
COMBINING THE HEURISTIC AND SPECTRAL DOMAINS IN SEMI-AUTOMATED 

SEGMENT GENERATION 
 

 

C. E. Fourie*, E. Schoepfer 

 

German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), 82234 Oberpfaffenhofen, Germany - 

(christoffel.fourie, elisabeth.schoepfer)@dlr.de 

 

 
KEY WORDS: Meta-Heuristic, Semi-Automation, Segmentation, Spectral Transformation, Rapid Mapping 

 

 

ABSTRACT: 

 

The generation of thematically accurate image segments or delineating land-cover elements is a common objective and challenge in 

Geographic Object Based Image Analysis (GEOBIA). A core notion to the applicability of segmentation algorithms for partitioning 

these land-cover elements is that said elements typically have some spectral or other homogeneity criteria that allow successful 

segmentation, to varying degrees. One approach that addresses this challenge models the parameterised segmentation process as a 

search problem. The search method is provided with a reference of optimal desired output. This idea is extended in this work by 

suggesting the encoding of spectral space transformations as additional variables to such a search problem. The automatic 

exploration and transformation of the spectral domain can allow for a closer correlation between thematic and spectral similarity of 

the land-cover elements of interest, thus aiding the segmentation process. Two simple spectral transformation methods functioning in 

conjunction with two scale-space constraint image segmentation algorithms are presented to illustrate this concept. A statistically 

significant improvement in segmentation results can be obtained consistently in acceptable time with this approach with off-the-shelf 

meta-heuristics for our test areas. It is also shown with the algorithms used in this study that the segmentation algorithm parameters 

(heuristic domain) are dependent on the spectral transformation parameters (spectral domain) to achieve optimal results. This 

necessitates simultaneous optimisation of these two domains. 

 

 

1. INTRODUCTION 

Image segmentation is a ubiquitous paradigm in scientific 

disciplines that are concerned with information extraction from 

imagery. In the discipline of remote sensing, thematically 

accurate segments, or geographic objects, are typically the 

desired end result of a segmentation process. The semi-

automation of generating these geographic-objects (single or 

multi-scale) holds value in domains concerned with monitoring 

or emergency response mapping, where user interaction is 

required to be non-exhaustive and turnover times short. In such 

a context the emphasis falls on user assisted information 

extraction rather than full autonomy of the information 

extraction process or using extensive pre-developed solutions.* 

 

One school of thought moderates the process of semi-automated 

object or geographic-object generation to an optimisation 

problem (Bhanu et al., 1995; Pignalberi et al., 2003; Feitosa et 

al., 2006; Fredrich & Feitosa, 2008; Derivaux et al., 2010). The 

search space of all possible results, or segment sets, is traversed 

to find a solution that most closely matches a small reference set 

provided by a user. Empirical discrepancy metrics (Zhang, 

1996), especially area based accuracy metrics (Pignalberi et al. 

2003; Fredrich & Feitosa, 2008; Feitosa et al., 2010), are 

commonly employed to judge the resemblance of any segment 

set and the reference set. It is assumed that if the given 

segmentation algorithm and parameter(s) are adequate for 

segmenting the reference; it will be adequate for previously 

unseen examples. 

 

The search space of such an approach usually consists of the 

real or discrete valued parameters of the segmentation algorithm 

employed. Due to the potentially complex and large search 

spaces, coupled with the computationally expensive nature of 

                                                                 
* Corresponding author 

image segmentation, stochastic population based search 

methods are preferred. No guarantees can be made that the 

optimal solution can be found or if a quality solution even exists 

for the given scenario. Results remain dependent on the inherent 

suitability of the segmentation algorithm to the problem. To our 

knowledge, thus far only the segmentation algorithm 

parameters, or the Heuristic Domain (HD), are considered 

variables to such a method. 

 

Another line of research considers the effects different colour or 

spectral space representations of the input data have on the 

performances of image processing tasks. Examples include 

measuring the effects different colour space representations 

have on image segmentation (Busin, Vandenbroucke & 

Macaire, 2008; Kwok, Ha & Fang, 2009), automatic iterative 

colour space selection for a given segmentation problem (Busin 

et al., 2004) and the application and derivation of illumination 

invariant colour spaces (Chong, Gortler & Zickler, 2008; Shan, 

Yan & Wang, 2007). 

 

The concept of modelling example driven segmentation as a 

search problem is extended by suggesting the addition of simple 

measures of Spectral Domain (SD) transformation within the 

search function. Inspired by the abovementioned work on 

colour space transformations and concepts of low-mid-high 

level image processing cue integration (Kumar, Torr & 

Zisserman, 2010), it is suggested that low-level (image 

transformation) and mid-level (image segmentation) image 

processing steps are combined and optimised simultaneously. 

Typically, any analysis, refinement or classification will be 

done on original untransformed spectral data, although bounded 

by segment borders derived with the help of additional image 

processing steps. 

 

Closer correlations between spectral and thematic similarity can 

be found if the data is allowed to be transformed, assisting the 
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segmentation algorithm on the user defined problem. It is also 

briefly shown here that these two domains are interdependent 

and needs to be optimised simultaneously in our experiments. 

 

It is not uncommon for users to use expert knowledge of the 

problem at hand in defining optimal input to a segmentation 

problem, for example segmenting with a vegetation index band 

(EVI, NDVI) if concerned with a vegetation application. It is 

suggested that the user can be unburdened with this task if 

examples of desired output are available. 

 

In section 2 of this paper the method for simultaneously 

optimising the spectral and heuristic domains is presented, 

along with some details on the search algorithms, segmentation 

algorithms, fitness functions and spectral transformation 

functions implemented. Section 3 describes the study area and 

test data used. Quantitative comparisons of the proposed 

extension to the original method are presented in Section 4. 

Conclusions on the characteristics of the method and 

suggestions for future work are presented in Section 5. 

 

 

2. OPTIMISING ALGORITHM AND SPECTRAL 

TRANSFORMATION PARAMETERS 

2.1 Combined heuristic and spectral domain search 

The proposed method to simultaneously optimise the heuristic 

domain (segmentation algorithm parameters) and the spectral 

domain (transformed image input used in segmentation) is 

illustrated in Figure 1 (hereafter called HD + SD search). HD + 

SD search consists of a core optimisation layer giving and 

receiving input from a fitness score generation layer, which in 

turn receives input from a simple image input layer. 

 

 
Figure 1. Method for simultaneously optimising the spectral and 

heuristic domains in semi-supervised segment generation (SD + 

HD search). 

 

As input, the method accepts a multi-band image and a Boolean 

raster of the same dimensions, delineating reference segments 

of desired outputs. Small subsets of the satellite image, centred 

on the coordinates (areas of interest) of the user defined 

reference segments, are extracted and used for all subsequent 

processing. Subsetting saves computing time by avoiding 

repeated segmentation of unnecessary areas. 

 

The core of the method consists of an iterative 

optimisation/search algorithm taking as input a single value, 

called the fitness score. Optimisers employed are presented in 

section 2.2. As output the optimisation algorithm produces 

multidimensional real and/or discrete valued sets depicting 

spectral transformation parameters (SD) and segmentation 

algorithm parameters (HD). The dimensionality of the overall 

problem depends on the used segmentation algorithm and 

spectral transformation method. 

 

During iterations of the optimisation algorithm the fitness score 

generation layer is invoked and provided with SD and HD 

parameter sets provided by the optimisation layer. The SD 

parameters are used as input to a transformation function that 

changes the spectral space representation of the imagery 

subsets, resulting in new transformed subsets. Two simple 

transformation functions are employed and described in section 

2.3. These transformed subsets are used as input to a 

segmentation algorithm tuned with the HD parameters provided 

by the optimisation layer. Two segmentation algorithms are 

tested with this approach and are described in section 2.4. The 

resulting generated segments are evaluated against the reference 

segments (taken from the input layer) with the aid of area based 

empirical discrepancy metrics (described in section 2.5.), 

producing the fitness score. Subsequently the fitness score is 

returned to the optimisation layer, invoking a new iteration of 

the optimisation algorithm. 

 

The SD + HD method terminates after a certain number of 

iterations of the search algorithm have been performed. The 

output of the SD + HD search is an interdependent spectral 

transformation parameter set and segmentation algorithm 

parameter set that was found most suited to the problem (as 

judged by the fitness function). 

 

2.2 Optimisers 

Two common stochastic population based meta-heuristic 

optimisers were implemented and tested in this study, namely 

the Differential Evolution (DE) (Storn & Prince, 1995) 

algorithm and the Particle Swarm Optimisation (PSO) 

(Kennedy & Eberhart, 1995) algorithm. Multi-objective meta-

optimisation (Pederson & Chipperfield, 2009) was performed 

on both algorithms to tune their controlling parameters. Figure 2 

illustrates typical fitness curves observed with these two 

algorithms for our example problems. For all our experiments it 

was found that between 600 and 1000 iterations were sufficient 

to achieve near optimal solution fitness. The DE strategy 

provided slightly better final fitness scores compared to a 

standard PSO strategy and was subsequently used for all further 

experimentation. 

 

 
Figure 2. A typical example of fitness traces generated with the 

meta-optimised DE and PSO algorithms on HD + SD search 

problems. 
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2.3 Spectral transformation functions 

Two transformation methods are implemented, namely a 

transformation matrix and a simple histogram modification 

function. All used images have three spectral bands. The 

transformation matrix converts the original three band spectral 

space (  ,   ,   ) to a new space (  ,   ,   ) with the 

following equation: 

 

[
  
  
  
]  [

       
       
       

]  [
  
  
  
]      (1) 

 

Where variables   through   define the transformation matrix 

and have numerical bounds of [-0.2, 1] in our tests. 

 

The histogram modification function, called spectral split, 

consists of four variables. Three variables define positions (p1, 

p2, p3) within the histograms of the three separate bands (range 

of [0, 255]), while the fourth (h) defines the magnitude with 

which pixels around these points in the histogram are modified. 

If a pixel value in band x satisfies any of the following two 

conditional statements it is changed accordingly: 

 
If valuex < px and valuex > px - h then valuex = valuex - (h - px - valuex). 

If valuex > px and valuex < px + h then valuex = valuex + (h - valuex - px). 

 

These two point based image transformation functions only 

modify spectral values based on their own values and either 

some variables (in the case of spectral split) or variables and 

spectral values of other bands (in the case of the transformation 

matrix). Using spectral split adds an additional four variables to 

the optimisation problem, while using the transformation matrix 

adds an additional nine. 

 

2.4 Segmentation algorithms 

The HD + SD search method is tested with two segmentation 

algorithms, namely the Simple Linear Iterative Clustering 

(SLIC) (Radhakrishna et al., 2010) algorithm and a region 

merging segmentation algorithm variant, called Multiresolution 

Segmentation (MS) (Baatz & Schäpe, 2000). As the name 

suggests SLIC is an iterative clustering segmentation algorithm 

(K-means) combining the spectral and spatial 

properties/dimensions of an image into a single Euclidian space. 

Regions or segments are clustered in an unsupervised manner in 

this combined spectral/spatial space. The SLIC algorithm holds 

two parameters, one called “Scale” controlling relative segment 

size and “M”; controlling segment compactness. SLIC was 

developed for generating superpixels to be used in a parts-based 

information extraction paradigm. It is used with some liberty 

here in a thematic segmentation context due to algorithm 

elegancy/simplicity and speed efficiency. 

 

The MS region merging algorithm has three main parameters 

entitled „Scale“, „Colour“ and „Compactness“. Additional 

parameters control the contributions (weights) that the different 

image input bands have in influencing segment merging. 

Interestingly, this simple form of band weighting constitutes a 

low-level image processing or modification task; encoded 

within the actual segmentation algorithm. For simplicity bands 

are not weighted in this work. 

 

Concerns could be raised regarding the practical feasibility 

(computing time) of modelling semi-supervised segmentation as 

a search problem. It can be noted that in our experiments with 

the SD + HD search method using SLIC as the segmentation 

algorithm the search process typically finished after 1-2 minutes 

while the MS algorithm took 4-5 minutes (standard desktop 

computer with no algorithm multithreading or code 

optimisations, using very high resolution (VHR) imagery and 

numerous reference segments). 

 

2.5 Empirical discrepancy metrics 

Two area-based empirical discrepancy metrics are implemented 

and tested with the HD + SD search method, namely the Larger 

Segments Booster (LSB) (Fredrich & Feitosa, 2008) and a 

modified version of the Object-level Consistency Error (OCE) 

(Polak et al., 2009). Both these metrics can compensate for 

over- and under-segmentation. Both use measures of false 

positives and false negatives to quantify the percentage of 

overlap; however they strongly differ in their implementations 

of handling over-segmentation. 

 

The LSB metric compensates for over-segmentation by 

counting the number of pixels intersecting the reference 

segment and using this value as a penalisation factor. The OCE 

metric handles false positives and false negatives per individual 

segment that has some overlap with the reference segment. With 

OCE, over-segmentation is penalised via the summation of 

individual segment overlap results; weighted by the percentage 

cover of said overlap with the reference segment (see Polak et 

al., 2009 for a full formulation). Both metrics have a numerical 

range of [0, 1] with a value of 1 indicating no match and a value 

of 0 indicating a perfect match with the reference segments. 

 

 

3. TEST AREA AND DATA 

The viability and characteristics of the proposed method is 

demonstrated via the task of identifying habitable structures in 

Internally Displaced Persons (IDP) camps in East Africa. Relief 

agencies need accurate estimations of the number and sizes of 

habitable structures in these camps to model population size. 

GeoEye-1 and QuickBird imagery subsets (5 ha – 50 ha) of 

three IDP camps, in Kenya, Somalia and Ethiopia were selected, 

for simplicity referred to by their hosting countries.* Land-cover 

mapping and structure counting of these settlements are 

routinely performed to provide relief agencies with updated 

maps and information. 

 

The three sites display different structure characteristics (see 

Figure 3). The Ethiopia site mainly consists of easily 

identifiable white tents or huts draped with white tent nylon. 

The land-cover elements of interest thus display strong within 

element spectral homogeneity and are also relatively 

homogeneous in the scale-space. One could practically use a 

single-scale segmentation approach for this site. The other two 

sites (Kenya and Somalia) display different structural and 

spectral characteristics and variation in structure size, 

constituting a more difficult problem. In practise a multi-class 

and multi-scale approach would be suggested for these sites. To 

demonstrate the SD + HD search method, it is attempted to 

segment all structures using a single segmentation layer and 

thematic class. For each site between ten and twenty reference 

structures were digitised, to be used as reference segments 

input. 

                                                                 
*
 EO data provided by the ESA managed GSC-DA, funded under 

ESA – EC Agreement on the Implementation of the Space 

Component of Global Monitoring for Environment and Security 
(GMES). 
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4. RESULTS AND DISCUSSION 

4.1 Heuristic domain search versus combined heuristic and 

spectral domain search 

The HD + SD search method is quantitatively compared with 

the variant of semi-supervised segmentation not performing any 

spectral space transformations. For each test site (Ethiopia, 

Kenya and Somalia) the search methodology is tested by 

performing no spectral space transformations, using spectral 

split and the transformation matrix; on both segmentation 

algorithms implemented. Experiments for each problem 

scenario were repeated for 25 runs to obtain a measure of the 

standard deviation of the results. Table 1 lists the mean metric 

fitness scores and standard deviations obtained using the OCE 

metric, while Table 2 lists the same using the LSB metric. 

 

 
Table 1. OCE metric scores comparison of the HD + SD search 

approach versus a HD only approach. 

 

 
Table 2. LSB metric scores comparison of the HD + SD search 

approach versus a HD only approach. 

 

Tables 1 and 2 illustrate marked improvement in average metric 

scores when employing spectral domain transformation 

functions within the search method.  In all examples the simple 

transformation matrix approach produced the best results. In our 

experiments using a meta-optimised DE search algorithm very 

small standard deviations in obtained results are observed; 

potentially an indication that optimal results for these scenarios 

are reached, bearing in mind segmentation algorithm and 

spectral transformation function capabilities. Such a 

methodology can also be used to compare different 

segmentation algorithms for a given application and in selecting 

a proper spectral transformation function. 

 

The distributions of the HD versus HD + SD search results are 

all statistically significant with a 1% confidence interval 

(student’s t-test). The results achieved with the best 

combination of segmentation algorithms and spectral 

transformation functions are typed in bold. 

 

Figure 3 shows the best performing segmentations achieved 

(small subsets) using SLIC for all three sites using the HD only 

search strategy (3(a), 3(d), 3(g)) compared with that of a HD + 

SD search using spectral split (3(b), 3(e), 3(h)) and a 

transformation matrix (3(c), 3(f), 3(i)). 

 

 
Figure 3. Best performing segmentation results for the Ethiopia 

(a-c), Kenya (d-f) and Somalia (g-i) test sites. 

 

4.2 A luminance-chrominance space as base input 

The above experiment is repeated by using a luminance-

chrominance colour space as the basic input to the HD and HD 

+ SD search methods. One dimension of the CIELAB 

luminance-chrominance colour space (L) used here defines 

brightness while the other two dimensions (A and B) define the 

colour components. Using the CIELAB colour space as base 

representation is compared with the original red, green and blue 

(RGB) colour space to illustrate the potential of using more 

elaborately transformed colour spaces; although selected in a 

non-automated manner in this example. Table 3 lists the results 

for the Kenya test site using the OCE metric as fitness function. 

 

 
Table 3. OCE metric scores comparing RGB and CLIELAB 

colour spaces as base input to the HD and HD + SD search 

methods. 

 

For this specific problem the use of a luminance-chrominance 

colour space improved the results, irrespective of the spectral 

transformation method used. A substantial improvement in 

results is observed comparing the use of the original RGB 

colour space (No transformation) with the CIELAB space using 

the spectral transformation matrix. 

 

4.3 Comparison of heuristic domain parameter values 

using different spectral domain transformation techniques 

The dependence of the HD parameters on the used SD method 

and parameters is illustrated in Tables 4 and 5. Table 4 lists the 

average parameter values of the SLIC algorithm obtained (best 

results) for the three test sites while Table 5 lists the same for 

the MS algorithm. 

 

OCE No transformation Spectral split Transformation matrix

Ethiopia SLIC 0,47 ±0,00 0,44 ±0,02 0,37 ±0,01

MS 0,35 ±0,01 0,32 ±0,02 0,28 ±0,03

Kenya SLIC 0,80 ±0,00 0,78 ±0,01 0,71 ±0,02

MS 0,77 ±0,01 0,75 ±0,01 0,69 ±0,02

Somalia SLIC 0,80 ±0,01 0,78 ±0,01 0,73 ±0,02

MS 0,76 ±0,00 0,76 ±0,01 0,67 ±0,02

LSB No transformation Spectral split Transformation matrix

Ethiopia SLIC 0,48 ±0,00 0,47 ±0,01 0,45 ±0,01

MS 0,44 ±0,01 0,41 ±0,01 0,41 ±0,02

Kenya SLIC 0,83 ±0,00 0,79 ±0,01 0,68 ±0,02

MS 0,79 ±0,01 0,77 ±0,02 0,68 ±0,02

Somalia SLIC 0,91 ±0,00 0,87 ±0,01 0,76 ±0,02

MS 0,84 ±0,02 0,82 ±0,02 0,70 ±0,01

Kenya No transformation Spectral split Transformation matrix

SLIC RGB 0,80 ±0,00 0,78 ±0,01 0,71 ±0,02

CIELAB 0,77 ±0,00 0,76 ±0,01 0,68 ±0,02

MS RGB 0,77 ±0,01 0,75 ±0,01 0,69 ±0,02

CIELAB 0,74 ±0,01 0,71 ±0,01 0,62 ±0,03
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Table 4. Average SLIC parameters obtained using the HD and 

HD + SD search methods. 

 

 
Table 5. Average MS parameters obtained using the HD and 

HD + SD search methods. 

 

The standard deviation of the Scale parameter of the SLIC 

algorithm (Table 4) is low with a slight difference in mean 

values when comparing different SD transformation techniques. 

In contrast, the M parameter displayed large deviation in 

optimal results, suggesting the Scale parameter to be of greater 

importance to the problem. Figure 4 illustrates this notion by 

plotting fitness results obtained by segmenting a test area with 

all combinations of Scale and M parameters (no SD 

transformations). 

 

 
Figure 4. Fitness plot of the SLIC parameters for an arbitrary 

problem. 

In contrast to the SLIC algorithm parameters, the MS 

parameters showed marked differences (Table 5) in optimal HD 

parameters obtained using different SD transformation 

techniques, suggesting stronger parameter interdependence for 

this algorithm. These results illustrate the influence of the SD 

parameters on the optimal HD parameters. The amount of 

influence that the SD parameters have on optimal HD 

parameters depends on the nature of the segmentation algorithm 

under consideration. 

 

 

 

 

5. CONCLUSION 

In this study a general methodology that combines the search 

for effective spectral transformation function parameters and 

segmentation algorithm parameters in a single search problem 

was presented and tested. The method was compared with a 

simpler variant where no input data modification is performed, 

and was shown to improve results measured via area based 

empirical discrepancy metrics. It should be noted that the 

capabilities and performances of the employed meta-heuristics, 

segmentation algorithms, spectral transformation methods and 

fitness functions should be carefully considered in such an 

approach. Specific algorithms might perform poorly on certain 

problems. 

 

Investigating this methodology with segmentation algorithms 

less constraint in the scale space is called for. Encoding more 

complex spectral transformation techniques, briefly 

demonstrated in section 4.2 by using a static luminance-

chrominance colour space as base input, might prove useful. 

Transformation functions that modify spectral values based on 

neighbourhood properties, or so called neighbourhood 

operators, could also potentially aid in generating better 

segments. Efficiency in generalizability of such an approach 

will constitute future research, specifically investigating the 

performances of candidate low-level transformation techniques 

on commonly used segmentation algorithms and mapping 

problems. 
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