribed by 
a flat ring. White pixels are +1, black pixels are -1, and grey 
pixels in between. The medium grey pixels outside the white 
ring edge are exactly zero, thus not contributing to the 
convolution value. This particular pit template has 3.4 m radius. 
 
2.2.1 Computation of attributes 
In step 3 above, the following attributes are computed: 

1. Correlation value, obtained from the convolution step. 
2. Radius, also obtained from the convolution step. 
3. Normalized correlation value, that is, the correlation 

value divided by the radius. 
4. Average pit depth, measured as the height difference 

between the lowest point inside the pit and the 
average height on the ring edge outside the pit. 
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5. Minimum pit depth, measured as the height difference 
between the lowest point inside the pit and the lowest 
point on the ring edge. 

6. Standard deviation of height values on the ring edge. 
7. Root mean square (RMS) deviation from a perfect 

hemisphere, i.e., a perfect U-shaped pit. 
8. RMS deviation from a perfect V-shaped pit. 
9. For each pit, a threshold is defined as the value that 

separates the pixels inside the pit into two groups, the 
25% of the pixels that are darker than the threshold, 
and the 75% that are brighter. Use this threshold to 
extract a dark blob segment from a square image 
centred on the pit, with sides equal to six times the 
radius.  This is called the 25%-segment. If this results 
in a compact, central segment inside the pit, 
connected to a larger segment outside the pit, with 
only a few connecting pixels  on a ring just outside 
the pit, then the central segment is separated from the 
outside segment. From the extracted segment, the 
following measures are computed: 

a. Offset: distance from pit centre to the 
segment’s centre. 

b. Major axis length, for a definition, see e.g., 
Prokop and Reeves (1992). 

c. Elongation, defined as major axis divided 
by radius. 

10. Similarly to above, extract the 50%-segment and 
compute offset, major axis and elongation from that 
segment as well 

 
2.3 Initial screening 

Thresholds are set on some of the attributes to remove 
detections that are very unlikely to be archaeology, while at the 
same time keeping all true archaeological features. By sorting a 
training set of labelled detections on one attribute at a time, one 
can manually identify attributes that can be thresholded so that 
all detections labelled as ‘true’ or ‘possible’ archaeological 
feature be kept, keeping several ‘unlikely’ and ‘false’ detections 
as well, but at the same time removing many ‘unlikely’ and 
‘false’ detections. These thresholds should not be set too tight, 
to allow for slightly more variation in the attribute values for the 
‘true’ and ‘possible’ archaeological features than was observed 
in the training data. 
 
2.4 Statistical classification versus decision tree 

For step 6 in the circular feature detection method above, a 
manually designed decision tree was originally used to assign 
confidence values 1-6, with 1 meaning ‘very low’ and 6 
meaning ‘very high’ (Trier and Pilø, 2012). However, this 
requires that a number of fixed thresholds be set manually, 
based on training examples. If a large number of training 
examples are available, an alternative is to use a statistical 
classifier. We will compare the two approaches below for 
automatic pit detection in the context of semi-automatic 
detection of pitfall traps and charcoal burning pits.  
 
2.5 Automatic pit detection method: common steps 

The first five steps in the general circular feature detection 
method are common for both the manually designed decision 
tree and the statistical classifier approach. These five steps were 
applied on the Olstappen data set.  A number of parameters had 
to be selected in this process. A DEM grid size of 0.2 m was 
used to preserve the accuracy of the lidar height measurements, 

thus converting the, on average, 7.3 ground hits per m2 to 25 
interpolated height values per m2. In the convolution step, pit 
templates corresponding to pit radii from 1.2 to 3.4 m were 
used, corresponding to the expected pit sizes; each template 
having 0.2 m larger radius than the next smaller.  The initial 
screening exercise resulted in the following subset of attributes 
to be used for thresholding as follows: 

1. Normalized correlation > 2.0 
2. Average pit depth > 0.5 m 
3. Minimum pit depth > 0.1 m 
4. RMS u-shape < 0.2 
5. RMS v-shape < 0.2 
6. 25% segment elongation < 4 
 

When applied on the entire Olstappen data set, the initial 
screening resulted in 2018 detections, which were then labelled 
manually, resulting in 258 verified archaeological pits. All these 
were first verified visually by archaeologists. 67 of these were 
also verified by archaeological field survey. In addition to these 
258 confirmed pits, four detected pits were found to be modern 
by field survey, and 10 archaeological pits were detected 
visually in the lidar data by archaeologists. Of these 10 pits that 
were missed by the automatic method, six have been confirmed 
by field survey. Field survey to verify the remaining 191 + 4 
pits is pending additional funding. 
 
The data set was split in two; a training set containing 129 
confirmed archaeological pits and 1000 false detections, and a 
test set containing 128 confirmed pits and 866 false detections. 
This split was done by listing pit detections ordered 
alphabetically on tile names, resulting, roughly, in a western 
training set and an eastern test set. 
 
2.6 Automatic pit detection using manually designed 
decision tree 

Table 1. Thresholds for assigning confidence values for pitfall 
trap detection. 

feature very low low medium med. high high very high*
normalized correlation ≥2 ≥2.5 ≥2.5 ≥3 ≥3.5
minimum depth ≥0.1 ≥0.1 ≥0.23 ≥0.4 ≥0.5 ≥1.0
average depth ≥0.5 ≥0.5 ≥0.5 ≥0.55 ≥0.75
RMS u-shape ≤0.2 ≤0.1 ≤0.07 ≤0.05 ≤0.04 ≤0.02
RMS v-shape ≤0.2 ≤0.085 ≤0.07 ≤0.05 ≤0.03 ≤0.015
25% segment offset ≤40 ≤6 ≤6 ≤6 ≤5
25% segment elongation ≤4 ≤2 ≤1.5 ≤1.3 ≤1.2
assigned tag 1 2 3 4 5 6

confidence

 
 
Table 2. The effect of running the confidence assignment on the 
Olstappen training set for pitfall trap detection. 

score value 1 2 3 4 5 6

confidence
very 
low

low medium
medium 

high
high

very 
high

not 
detected

sum

pit confirmed in field 2 2 5 16 1 26
modern/other visually 0

pit visually in image 7 27 32 17 21 4 108
not pit visually 329 517 136 15 3 1000

sum 329 524 165 49 25 37 5 1134  
 
By using the thresholds in Table 1 in a decision tree, confidence 
values were assigned to all the detections in the training set 
(Table 2). For confidence values from ‘very low’ to ‘high’, all 
the tests have to be fulfilled, and each detection is assigned the 
best possible confidence according to the rules. For a detection 
with ‘high’ confidence, it is upgraded to ‘very high’ if at least 
one of the tests for ‘very high’ are fulfilled. Obviously, by 
adjusting the thresholds in Table 1, different number of ‘true’ 
and ‘false’ detections will get the various confidence values 
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(Table 2), and the goal is to achieve a meaningful balance of 
‘true’ and ‘false’ detections within each confidence level.  
 
2.7 Automatic pit detection using statistical classifier 

In this variety of the pit detection method, the decision tree 
classifier in the confidence assignment step is replaced by a 
statistical classifier. The following six different classifiers were 
evaluated (Hastie et al., 2009): 

1. Decision tree (CART algorithm) 
2. Nearest neighbour 
3. Naïve Bayes (assuming independent attributes) 
4. Mahalanobis distance 
5. Linear discriminant analysis 
6. Quadratic discriminant analysis 

 
For each classifier, the best subset of the 13 attributes computed 
in Section 2.2.1 is determined using the sequential forward 
attribute selection algorithm (Pudil et al., 1994). The subset of 
attributes that maximize the 10-fold cross-validation of average 
accuracy in the training set is retained. The best classifier turned 
out to be the Mahalanobis distance classifier (Figure 5), with 
the following seven attributes, in order of importance:  

1. Minimum depth 
2. RMS V-shape 
3. Standard deviation on edge 
4. Offset of 25% segment 
5. Normalized correlation 
6. Average depth 
7. Elongation of 25% segment 

 

 
Figure 5. Performance of the six different classifiers on the 
Olstappen training set, as a function of the number of attributes. 
 
We will now use the estimated posterior probability, that is, the 
probability that the detected pit is archaeology, to assign a 
confidence level to each detection. With six confidence levels, 
we need to determine five thresholds. As initial threshold 
values, we use the values corresponding to the 10th percentile, 
25th, 50th, 75th and 90th percentile. Then we can count the 
number of pits and non-pits in each confidence level, multiply 
with penalty weights (Table 3) and accumulate to obtain a total 
penalty for the particular choice of thresholds. By adjusting the 
threshold values, they can be optimized to minimize the total 
penalty. By doing this on the training set, the thresholds in 
Table 4 are obtained, which assign ‘medium high’ or better 
confidence to most of the true archaeological pits, and 
‘medium’ confidence or lower to most false pits (Table 5). 

Table 3. Penalty weights used for optimizing confidence level 
thresholds. 

score value 1 2 3 4 5 6

confidence
very 
low

low medium
medium 

high
high

very 
high

pit 1024 256 64 16 4 1
non-pit 1 4 16 64 256 1024  

 
Table 4. Optimized threshold values for pit detection. 

1 2 3 4 5
0.07374048 0.12168859 0.32615019 0.58907545 0.80731382  

 
Table 5. The result of using the Mahalanobis distance classifier 
on the Olstappen training set. 

score value 1 2 3 4 5 6

confidence
very 
low

low medium
medium 

high
high

very 
high

not 
detected

sum

pit confirmed in field 2 1 22 1 26
pit visually in image 3 7 20 29 45 4 108

not pit visually 27 380 528 62 7 1004
sum 27 383 535 84 37 67 5 1138  

 
2.8 Automatic heap detection using statistical classifier 

The method for pit detection can be modified to detect heaps 
that could be grave mounds. As for pit detection, 0.2 m grid size 
was used for the DEM. By reversing the sign of the pit 
templates, heap templates are obtained. Heap templates with 
radii in the range 1.0-10 m are used, again with each radius 
being 0.2 m larger than the next smaller. The same attributes as 
for pits are used, with the obvious exception that average and 
minimum heap heights are computed instead of the respective 
pit depths. In addition, two more attributes were computed, by 
dividing the heap height measurements by the heap radius: 

1. Normalized average heap height 
2. Normalized minimum heap height 

 
As this is a first attempt, to avoid overlooking true grave 
mounds, the initial screening uses very relaxed thresholds on a 
subset of the attributes as follows: 

1. Normalized correlation > 1.0 
2. Average heap height > 0.2 m 
3. Minimum heap height > 0.0 m 
4. RMS u-shape < 0.2 
5. RMS v-shape < 0.2 
6. 25% segment elongation < 5 

 
The result of the initial screening was a training set with 785 
heap detections, of which 96 were labelled ‘true’ and the 
remaining ‘false’; and a test set of 905 heap detections, of 
which, 96 were labelled ‘true’ and the remaining labelled 
‘false’. The labelling was done by a non-archaeologist. 
 
Again, we evaluate six different classifiers and different 
attribute combinations. The Mahalanobis distance classifier 
performs best on the Larvik training set, with the following 
seven features, in order of importance: 

1. RMS U-shape 
2. Correlation 
3. Elongation of 25% segment 
4. Offset of 25% segment 
5. Standard deviation on edge 
6. Major axis of 50% segment 
7. Offset of 25% segment 

 
As for pit detection in Section 2.6, thresholds on the posterior 
probability are used to assign a confidence level to each heap 
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detection. The thresholds were optimized on the Larvik training 
set, using the same penalty weights as before (Table 3). The 
resulting thresholds (Table 6) assigns ‘medium’ confidence to 
the majority of the false detections, and ‘medium high’ or better 
confidence to heaps that we think are grave mounds (Table 7).  
 
Table 6. Thresholds for confidence assignment for heap 
detection. 

1 2 3 4 5
0.05072984 0.05121662 0.47666119 0.67167690 0.76737689  

 
Table 7. The result of using the Mahalanobis distance classifier 
for confidence estimation on the Larvik training set. 

score value 1 2 3 4 5 6

confidence
very 
low

low medium
medium 

high
high

very 
high

sum

grave mounds 16 47 21 12 96
not grave mounds 55 1 554 72 7 689

sum 55 1 570 119 28 12 785  
 
 

3. RESULTS 

3.1 Automatic pit detection using manually designed 
decision tree 

Table 8. The result of running the decision tree confidence 
assignment on the Olstappen test set for pit detection. 

score value 1 2 3 4 5 6

confidence
very 
low

low medium
medium 

high
high

very 
high

not 
detected

sum

pit confirmed in field 2 13 10 7 8 5 45
pit visually in image 1 11 28 24 19 5 88

sum true pits 1 13 41 34 26 13 5 133
modern/other in field 1 1 1 1 4

not pit visually 384 375 90 11 2 862
sum 386 389 132 46 28 13 5 999  

 
Table 9. Accumulated pit detection counts for different 
confidence levels on the Olstappen test set. 

score value ≥1 ≥2 ≥3 ≥4 ≥5 ≥6

confidence
very low 
or better

low or 
better

medium 
or better

medium 
high or 
better

 high or 
better

very 
high

not 
detected

sum

pit confirmed in field 40 40 38 25 15 8 5 45
pit visually in image 88 87 76 48 24 5 88

sum true pits 128 127 114 73 39 13 5 133
modern/other in field 4 3 2 1 4

not pit visually 862 478 103 13 2 862
sum 994 608 219 87 41 13 5 999

pits detected 96.24% 95.49% 85.71% 54.89% 29.32% 9.77%
pits missed 3.76% 4.51% 14.29% 45.11% 70.68% 90.23%  

 
By running the confidence assignment decision tree with the 
thresholds in Table 1 on the Olstappen test set, slightly worse 
results were obtained (Table 8) compared with the training set 
(Table 2). Fewer true detections obtained very high confidence, 
and more true detections obtained low or medium confidence. 
Still, the confidence levels reflect the number of true versus 
false detections in a meaningful way. All detections with ‘very 
high’ confidence are confirmed by archaeologists, either by 
field survey or by visual inspection of the lidar data. By 
accumulating the detection counts (Table 9), the trade-off 
between detecting as many pits as possible while at the same 
time limiting the number of false detections is more evident. 
E.g., 114 of 133 pits of archaeological interest were detected 
with medium confidence or better (Table 9); this is 85.7% of the 
pits of archaeological interest. At the same time, 103 of the 
detections with medium or better confidence were false. 
Alternatively, one may want to accept a higher number of false 
detections to obtain more true detections. 127 of 133 ‘true’ pits 

were detected with low or better confidence, which is 95.5%. 
This is achieved by accepting 478 ‘false’ pits. Of the remaining 
6 pits of archaeological interest that were not detected, 5 were 
lost due to missing ground returns in the lidar data due to 
vegetation. Many of the false detections could easily be 
removed by using digital map overlays, or were otherwise 
obvious misclassifications due to the context of the terrain. 
 
3.2 Automatic pit detection using statistical classifier 

By running the Mahalanobis distance classifier as described in 
Section 2.6 on the Olstappen test set, more archaeological pits 
were assigned ‘high’ and ‘very high’ confidence (Table 10-
Table 11) than when using the manually designed decision tree 
(Table 8-Table 9). On the other hand, very few false pits were 
assigned ‘very low’ confidence by the Mahalanobis distance 
classifier. It seems like most of the true and false pits that the 
decision tree classifier labelled with ‘very low’ or ‘low’ 
confidence, were labelled with ‘low’ or ‘medium’ confidence by 
the Mahalanobis distance classifier.  
 
Table 10. The result of confidence level assignment using the 
Mahalanobis distance classifier on the Olstappen test set. 

score value 1 2 3 4 5 6

confidence
very 
low

low medium
medium 

high
high

very 
high

not 
detected

sum

pit confirmed in field 1 1 4 13 6 15 5 45
pit visually in image 5 9 13 27 34 88

not pit visually 22 406 391 41 6 866
sum 23 412 404 67 39 49 5 999  

 
Table 11. Accumulated pit detection counts for the Mahalanobis 
distance classifier 

score value ≥1 ≥2 ≥3 ≥4 ≥5 ≥6

confidence
very low 
or better

low or 
better

medium 
or better

medium 
high or 
better

 high or 
better

very high
not 

detected
sum

pit confirmed in field 40 39 38 34 21 15 5 45
pit visually in image 88 88 83 74 61 34 88

sum true pits 128 127 121 108 82 49 5 133
not pit visually 866 844 438 47 6 866

sum 994 971 559 155 88 49 5 999
pits detected 96,24 % 95,49 % 90,98 % 81,20 % 61,65 % 36,84 %
pits missed 3,76 % 4,51 % 9,02 % 18,80 % 38,35 % 63,16 %

 
For pit detection the best statistical classifier is better than the 
manually constructed decision tree for high confidence 
detections. On the Olstappen test set, the Mahalanobis distance 
classifier assigns ‘high’ confidence or better to 82 confirmed 
pits, which is 62% of the confirmed pits, with only six 
additional false detections. The manually designed decision tree 
assigns ‘medium high’ confidence or better to 73 confirmed pits 
(55%), with 14 false detections. However, for the ‘low’ 
confidence detections, the manually designed decision tree 
seems to work better. The Mahalanobis distance classifier 
assigns ‘very low’ confidence to only 22 false pits, while the 
manually constructed decision tree assigns ‘very low’ 
confidence to 385 false pits. Both methods assign ‘very low’ 
confidence to only one confirmed pit.  
 
3.3 Automatic heap detection using statistical classifier 

By running the Mahalanobis distance classifier on the Larvik 
test set (Table 12), almost none of the false detections get ‘low’ 
or ‘very low’ confidence. So, in an operational setting, to 
successfully verify the 14 grave mounds with ‘medium’ 
confidence, 647 false detections have to be checked as well. 
However, for the ‘medium high’ or better confidence levels, the 
number of false detections is reasonable (Table 13). 
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Table 12. Result of running the Mahalanobis distance classifier 
for confidence estimation on the Larvik test set. 

score value 1 2 3 4 5 6

confidence
very 
low

low medium
medium 

high
high

very 
high

sum

grave mound 14 39 25 18 96
not grave mound 4 647 144 13 1 809

sum 4 0 661 183 38 19 905  
 
Table 13. Accumulated heap detection counts for the 
Mahalanobis distance classifier on the Larvik test set. 

score value ≥1 ≥2 ≥3 ≥4 ≥5 ≥6

confidence
very low 
or better

low or 
better

medium 
or better

medium 
high or 
better

 high or 
better

very high sum

grave mound 14 39 25 18 96
not grave mound 4 647 144 13 1 809

grave mound 96 96 96 82 43 18 96
not grave mound 809 805 805 158 14 1 866

sum 994 608 219 87 41 13 999
heaps detected 100,00 % 100,00 % 100,00 % 85,42 % 44,79 % 18,75 %
heaps missed 0,00 % 0,00 % 0,00 % 14,58 % 55,21 % 81,25 %

 
 

4. DISCUSSION AND CONCLUSIONS 

The pit detection results on the Olstappen test set indicate that 
the manually designed decision tree method is capable of 
detecting 95% of the pits of archaeological interest that were 
visible in the terrain, while at the same time producing four 
times as many false detections as true detections. Experience 
from field work indicates that this is an acceptable trade-off. 
Further, the automatic method was able to detect several small 
pits that were overlooked by visual inspection of the lidar data. 
The combined use of automatic detection and visual inspection 
prior to field survey is now being used by archaeologists in 
Oppland County, Norway, for the mapping of ancient hunting 
systems and iron production sites. 
 
We have seen that the best statistical classifier for pit detection 
in the Olstappen data set, i.e., the Mahalanobis distance 
classifier, seems to work better than the manually constructed 
decision tree for the detection of pits with high confidence. 
However, the decision tree seems to be better for low 
confidence pit detections. Perhaps better performance could be 
obtained for the Mahalanobis distance classifier by reducing the 
penalty weights for confirmed pits with low confidence values. 
Alternatively, one could use a separate method to re-estimate 
confidence values for pit detections with very low to medium 
confidence, or to detections with posterior pit probability < 0.5. 
 
It should also be noted that the heap detections have not been 
verified by archaeologists yet, as this part of our work is in an 
early stage. We plan a field work campaign in Larvik 
municipality this summer, after which we plan to redo the 
evaluation of automatic heap detection methods. 
 
The lidar data could also be used to extract other features of 
archaeological interest than circular features, like pits and 
heaps. For linear features, like stone fences and old roads, we 
propose to use the following general method: 

1. Apply multi-resolution edge- and/or ridge-detectors 
2. Use digital map overlays to remove detections due to 

modern features such as roads. 
3. For each resolution, threshold the detection result and 

connect neighbouring detections having 
approximately the same orientation 

4. Close small gaps 

5. Compute measures such as length, height above 
terrain, etc. 

6. Classify the linear features either by using fixed 
thresholds or by using a statistical classifier. 

 
In conclusion, semi-automatic detection of cultural heritage in 
lidar data is a valuable tool in combination with visual 
inspection of the lidar data, prior to field survey. Provided that 
the point density of the lidar data is high enough, the experience 
from the automatic pit detection method suggests that field 
survey can be accomplished ten times faster compared to the 
traditional approach without lidar data. Obviously, this is 
mainly due to the use of lidar data in itself, but automatic 
detection contributes both by reducing the time required for 
visual interpretation and by detecting pits that are missed during 
visual inspection. 
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