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ABSTRACT 

Artificial Intelligence Planning and Scheduling (AIPS) techniques 

have been used both in ground-based and onboard space 

applications. AIPS relies on model-based domain knowledge 

representation systems, which is of value for many other 

applications, such as diagnosis systems and satellite simulators. 

This paper reports the development of an autonomous satellite 

onboard planner developed at INPE, and how this project lead us 

to start creating a more structured knowledge representation tool. 

The tool can be used not only by a planning application, but also 

by diagnosis and prognosis systems, satellite simulators and more, 

both in onboard and ground-based environments, and even 

outside the space field. 

Keywords 
Knowledge Representation, Artificial Intelligence Planning and 
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1. INTRODUCTION 
Low-Earth orbit artificial satellites operate most of the time 

without direct contact with its ground control stations. A satellite 

which orbits at about 750 km and has only one control station, for 

example, is under the immediate ground operations team 

supervision for just 10% of the time of each orbit it performs. 

These satellites are controlled through sequences of commands 

sent from the ground control stations during the period in which 

they are in contact. In order to the satellite be able to execute the 

ground-generated commands at any moment of its orbit, each 

command has a time tag that express its execution moment. To 

this command sequence is given the name of operation plan. 

Each command of the operation plan performs a low-level task, 

and it is usually necessary wide command sequences to achieve 

high-level goals. The generation of operation plans is a labor 

intensive process, carried out manually by a highly specialized 

staff. Many factors shall be considered in-depth: the current and 

future state of each satellite subsystem, time and resource 

constraints, the satellite attitude, orbit position and mission phase, 

among many others. 

To reduce the effort necessary to generate operation plans and 

hence its costs, many space agencies have been investing in the 

development of computational systems that automate totally or 

partially the planning process. These systems are generically 

called planners, and some of them implement Artificial 

Intelligence (AI) and Operations Research (OR) techniques, 

known respectively as planning and scheduling. In addition to 

allowing the ground operations automation, these techniques can 

be used onboard satellites to change existing plans or create new 

ones in response to unpredicted situations, thus increasing its 

autonomy. This kind of application is relatively new, and a few 

cases were reported up to now. 

This paper reports an onboard planner developed at the Brazilian 

National Institute for Space Research (INPE, in the Portuguese 

acronym). The lessons learned within this project had lead us to 

start developing a more structured knowledge representation tool, 

one that can be used not only by an autonomous planning 

application, but also by diagnosis and prognosis systems, satellite 

simulators and more, both in onboard and ground-based 

environments. 

The paper is organized as follows. Section 2 presents a brief 

history of AI planning and scheduling applied to the ground 

control of space missions. Section 3 briefly describes the only two 

real cases of onboard planning that took place in space missions. 

Section 4 reports the development of an onboard planner at INPE. 

We describe the decisions made to handle the domain knowledge 

and run planning processes onboard satellites, as well as the 

lessons learned from such planner. Section 5 shows our current 

work focus, the development of an onboard domain knowledge 

representation tool. Section 6 lists some related work, and the 

current status and our final remarks are stated in Section 7. 

2. AI PLANNING AND SCHEDULING IN 

SPACE MISSIONS 
AI planning is the selection and ordering of activities that, when 

executed in a specific order, take a domain from an initial state to 

a desired state, or goal state. The domain is usually represented by 

a knowledge base in the form of a model. The set of activities that 

is the output of the planning process is called a plan. 
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Planning techniques date back from early ‘70s with the STRIPS 

planner [1], but it was the addition of OR scheduling concepts, 

such as resource consumption, time assignments and Constraint 

Satisfaction Problems (CSP), which gave planners the ability to 

deal with real-world problems. The union of planning and 

scheduling is currently known as Artificial Intelligence Planning 

and Scheduling (AIPS). The search for optimal or, in the worst 

case, complete and consistent plans that is the purpose of AIPS 

fits perfectly the operations routine of space missions. 

NASA is the agency that has the greatest experience in the 

development and use of AIPS systems for mission control. After 

an unsuccessful demonstration of planning in early 80’s [2], 

NASA resumed AIPS research in the 90’s with the SPIKE/SPSS 

scheduler [3], which helps creating observation plans for the 

Hubble Space Telescope. SPIKE was followed by many planners, 

such as GERRY/GPSS [4] used for the ground maintenance plan 

of the Space Shuttles, HSTS, also developed for Hubble, DCAPS 

[5], an experiment that generated operation plans for the Shuttle’s 

Data Chaser payload, ASPEN [6], an evolution of DCAPS used in 

many current missions, and finally MAPGEN [7], currently in use 

in the Mars Exploration Rovers mission. 

ESA also has some history with AIPS. Their first experiences, 

also in the beginning of the ‘90s, were the planERS-1 [8], to 

generate operation plans for the ERS-1 satellite and Optimum-

AIV [9] used to help the assembly, integration and verification 

process of equipment for the Ariane IV rockets. More recently, 

ESA supported a work that created the MEXAR and MEXAR II 

[10] planners for the Mars Express mission. 

There is a work in progress at INPE to apply ground-based AIPS 

in its missions. This work is described in [11] and [12]. 

3. ONBOARD AIPS 
In all these systems the plans are generated and validated on 

ground and just then sent to the spacecraft. There are cases, 

however, in which it is desirable the generation or change of plans 

aboard the spacecraft to increase its autonomy and allow it to have 

a quick response to external events. This is called onboard 

planning, and there are only two reported cases up to now, both 

from NASA. 

In May of 1999, the Deep Space One (DS-1) probe was operated 

for some days through detailed operation plans generated onboard 

the spacecraft from high level commands sent by the ground 

operations team [13]. The experiment, called Remote Agent, was 

considered a great success. 

More recently, from October of 2003, the remote sensing satellite 

Earth Observing One started to execute the Autonomous 

Sciencecraft Experiment (ASE), of which the CASPER planner, 

an onboard version of ASPEN, is part [14]. CASPER is 

responsible for replanning the satellite operations to respond to 

the detection of events of scientific interest, such as floods and 

volcanic eruptions, which increased the scientific return. The ASE 

implementation was gradual, and in April of 2005, the ground 

operations team was already using it in normal tasks [15]. 

These missions place NASA as the only agency to use AIPS 

aboard its spacecrafts. ESA has also been investing in the increase 

of autonomy with projects such as PROBA [16], but with no 

onboard planning up to now. 

4. RESOURCES ALLOCATION SERVICE 

FOR SCIENTIFIC OPPORTUNITIES 
Apart its work with ground-based AIPS, INPE is also developing 

onboard planning technology. The Resources Allocation Service 

for Scientific Opportunities (RASSO) is an onboard replanning 

service which goal is to change scientific satellites’ ground-

generated operation plans in such a way to reallocate resources 

(mass memory and power, for example) to experiments when they 

detect the occurrence of short-duration scientific phenomena. 

Operating with more resources than originally programmed, the 

experiments can do a better observation of such phenomena. 

Figure 1 shows the RASSO architecture. The arrows indicate the 

data flow between the modules during the planning process. 

Follows a brief description of the service functioning. 

 

 

Figure 1 - The RASSO Architecture 

 

An experiment that detects the occurrence of a short-duration 

phenomenon sends a request for more resources to RASSO, to 

make a better observation (arrow number 1). When receiving the 

request, RASSO composes a well-defined problem in the form of 

a draft operation plan. This draft plan is created consolidating 

information from several sources (arrows 2 to 5), and then is 

directed to the planner module (arrow 6), responsible for working 

out the conflicts that were inserted in the operation plan because 

of the request from the experiment, respecting a set of constraints 

and goals that were imposed to it. When succeeding in creating a 

plan that takes care of all these requirements, RASSO sends it to 

the satellite’s command schedule, turning it the new current 

operation plan (arrow 7).  

The next section describes how the knowledge about the domain 

is embedded in the satellite model to be used by the planner. 

4.1 Knowledge Representation in RASSO 
RASSO runs on an ERC32 RISC processor (SPARC 32 bits 

architecture) at 12 MHz, and has less than 1 Mbyte of memory 

available to its execution thread. In order to make the planner 
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search process feasible with this limited computational power, we 

made two main decisions. 

The first one was about the kind of problem representation and 

search algorithm to be used in such onboard application. The 

planning problem should be represented as a Constraint 

Satisfaction Problem (CSP) in the form of a draft plan (as 

described in section 4), and a local search algorithm, guided by 

scheduling constraints, should be used to solve it. When 

necessary, disturbances should be inserted in the plan to escape 

from local minima and plateau regions of the search space. 

The second decision was about how to describe the satellite 

domain model to be used by the planner. We concluded that the 

satellite model should be described in the same language in which 

the planner would be developed, the C++ programming language. 

The model elements would be translated in compile-time to data 

structures in which they would be handled. 

The C++ language is capable of describing a model adequately, 

but a model described in C++ would lose in clarity. An engineer 

or scientist not used with the programming language and with the 

software structure would not understand what is being 

represented. Thus, to allow the direct storage in the right data 

structures and still keep the model readable, we decided to create 

a model description language over C++, through the use of 

macros that hide all structures, pointers and function calls used by 

the planner. 

The use of macros to implement this language, that was named 

RASSO_ml, makes the task of converting a model instruction to 

data structures being a responsibility of the C++ compiler pre-

processor. The model description is comprised in a 

“domain_model.h” header file, which is compiled together with 

the planner. Thus, the model elements are always ready to be 

manipulated by the planner, with no parsing and eliminating a 

great part of the initialization process.  

This approach is similar to the one taken in the Task Description 

Language (TDL) [17]. The difference is that, in TDL, it is not the 

compiler pre-processor itself that translates the language 

constructs into programming code, but a specialized parser.  

With RASSO_ml it is possible to describe model components 

through classes and elements (instances of classes), activities with 

its pre-conditions and effects, exogenous events, resources and 

constraints. Activities and events can take advantage of any C++ 

language construct, such as conditionals, switch statements and 

loops, as well as C++ libraries such as <math.h>. There is no 

space in this paper to describe all this features, so see [18] for 

more information. 

4.2 Lessons Learned 
When we started RASSO, we were not totally sure that a domain 

description mixed with programming source code would work as 

expected, but this proved to be a right choice. Any domain 

specialist familiarized with languages such as C, C++ or Java can 

quickly edit models in RASSO_ml, being necessary only to learn 

some basic concepts and a few language instructions. The 

handling of the compiled model components by the planner is 

pretty simple, since the same instructions that describe activities 

and events effects can be called by the planner to get or set the 

model state – even the initial and goal states. 

The local search algorithm with CSP has shown to be appropriate 

for onboard execution, although we have room for improvements. 

As an example, currently there is no plan optimization. Any 

consistent plan, which leads the satellite to the goal state and 

respects all the imposed constraints, are accepted. 

When showing RASSO results, we were asked by colleagues if 

this system could be used in a range of different applications, such 

as onboard diagnosis and prognosis and satellite simulation. After 

some discussion, we figured out that it is not RASSO which 

would be used in those applications, but the domain model it 

comprises. So, we decided that the next step would be to develop 

a more structured knowledge representation tool, over which 

different onboard applications, and even ground ones, such as a 

satellite simulator, could be made. We called this tool the Space 

System Model (SSM). 

5. THE SPACE SYSTEM MODEL 
SSM is the evolution of RASSO’s satellite domain model. It 

provides a domain representation language, state inference, 

constraint propagation and resource consumption/generation 

profiles, among other features. 

Domain knowledge is represented by two different descriptions: a 

static (structural) description and a dynamic (behavioral) 

description. A real-world interface maps the model elements, 

resources, activities and events to real satellite subsystems, 

commands, etc, allowing SSM to interact with the satellite. Figure 

2 shows the SSM knowledge representation structure. 
 

 

Figure 2 - SSM Knowledge Representation Structure 
 

The static description contains the satellite model structure, that 

is, the elements that constitute a satellite (such as its subsystems 

and payload), the classes from which the elements are created, and 

the resources available for consumption by those elements. It is 

those description components that are translated by the C++ 

compiler into data structures to be handled by SSM in run-time. 

Elements are instances of classes, and a timeline is created for 

each element. That means that SSM provides methods to get or set 

the initial, previous, current and goal states of an element. 

Resources consumption/generation are informed in rates, not in 

“closed” amounts. When calling an activity that turns on a 

thruster, for example, one can inform that this thruster consumes 

fuel “at the rate of 0.1 units per second”. A following turn off 

activity will cease the fuel consumption. This is closer to the real 
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satellite operation and gives more flexibility to search algorithms 

than the usual planning approach, in that one would state that “the 

thruster will operate for ten seconds and will consume 1 unit of 

fuel”. 

The dynamic description contains the operators that can change 

the model state. These operators are called by applications at run-

time to infer the satellite behavior. There are two types of 

operators: activities and events. Activities are related to any kind 

of internal satellite command, at any level. It can represent a low-

level single command, or an entire onboard procedure (this is up 

to the modeler). Events describe the effects of exogenous events, 

such as the entrance in eclipse, over the satellite. 

The model is described in the same way it was in RASSO, that is, 

in a C++ header file, with a new language based on RASSO_ml. 

A simplified code snippet is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the uses of the real-world interface is the SSM model 

check feature. It consists of inferring the satellite response to the 

current operation plan and exogenous events, and verify the 

expected behavior at given intervals. It is important to use this 

feature to verify the accuracy of the model, before using it in a 

planning or diagnosis application. 

Another important part of SSM are the constraints. They are 

informed inside the activities and events, or submitted to SSM by 

an application (for example, a planner could submit constraints 

alongside with goals). Constraint propagation methods are applied 

to the model at any change in its state. 

Two of the applications foreseen to be developed over SSM are 

outlined in the following subsections. 

5.1 Onboard Autonomous Reaction Agent 
The first application to use SSM will be the Onboard 

Autonomous Reaction Agent (OAR Agent). Roughly speaking it’s 

a new version of RASSO, with a wider scope – it is not intended 

just to reallocate resources to experiments, but to modify plans at 

any contingency situation to achieve different kinds of goals. 

The search algorithm will be an improved version of the one used 

in RASSO. In an ERC32 processor running at 12MHz, RASSO is 

capable of finding consistent plans in about two minutes. That is 

far from being a bad result, but it could be better. We realized that 

we can develop reasonable search algorithms, but this is not our 

strong point. That’s why OAR agent will accept third-party 

planning algorithms, that implement theirs own search strategy 

and heuristics. 

5.2 Diagnosis and Prognosis Agent 
An extension of the SSM model check feature, the Diagnosis and 

Prognosis Agent will infer the satellite behavior in the short and 

medium-term future. It will delivery commands or send reports to 

the ground operations team when specific (probably error) states 

are predicted, or when one predicted state differs from the actual 

value that is read from the satellite. 

We have plans to use this agent also in a ground-based satellite 

simulation system. 

6. RELATED WORK 
NASA has some onboard model-based systems already used in 

space missions, and others in development. 

The DS-1 Remote Agent experiment used a tool called 

Livingstone [19] to keep its onboard models. Livingstone is 

developed in LISP and is capable not only to infer the overall 

behavior of the system, but also to monitor it. Since the Remote 

Agent, Livingstone has flown in a number of different missions. 

The Remote Agent is also the basis of another system that relies 

on an onboard model: the Intelligent Distributed Execution 

Architecture (IDEA) [20], a framework that unifies planning and 

execution and is under development by NASA Ames Research 

Center. IDEA is proposed to use the same primitives and semantic 

to the model in all system layers, to simplify its implementation 

and validation. The model and all the states it assumes are kept in 

the Plan Service Layer (PSL) database, which is similar to our 

Space System Model. 

Another onboard planning and execution system that is being 

developed is the Coupled Layered Architecture for Robotic 

Autonomy (CLARAty) [21]. CLARAty is a joint project between 

NASA JPL, NASA Ames, Carnegie Mellon University and other 

universities. It is meant to be used in space-based robotic control 

applications.  CLARAty has two layers: a functional layer of 

robotic primitives, coupled with a decision layer of planning and 

execution functionality. The result is that it depends on two 

modeling frameworks, one for planning (CASPER), and another 

for execution (TDL). SSM applications, on the contrary, will rely 

on only one domain model. 

7. FINAL REMARKS 
The Space System Model is currently under development. Once 

we have finished this phase, we will start developing the 

applications described in Section 5, being the OAR Agent the first 

 

Figure 3 – A simplified domain_model.h code snippet 

using namespace ssm; 
 
// static description ////////////////////// 
 

create_class(experiment,  
  exp_name  name; 
  bool   on; 
  int   sample_rate; 
      ); 
 
create_element(ionex, experiment); 
create_element(grom,  experiment); 
 

 
// dynamic description ///////////////////// 
 

activity turn_on(experiment exp) 
{ 
    // activity pre-conditions 

    precondition(exp.on.get_current()    ↵ 
                                   == false); 
 

    // ionex experiment cannot be turned off 
    precondition(exp.name != ionex); 
 
    // activity effects 
    exp.on.set_current(true); 
 
    // report success to the SSM 
    activity_completed; 
} 

1681



of them. SSM has also a great potential for being used in non-

space missions. We plan to explore those fields, once we have 

some results with our space applications. 

8. ACKNOWLEDGMENTS 
We would like to thank the Fundação de Amparo à Pesquisa do 

Estado de São Paulo (FAPESP), for supporting part of this work. 

9. REFERENCES 
[1] Fikes, R. E. and Nilsson, N. J. STRIPS: a new approach to 

the application of theorem proving to problem-solving. 

Artificial Intelligence, v. 2, n. 3-4, pp. 189-208, 1971. 

[2] Vere, S. Planning in time: windows and durations for 

activities and goals. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, v. 5, pp. 246-267, 1983. 

[3] Johnston, M. SPIKE: AI scheduling for NASA’s Hubble 

space telescope. In Proceedings of the IEEE conference on 

AI applications, 1990, Santa Barbara, USA, pp. 184-190. 

[4] Zweben, B., Davis, M., Daun, E. and Dale, M. Scheduling 

and rescheduling with iterative repair. IEEE Transactions on 

Systems, Man, and Cybernetics, v. 23, n. 6, Nov / Dec 1993. 

[5] Rabideau, G., Chien, S., Mann, T., Willis, J., Siewert, S. and 

Stone, P. Interactive, repair-based planning and scheduling 

for shuttle payload operations. In Proceedings of the IEEE 

aerospace conference, 1997, Aspen, CO, USA.  

[6] Fukunaga, A., Rabideau, G., Chien, S. and Yan, D. Towards 

an application framework for automated planning and 

scheduling. In Proceedings of the international symposium 

on artificial intelligence robotics and automation in space 

(I-SAIRAS), 1997, Tokyo, Japan. 

[7] Ai-Chang, M., Bresina, J., Charest, L., Chase, A., Cheng-

Jung, J., Jónsson, A., Kanefsky, B., Morris, P., Rajan, K., 

Yglesias, J., Chafin, B., Dias, W. and Maldague, P. 

MAPGEN: mixed-initiative planning and scheduling for the 

Mars Exploration Rover mission. IEEE Intelligent Systems, 

v. 19, n. 1,  pp. 8-12,  Jan/Feb 2004. 

[8] Fuchs, J. J., Gasquet, A., Olalainty, B. and Currie, K. W. 

PlanERS-1: an expert planning system for generating 

spacecraft mission plans. In Proceedings of the international 

expert planning systems conference, 1990, London, pp70-75. 

[9] Aarup, M., Arentoft, M. M., Parrod, Y., Stader, J. and 

Stokes, I. Optimum-AIV: a knowledge-based planning and 

scheduling system for spacecraft AIV. Knowledge Based 

Scheduling, Fox, M. and Zweben, M., ed.. Morgan 

Kaufmann, San Mateo, CA, USA, 1994. 

[10] Cesta, A., Oddi, A., Cortellessa, G., Fratini, S. and Policella, 
N. AI-based tools for continuous support to mission 

planning. In Proceedings of the 9th international conference 

on space operations (SpaceOps 06), Rome, Italy, June 2006. 

[11] Biancho, A. C., Carniello, A., Ferreira, M. G. V., Silva, J. D. 

S. and Cardoso, L. S. Multi-agent ground-operations 

automation architecture. In Proceedings of the 56th 

international astronautical congress (IAC ’05), Fukuoka, 

Japan, October 2005. 

[12] Cardoso, L. S., Ferreira, M. G. V. and Orlando, V. An 

intelligent system for generation of automatic flight operation 

plans for the satellite control activities at INPE. In 

Proceedings of the 9th international conference on space 

operations (SpaceOps ’06), Rome, Italy, June 2006. 

[13] Bernard, D., Dorais, G., Gamble, E., Kanefsky, B., Kurien, 

J., Man, G. K., Millar, W., Muscettola, N., Nayak, P., Rajan, 

K., Rouquette, N., Smith, B., Taylor, W. and Tung, Y. W. 

Spacecraft autonomy flight experience: the DS1 remote agent 

experiment, In Proceedings of the AIAA 1999, Albuquerque, 

NM, USA, September 1999. 

[14] Chien, S., Sherwood, R., Tran, D., Castano, R., Cichy, B., 
Davies, A., Rabideau, G., Tang, N., Burl, M., Mandl, D., 

Frye, S., Hengemihle, J., D’agostino, J., Bote, R., Trout, B., 

Shulman, S., Ungar, S., Van Gaasbeck, J., Boyer, D., Griffin, 

M., Burke, H., Greeley, R., Doggett, T., Williams, K., Baker, 

V. and Dohm, J. Autonomous science on the EO-1 mission. 

In Proceedings of the international symposium on artificial 

intelligence robotics and automation in space (I-SAIRAS), 

2003, Nara, Japan. 

[15] Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., 
Castaño, R., Davies, A., Mandl, D., Frye, S., Trout, B., 

D'Agostino, J., Shulman, S., Boyer, D., Hayden, S., Sweet, 

A. and Christa, S. Lessons learned from autonomous 

sciencecraft experiment. In Proceedings of the autonomous 

agents and multi-agent systems conference, Utrecht, 

Netherlands, July 2005. 

[16] Teston, F., Creasey, R., Bermyn, J., Bernaerts, D. and 

Mellab, K. PROBA: ESA's autonomy and technology 

demonstration mission. In Proceedings of the 13th 

AIAA/USU conference on small satellites, Logan, UT, USA, 

September 23-26, 1999. 

[17] Simmons, R., Apfelbaum, D. A task description language for 

robot control. In Proceedings of Conference on Intelligent 

Robotics and Systems, 1998, Vancouver, Canada. 

[18] Kucinskis, F. N. and Ferreira, M. G. V. Dynamic allocation 

of resources to improve scientific return with onboard 

automated replanning. In Space operations: mission 

management, technologies, and current applications, 

Progress in Astronautics and Aeronautics, v. 220, Chapter 

20, pp. 345-359, AIAA, Reston, USA, September 2007. 

[19] B. C. Williams and P. P. Nayak. A model-based approach to 

reactive self-configuring systems. In Proceedings of AAAI, 

1996. 

[20] N. Muscettola, G. Dorais, C. Fry, R. Levinson and C. Plaunt. 

IDEA: planning at the core of autonomous reactive agents. In 

Proceedings of the Workshops at the AIPS-2002 Conference, 

Tolouse, France, April 2002. 

[21] I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. 

Estlin and Kim, W. S. CLARAty: an architecture for reusable 

robotic software. In Proceedings of the SPIE Aerosense 

Conference, Orlando, Florida, April 2003. 

1682


