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FOREWORD 

This document is a CCSDS Report which contains background and explanatory material to 
support the CCSDS Recommended Standard, TM Synchronization and Channel Coding 
(reference [3]).  

Through the process of normal evolution, it is expected that expansion, deletion, or 
modification to this Report may occur. This Report will therefore be subject to CCSDS 
document management and change control procedures which are defined in reference [1]. 
Current versions of CCSDS documents are maintained at the CCSDS Web site:  

http://www.ccsds.org/ccsds/ 

Questions relating to the contents or status of this report should be addressed to the CCSDS 
Secretariat at the address on page i.  
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1 DOCUMENT PURPOSE, SCOPE, AND ORGANIZATION 

1.1 PURPOSE 

This report contains the concept and supporting rationale for TM Synchronization and 
Channel Coding developed by the Consultative Committee for Space Data Systems 
(CCSDS).  It has been prepared to serve two major purposes:  

a) to provide an introduction and overview for the Channel Coding concept upon which 
the detailed CCSDS TM Synchronization and Channel Coding specifications 
(reference [3]) are based; 

b) to describe and explain the codes considered and to supply the supporting rationale.  

Supporting performance information along with illustrations are also included. This report 
provides a broad tutorial overview of the CCSDS TM Synchronization and Channel Coding 
and is aimed at helping first-time readers to understand the Recommended Standard. It is not 
intended to provide all necessary knowledge for successfully designing telemetry 
communication links.  

In no event will CCSDS or its members be liable for any incidental, consequential, or 
indirect damages, including any lost profits, lost savings, or loss of data, or for any claim by 
another party related to errors or omissions in this report.  This document is a CCSDS 
informational Report and is therefore not to be taken as a CCSDS Recommended Standard. 
The actual Recommended Standard is in reference [3]. 

1.2 SCOPE 

The concepts, protocols and data formats developed for the TM Synchronization and Channel 
Coding described herein are designed for space communications links, primarily between 
spacecraft and ground elements. Data formats are designed with efficiency as a primary 
consideration; i.e., format overhead is minimized. The results reflect the consensus of experts 
from many space agencies. 

This document provides supporting and descriptive material only: it is not part of the 
Recommended Standard. In the event of any conflict between the TM Synchronization and 
Channel Coding Recommended Standard (reference [3]) and the material presented herein, 
the Recommended Standard shall prevail. 

1.3 ORGANIZATION 

An overview of the CCSDS Telemetry System is presented in section 2, which introduces the 
notion of architectural layering to achieve transparent and reliable delivery of scientific and 
engineering sensor data (generated aboard remote space vehicles) to the users located in 
space or on Earth. 
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Section 3 introduces the elements of TM Synchronization and Channel Coding and the 
specific codes considered in the CCSDS TM Synchronization and Channel Coding 
Recommended Standard (reference [3]). 

Subsequent sections describe in detail the characteristics, performance, and rationale of the 
four classes of codes considered: convolutional, Reed-Solomon, concatenated, and turbo 
codes. 

Annex A presents a Glossary in order to familiarize the reader with the terminology used 
throughout the CCSDS Telemetry System. Annex B is a list of acronyms and abbreviations. 
Annex C presents some rationale for turbo code parameter selection. 

1.4 REFERENCES 
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[3] TM Synchronization and Channel Coding.  Recommendation for Space Data System 
Standards, CCSDS 131.0-B-1.  Blue Book.  Issue 1.  Washington, D.C.: CCSDS, 
September 2003. 

[4] Information Technology—Open Systems Interconnection—Basic Reference Model:  
The Basic Model.  International Standard, ISO/IEC 7498-1.  2nd ed.  Geneva:  ISO, 
1994. 

[5] AOS Space Data Link Protocol.  Recommendation for Space Data System Standards, 
CCSDS 732.0-B-2.  Blue Book.  Issue 2.  Washington, D.C.: CCSDS, July 2006. 

[6] Lossless Data Compression.  Report Concerning  Space Data System Standards, 
CCSDS 120.0-G-1.  Green Book.  Issue 1.  Washington, D.C.: CCSDS, May 1997. 
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[8] C. E. Shannon. “A Mathematical Theory of Communication,” Bell System Technical 
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Planetary Missions, Final Report.  Contract 953866, December 1, 1974.  
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Pasadena, California: NASA-Jet Propulsion Laboratory, September 1, 1981. 
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2 OVERVIEW OF CCSDS TELEMETRY SYSTEM 

2.1 INTRODUCTION 

The purpose of a telemetry system is to reliably and transparently convey measurement 
information from a remotely located data generating source to users located in space or on 
Earth. Typically, data generators are scientific sensors, science housekeeping sensors, 
engineering sensors and other subsystems on-board a spacecraft. 

The advent of capable microprocessor based hardware will result in data systems with 
demands for greater throughput and a requirement for corresponding increases in spacecraft 
autonomy and mission complexity. These facts, along with the current technical and fiscal 
environments, create a need for greater telemetering capability and efficiency with reduced 
costs. 

In the past, most of the telemetry resources used by a science mission have been wholly 
contained within a cognizant Project office and, with the exception of the tracking network, 
are completely dedicated to that mission. The lack of effective standardization among various 
missions forces the ‘multi-mission’ tracking network to implement the lowest level of 
telemetry transport service, i.e., bit transport. Higher level data delivery services, oriented 
more toward computer-to-computer transfers and typical of modern day commercial and 
military networks, had to be custom designed and implemented on a mission-to-mission 
basis. 

The intent of the CCSDS Telemetry System is not only to ease the transition toward greater 
automation within individual space agencies, but also to ensure harmony among the 
agencies, thereby resulting in greater cross-support opportunities and services. 

The CCSDS Telemetry System is broken down into two major conceptual categories: a ‘TM 
Space Data Link Protocol’ concept (references [2] and [7]) and a ‘TM Synchronization and 
Channel Coding’ concept (reference [3]).  

a) TM Space Data Link Protocol is a concept which facilitates the transfer of space-
acquired data from source to user in a standardized and highly automated manner.  
TM Space Data Link Protocol provides a mechanism for implementing common data 
structures and protocols which can enhance the development and operation of space 
mission systems. TM Space Data Link Protocol addresses the following two 
processes:  

1) The end-to-end transport of space mission data sets from source application 
processes located in space to distributed user application processes located in 
space or on Earth. 

2) The intermediate transfer of these data sets through space data networks; more 
specifically, those elements which contain spacecraft, radio links, tracking 
stations and mission control centers as some of their components.  
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 The TM Space Data Link Protocol Recommended Standard contained in 
references [2] and [7] is primarily concerned with describing the telemetry formats 
which are generated by spacecraft in order to execute their roles in the above processes. 

b) TM Synchronization and Channel Coding (reference [3]) is a method by which data 
can be sent from a source to a destination by processing it in such a way that distinct 
messages are created which are easily distinguishable from one another. This allows 
reconstruction of the data with low error probability, thus improving the performance 
of the channel. The TM Synchronization and Channel Coding Recommended 
Standard contained in reference [3] describes several space TM Synchronization and 
Channel Coding schemes. The characteristics of the codes are specified only to the 
extent necessary to ensure interoperability and cross-support. 

 Together, TM Space Data Link Protocol and TM Synchronization and Channel Coding 
services provide to the user reliable and transparent delivery of telemetry information. 

 Figure 2-1 illustrates the CCSDS Telemetry System in terms of a layered service 
model. It should be noted that the CCSDS TM Space Data Link Protocol and TM 
Synchronization and Channel Coding Recommended Standards only address the five 
lower layers of this model. 

PROVIDES USERS A METHOD TO INVESTIGATE PHYSICAL
PHENOMENA BY USING THEIR INSTRUMENTS IN SPACE
FOR DATA COLLECTION AND THEIR APPLICATION
PROCESSES FOR ANALYSIS.

PROVIDES TRANSLATION OF PHYSICAL MEASUREMENTS
INTO SETS OF APPLICATION DATA UNITS.

PROVIDES END-TO-END DELIVERY OF APPLICATION
DATA UNITS.

(OPTIONAL)  PREPARES LONGER PACKETIZED DATA UNITS
FOR MULTIPLEXING AND TRANSFER THROUGH A SPACE
DATA CHANNEL.

PROVIDES RELIABLE TRANSFER OF PACKETS AND SEGMENTS
IN A COMMON STRUCTURE FOR THEIR TRANSPORT THROUGH
THE SPACECRAFT-TO-GROUND COMMUNICATION LINK.

PROTECTS TRANSFER FRAMES AGAINST ERRORS INDUCED
DURING TRANSMISSION THROUGH THE NOISY PHYSICAL
COMMUNICATIONS CHANNEL.
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Figure 2-1:  Layered Telemetry Service Model 
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2.2 TELEMETRY SYSTEM CONCEPT 

2.2.1 GENERAL 

The system design technique known as layering was found to be a very useful tool for 
transforming the Telemetry System concept into sets of operational and formatting 
procedures. The layering approach is patterned after the International Organization for 
Standardization’s Open Systems Interconnection layered network model (reference [4]), 
which is a seven layer architecture that groups functions logically and provides conventions 
for connecting functions at each layer. Layering allows a complex procedure such as the 
telemetering of spacecraft data to the users to be decomposed into sets of peer functions 
residing in common architectural strata. 

Within each layer, the functions exchange data according to established standard rules or 
‘protocols’. Each layer draws upon a well defined set of services provided by the layer 
below, and provides a similarly well defined set of services to the layer above. As long as 
these service interfaces are preserved, the internal operations within a layer are unconstrained 
and transparent to other layers. Therefore, an entire layer within a system may be removed 
and replaced as dictated by user or technological requirements without destroying the 
integrity of the rest of the system. Further, as long as the appropriate interface protocol is 
satisfied, a customer (user) can interact with the system/service at any of the component 
layers. Layering is therefore a powerful tool for designing structured systems which change 
due to the evolution of requirements or technology.  

A companion standardization technique that is conceptually simple, yet very robust, is the 
encapsulation of data within an envelope or ‘header’. The header contains the identifying 
information needed by the layer to provide its service while maintaining the integrity of the 
envelope contents. 

2.2.2 PACKETIZATION LAYER 

Within TM Space Data Link Protocol, spacecraft generated application data are formatted 
into end-to-end transportable data units called ‘TM Source Packets’. These data are 
encapsulated within a primary header which contains identification, sequence control and 
packet length information. A TM Source Packet is the basic data unit telemetered to the user 
by the spacecraft and generally contains a meaningful quantity of related measurements from 
a particular source. 

2.2.3 TRANSFER FRAME LAYER 

The TM Transfer Frame is used to reliably transport Source Packets (and Segments) through 
the telemetry channel to the receiving telecommunications network. As the heart of the 
CCSDS Telemetry System, the TM Transfer Frame protocols offer a range of delivery 
service options. An example of such a service option is the multiplexing of TM Transfer 
Frames into ‘Virtual Channels’ (VCs). 
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The TM Transfer Frame is a fixed length unit which was chosen to improve the ability to 
synchronize the frame with weak signals such as those found on space-ground links, and for 
compatibility with certain block oriented channel coding schemes. The (primary) header 
contains frame identification, channel frame count information and frame data field status 
information. An attached synchronization marker (ASM) signals the start of the TM Transfer 
Frame. 

The transfer frame data field may be followed by an optional trailer containing an operational 
control field and/or a frame error control field. The first of these fields provides a standard 
mechanism for incorporating a small number of real-time functions (e.g., telecommand 
verification or spacecraft clock calibration). The error control field provides the capability for 
detecting errors which may have been introduced into the frame during the data handling 
process. 

The delivery of transfer frames requires the services provided by the lower layers (e.g., 
carrier, modulation/detection, and coding/decoding) to accomplish its role. 

2.2.4 CHANNEL CODING LAYER 

TM Synchronization and Channel Coding is used to protect the transfer frames against 
telemetry channel noise-induced errors. Reference [3] describes the CCSDS Recommended 
Standard for TM Synchronization and Channel Coding, including specification of a 
convolutional code, a Reed-Solomon block-oriented code, a concatenated coding system 
consisting of a convolutional inner code and a Reed-Solomon outer code, and of turbo codes. 
The basic data units of the CCSDS TM Synchronization and Channel Coding which interface 
with the physical layer below are the Channel Symbols output by the channel encoder. 

The RF channel physically modulates the channel symbols into RF signal patterns. Within 
the error detecting and correcting capability of the channel code chosen, errors which occur 
as a result of the physical transmission process may be detected and corrected by the 
receiving entity. 

Full advantage of all CCSDS Telemetry System services could be realized if a Project 
complied with all CCSDS Recommended Standards. Alternatively, Projects can interface 
with any layer of the Telemetry System as long as they meet the interface requirements as 
specified in the Recommended Standards (references [2], [3], and [5]). 

Figure 2-2 illustrates how the various telemetry data structures map into one another. There 
is presently no attempt to define the data structures of the top two layers of the telemetry 
system; i.e., the Application Process layer and the System Management layer. The Source 
Packets are placed into the data field of the Transfer Frame. An attached synchronization 
marker is always used, as shown in figure 2-2. 
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Figure 2-2:  Telemetry Data Structures 
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3 TM SYNCHRONIZATION AND CHANNEL CODING 

3.1 OVERVIEW 

This section describes the CCSDS TM Synchronization and Channel Coding systems, and is 
divided into the four main coding methods: Convolutional Code, Reed-Solomon Code, 
Concatenated Code, and Turbo Codes. 

3.2 INTRODUCTION 

Channel coding1  is a method by which data can be sent from a source to a destination by 
processing data so that distinct messages are easily distinguishable from one another. This 
allows reconstruction of the data with low error probability. 

In spacecraft, the data source is usually digital, with the data represented as a string of zeroes 
and ones. A channel encoder (or simply ‘encoder’) is then a device that takes this string of 
binary data and produces a modulating waveform as output. If the channel code is chosen 
correctly for the particular channel in question, then a properly designed decoder will be able 
to reconstruct the original binary data even if the waveforms have been corrupted by channel 
noise. If the characteristics of the channel are well understood, and an appropriate coding 
scheme is chosen, then channel coding provides higher overall data throughput at the same 
overall quality (bit error rate) as uncoded transmission - but with less energy expended per 
information bit. Equivalently, channel coding allows a lower overall bit error rate than the 
uncoded system using the same energy per information bit. 

There are other benefits that may be expected from coding. First, the resulting ‘clean’ 
channel can benefit the transmission of compressed data. The purpose of data compression 
schemes is to map a large amount of data into a smaller number of bits. Adaptive 
compressors will continually send information to direct a ground decompressor how to treat 
the data that follows. An error in these bits could result in improper handling of subsequent 
data. Consequently, compressed data is generally far more sensitive to communication errors 
than uncompressed data. The combination of efficient low error rate channel coding and 
sophisticated adaptive data compression can result in significant improvement in overall 
performance (reference [6]). 

Second, a low bit error rate is also required when adaptive (or self-identified) telemetry is 
used. Adaptive telemetry is much like adaptive data compression in that information on how 
various ground processors should treat the transmitted data is included as part of the data. An 
error in these instructions could cause improper handling of subsequent data and the possible 
loss of much information.  

                                                 
1The method is called ‘channel’ coding because it is adapted to the statistical behavior of the channel and it applies 
to the overall transmitted data stream, not to specific sources only. 
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Third, low error probability telemetry may allow a certain amount of unattended mission 
operations. This is principally because the operations systems will know that any anomalies 
detected in the downlink data are extremely likely to be real and not caused by channel 
errors. Thus, operators may not be required to try to distinguish erroneous data from genuine 
spacecraft anomalies.  

In a typical space channel, the principal signal degradations are due to the loss of signal 
energy with distance, and to the thermal noise in the receiving system. The codes described 
in reference [3] can usually provide good communication over this channel.  

3.3 RECOMMENDED CODES 

If interagency cross support requires one agency to decode the telemetry of another, then the 
codes recommended in reference [3] should be used. The recommended codes consist of: a 
constraint length 7, rate 1/2 convolutional code, and various punctured versions of it; (255,223) 
and (255,239) Reed-Solomon codes and arbitrary shortenings of them; codes formed by 
concatenating any of the recommended Reed-Solomon codes with any of the recommended 
convolutional codes; and a series of turbo codes of different rates and block sizes. A block 
diagram of the recommended coding system using concatenated codes appears in figure 3-1. A 
block diagram of the recommended coding system using turbo codes appears in figure 3-2.  
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* * *

* * *

NRZ-L TO -M
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(IF USED)
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DECODER AND
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Figure 3-1:  Coding System Block Diagram: Concatenated Codes 
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Figure 3-2:  Coding System Block Diagram: Turbo Codes 

These codes are included in the CCSDS Recommended Standard because they provide 
substantial coding gain over an uncoded system. They have already been incorporated, or are 
planned to be incorporated, into nearly all missions of member agencies of the CCSDS. 

3.4 CHANNEL CODING PERFORMANCE 

3.4.1 MEASURES OF PERFORMANCE 

Performance of any channel code is measured by its error rate, relative to the amount of 
resources required to make the channel good enough to achieve that error rate. This Green 
Book shows the performance of the recommended codes on the additive white Gaussian 
(AWGN) channel, for which the relevant measure of required channel resources is given by a 
single parameter Eb/N0, the ratio of the received signal energy per information bit to the (one-
sided) spectral density of the white Gaussian noise. This channel parameter Eb/N0 is 
commonly called the bit signal-to-noise ratio, or bit-SNR. 

The error rates achieved by the recommended codes are measured and reported in this Green 
Book in three different ways. The bit error rate (BER) measures the error rate for individual 
bits; the word error rate (WER) measures the error rate for individual codewords;2  and the 
frame error rate (FER) measures the error rate for individual frames. These three error rates 
are well correlated with each other for any given code, but one error rate cannot generally be 
derived from another without an assumption of independence of errors. As an example, if a 
frame comprises L independent bits, then FER = 1 – (1 – BER)L; this assumption is valid for 
uncoded frames on the AWGN channel, but not for frames subjected to any of the nontrivial 
recommended coding schemes. 

                                                 
2There is a slight impreciseness in this definition of WER. The output of a decoder is generally an estimate of 
the information bits that were encoded, not an estimate of the actual encoded codeword. Such a decoder makes 
a ‘codeword error’ when at least one of its decoded information bits is incorrect. This interpretation is 
consistent with the term ‘codeword error’ because re-encoding the information sequence will produce the 
correct codeword if and only if the entire sequence of information bits is correct. 
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In some cases, some of these error rates are synonymous or uninformative. For example, 
WER=BER for uncoded data because in this case each ‘codeword’ consists of one bit. Similarly, 
FER=WER for CCSDS turbo codes, because in this case the CCSDS transfer frame consists of 
the information bits from one turbo codeblock. A codeword for unterminated convolutional 
codes is theoretically infinitely long, so WER=1 (except on an error-free channel) and thus WER 
is not a very interesting measure of performance in this case. It is natural to define WER for 
terminated convolutional codes. Even for unterminated convolutional codes it is valid to 
compute FER on a segment (defining the frame) of the convolutional codeword.  

3.4.2 FUNDAMENTAL LIMITS ON CODE PERFORMANCE 

Good channel codes lower the error rate in the data, or equivalently they can achieve desired 
error rates more efficiently as a function of the bit-SNR Eb/N0 on the channel. Shannon (see 
reference [8]) derived fundamental limits on the performance of all codes. There are code-
rate-dependent channel capacity limits on the minimum Eb/N0 required for reliable 
communication that are theoretically achievable by codes of a given rate in the limit of 
infinite block sizes. In addition, there are block-size-dependent limits that preclude capacity-
attaining performance when the code’s block size is also constrained. 

Code-Rate-Dependent Capacity Limits —  Figure 3-3 shows the Shannon-limit performance 
curves for a binary-input additive white Gaussian noise (AWGN) channel for rates 1/6, 1/4, 1/3, 
and 1/2. These curves show the lowest possible bit-energy-to-noise ratio Eb/N0 required to 
achieve a given BER over the binary-input AWGN channel using codes of these rates.  
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Figure 3-3: Capacity Limits on the BER Performance for Codes with Rates 1/2, 1/3, 
1/4 and 1/6 Operating over a Binary Input AWGN Channel 
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For low BER, each of these capacity-limited performance curves approaches a vertical 
asymptote dependent on the code rate. The asymptotes are at 1.1 dB for rate 2/3, 0.2 dB for 
rate 1/2, -0.5 dB for rate 1/3, and -0.8 dB for rate 1/4. The vertical asymptote for the ultimate 
Shannon limit on performance (i.e., rate →0) is -1.6 dB. A comparison of these limits shows 
the improvement that is theoretically possible as a result of lowering the code rate. For 
example, for a binary-input AWGN channel, rate-1/2 codes suffer an inherent 0.7 dB 
disadvantage relative to rate-1/3 codes, a 1.0 dB disadvantage relative to rate-1/4 codes, and 
a 1.8 dB disadvantage relative to the ultimate limit (rate →0).  

Block-Size-Dependent Limits on Code Performance — Just as a constraint on code rate 
raises the minimum threshold for reliable communication above the ultimate unconstrained 
capacity limit, so does a constraint on codeblock length. The theoretical limits shown in 
figure 3-3 assume no constraint on block size. Approaching these limits requires that block 
sizes grow arbitrarily large. 

Figure 3-4 shows some classic Shannon sphere packing lower bounds on the performance of 
arbitrary codes of a given block size and code rate on the additive white Gaussian noise channel 
with unconstrained input (i.e., not necessarily binary-input as in figure 3-3). The curves labeled 
‘bound’ are the block-size-dependent bounds for each code rate. The horizontal asymptotes 
labeled ‘capacity’ are the rate-dependent capacity limits. These asymptotes are slightly 
different from the vertical asymptotes in figure 3-3 because they represent capacity limits for an 
unconstrained-input channel instead of a binary-input channel. 
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Figure 3-4: Shannon Sphere-Packing Lower Bounds on the WER Performance for 
Codes with Varying Information Block Length k and Rates 1/6, 1/4, 1/3, 
1/2, Operating over an Unconstrained-Input AWGN Channel 
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This figure shows that, for any given code rate, the minimum threshold for reliable 
communication is significantly higher than the corresponding ultimate limit for that code 
rate, if the codeblock length is constrained to a given finite size. For example, 1000-bit 
blocks have an inherent advantage of about 1.3 dB compared to 100-bit blocks for each of 
the four code rates plotted. An additional gain of just over 0.5 dB is potentially obtained by 
going from 1000-bit blocks to 10000-bit blocks, and another 0.2 dB by going to 100000-bit 
blocks. After that, there is less than another 0.1 dB of improvement available before the 
ultimate capacity limit for unlimited block sizes is reached. 

3.4.3 EXAMPLES OF PERFORMANCE OF RECOMMENDED CODES 

The relative performance of various recommend (non-punctured, non-shortened) codes on a 
Gaussian channel is shown in figure 3-5. Here, the input is constrained to be chosen from 
between two levels, because biphase modulation is assumed throughout the Recommended 
Standard.3  These performance data were obtained by software simulation and assume that 
there are no synchronization losses (see reference [10] for a discussion on the effect of 
receiver tracking losses). The channel symbol errors were assumed to be independent: this is 
a good assumption for the deep space channel, and an approximation for near-Earth links 
which ignores impulsive noise and RFI. In this introductory comparison of code 
performance, infinite interleaving is assumed in the concatenated code and bit error rate 
(BER) only is used. Specific results with finite interleaving depth are given in 6.3; results for 
frame error rate (FER) are given in later Sections discussing specific codes. It is clear from 
the figure that the convolutional code offers a coding gain of about 5.5 dB over an uncoded 
system at decoded bit error rate of 10-5. Concatenation of this code with the outer Reed-
Solomon code results in an additional 2.0 dB of coding gain. Turbo codes can provide even 
higher coding gains, as illustrated in the figure for the turbo code with rate 1/2 and block size 
8920 bits. This code approaches within 1 dB the ultimate Shannon limit for codes with rate 
1/2 and improves on the recommended concatenated code’s performance by about 1.5 dB. 

These codes are included in the CCSDS Recommended Standard because they provide 
substantial coding gain over an uncoded system. They have already been incorporated, or are 
planned to be incorporated, into nearly all missions of member agencies of the CCSDS. 

The next four sections describe the parameters and the performance of each recommended 
code in more detail, along with brief descriptions of their encoder and decoder realizations. 

                                                 
3 Biphase modulation is appropriate for power-limited links, where bandwidth efficiency is not particularly 
important. 
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Figure 3-5: Performance Comparison of Selected Convolutional, Reed-Solomon, 
Concatenated, and Turbo Codes 
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4 CONVOLUTIONAL CODES 

4.1 INTRODUCTION 
A rate r=1/n convolutional encoder is a linear finite-state machine with one binary input, n 
outputs and an m-stage shift register, where m is the memory of the encoder. Such a finite-
state encoder has 2m possible states. The constraint length K of the convolutional code is 
defined as K=m+1, and the code is referred to as a (K,1/n) code. In comparison to block 
codes, convolutional codes encode the input data bits continuously rather than in blocks.  

In general, a rate r=l/n convolutional encoder is a linear finite-state machine with l binary 
inputs and n binary outputs. A rate r=l/n code can also be produced by puncturing a 
convolutional code of rate r=1/n. 

4.2 ENCODER FOR THE (7,1/2) RECOMMENDED CODE 

A (7,1/2) convolutional code selected for space applications in the 1970s was a standout 
performer for its time. Exhaustive search over all convolutional codes with r=1/2 and K≤7 
found that only this code (not counting a few symmetric equivalents) was able to achieve a 
free distance dfree=10. By comparison, the best (6,1/2) code can only achieve dfree=8, and the 
best (8,1/2) code can only match the recommended (7,1/2) code’s dfree=10. Maximizing the 
free distance was an important consideration because a convolutional code’s bit error rate 
with maximum likelihood decoding falls off exponentially with dfree at low error rates. It was 
also important to achieve a good dfree at a reasonably low value of constraint length K, 
because every unit increase in K doubles the number of encoder states and therefore doubles 
the complexity of maximum likelihood decoding. Existing technology at the time this code 
was selected allowed maximum likelihood decoding of convolutional codes with constraint 
length K=7 but not much higher. Thus, the recommended code was an obvious local 
optimum based on its dfree.  

Convolutional codes with longer constraint lengths than K=7 were also used in the early days 
of space applications, but never standardized. Maximum likelihood decoding of these codes 
was infeasible; instead they were decoded by sequential decoding at a significant penalty in 
performance. 

The recommended (7,1/2) code has another feature that makes it useful for space 
applications: it is transparent. Transparency means that at steady-state, if the input sequence 
to the encoder is inverted the output will be inverted also. Similarly, if the input sequence to 
the decoder is inverted, at steady-state the output sequence of the decoder will be inverted 
too. This feature is useful because with BPSK modulation there is often a 180-degree phase 
ambiguity, and the demodulator can produce the inverse of the transmitted symbols even 
when it is in lock. With a transparent code, when the demodulator produces the inverse of the 
transmitted symbols, the decoder produces the inverse of the encoded bits. Since packetized 
telemetry includes various known headers, it is easy to recognize if the decoded bits have 
been inverted and to invert them back if necessary. 
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A diagram of an encoder for the recommended convolutional code of rate 1/2 and K=7 is 
shown in figure 4-1. The particular encoder structure depends on the manner in which the 
adders are connected to the shift register. These connections are denoted by a set of vectors  

 gi = (gi,1 , gi,2 , …, gi,m) i = 1, 2, … , n (1) 

where gil = 1 denotes a connection between the ith stage of the shift register and the lth adder, 
and gil = 0 denotes the absence of a connection. The complete set of the gis defines the code.  

g  = 1011011

g  = 1111001

1st

2nd

INVERTER

INPUT

2

1

u

x 1

x 2

u i i-1 i-2u u i-3 i-4u u i-5 i-6u u
OUTPUT

 

Figure 4-1: Example of Convolutional Encoder: Constraint Length K=7, Rate 1/2, 
CCSDS Standard Convolutional Code 

The encoder for the CCSDS standard code is extremely simple, as shown in figure 4-1. It 
consists of a shift register and some exclusive OR gates that implement the two parity checks. 
The two checks are then multiplexed into one line. This means that the encoder can be made 
small and that it dissipates very little power. These are good attributes for spacecraft hardware. 

It has been customary to invert one or the other parity check in the encoder. This operation 
makes the recommended code into a coset of a pure linear convolutional code. The inversion 
is performed to ensure that there are sufficient transitions in the channel stream for the 
symbol synchronizer to work in the case of a steady state (all zeroes or all ones) input to the 
encoder.4  Although alternate symbol inversion may increase or decrease the average 
transition density, depending on the data source model, it does limit the number of 
contiguous symbols without transition for a particular class of convolutional codes, 
independent of the data source model. Further, this limit is sufficiently small to guarantee 
acceptable symbol synchronizer performance for typical applications. The maximum number 
of contiguous symbols without transition for the convolutional code of figure 4-1 is 14. 

Historically, ESA, NASA-GSFC and NASA-JPL have each used a different ordering of the 
two parity checks or has inverted a different parity check. Performance is not affected by 
these minor differences. But, to reduce the number of options, CCSDS has adopted only one 
convolutional code for cross-support: all agencies are encouraged to adopt for all facilities 
the single convention described in reference [3]. 

                                                 
4 See further discussion in section 8. 
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4.3 ENCODER FOR THE RECOMMENDED PUNCTURED CONVOLUTIONAL 
CODES 

The CCSDS standard convolutional code, with constraint length K=7, has rate 1/2. The code 
rate can be increased by using a puncturing pattern, thus achieving an increase in bandwidth 
efficiency. Puncturing removes some of the encoded symbols before transmission, leading to a 
higher code rate and a lower bandwidth expansion than the original code, but with reduced 
error correcting performance. A block diagram of the punctured encoder is shown in figure 4-2.  

 

G2

OUTPUT

INPUT

C2

PUNCTURE
(table 4-1)

G1 C1

D D D DDD

 

Figure 4-2:  Encoder Block Diagram for the Punctured CCSDS Convolutional Codes 

Starting from the CCSDS rate-1/2 convolutional code, the recommended punctured codes are 
obtained with fixed puncturing patterns yielding code rates 2/3, 3/4, 5/6 and 7/8, as reported 
in table 4-1.  

Table 4-1:  Puncturing Patterns for the CCSDS Punctured Convolutional Code Rates 

Puncturing Pattern 
1 = transmitted symbol 
0 = non-transmitted symbol 

Code 
Rate 

Output 
 
C1(t), C2(t) denote values at bit time t (t=1,2,3,...) 

C1: 1 0 
C2: 1 1 

2/3 C1(1) C2(1) C2(2) ... 

C1: 1 0 1 
C2: 1 1 0 

3/4 C1(1) C2(1) C2(2) C1(3) ... 

C1: 1 0 1 0 1 
C2: 1 1 0 1 0 

5/6 C1(1) C2(1) C2(2) C1(3) C2(4) C1(5) ... 

C1: 1 0 0 0 1 0 1 
C2: 1 1 1 1 0 1 0 

7/8 C1(1) C2(1) C2(2) C2(3) C2(4) C1(5) C2(6) C1(7) ... 
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4.4 SOFT MAXIMUM LIKELIHOOD DECODING OF CONVOLUTIONAL 
CODES 

Soft, maximum likelihood decoding of convolutional codes can be accomplished by using 
the Viterbi algorithm (see references [21] and [25]), which will be illustrated for rate 1/n 
codes. The same decoding algorithm is applicable to both non-punctured and punctured 
codes, provided that the received symbol stream is ‘depunctured’ by inserting zero-symbols 
(i.e., neutral symbol values that do not favor either a received ‘0’ or ‘1’ bit) at the positions 
where encoded symbols were removed during the encoding of the punctured code. 

Before proceeding to the Viterbi algorithm, a discussion of the trellis representation of the 
convolutional encoder is desirable. For a constraint length K, code rate r = 1/n, (K, r) 
convolutional encoder, the state is defined by the (K–1) = m most recent bits in the shift 
register. Figure 4-3 shows an encoder for a (3,1/2) convolutional code. (Note that this is just 
an illustrative example, and is not the CCSDS recommended code.) The output bits and 
transitions between states can be recorded by the trellis diagram of figure 4-4.  

1 2 3
0110

0100

0111  

Figure 4-3:  (3,1/2) Convolutional Encoder 
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Figure 4-4:  Trellis Representation of (3,1/2) Convolutional Code 

The diagram starts in the all-zero state, node a, and makes transitions corresponding to the 
next data bit. These transitions are denoted by a solid line (branch) for a ‘0’ and by a dotted 
line for a ‘1’. Thus node a proceeds to node a or b with outputs bits ‘00’ or ‘11’. A branch 
weight is the number of ‘1’s in the n code symbols in the branch. 
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It has been shown (see reference [25]) that the Viterbi algorithm implements, in fact, 
maximum-likelihood decoding. An exhaustive search maximum-likelihood decoder would 
calculate the likelihood of the received data for code symbol sequences on all paths through 
the trellis. The path with the largest likelihood would then be selected, and the information 
bits corresponding to that path would form the decoder output. Unfortunately, the number of 
paths for an L bit information sequence is 2L; thus, this exhaustive search decoding quickly 
becomes impractical as L increases. 

With Viterbi decoding, it is possible to greatly reduce the effort required for maximum-
likelihood decoding by taking advantage of the special structure of the code trellis. Referring 
to figure 4-4, it is clear that the trellis assumes a fixed periodic structure after trellis depth K 
is reached. 

The paths are said to have diverge d at some state, and some depth j, if at depth j+1, their 
information bit disagree. Later, paths can remerge after (K–1) consecutive identical 
information bits. The maximum-likelihood sequence estimation problem is formally identical 
to the problem of finding the shortest route through a certain graph. The Viterbi algorithm 
then arises as a natural recursive solution. Consider a rate 1/n convolutional code. Let  
u0 … ut–1utut+1… denote the information bits input to the encoder. At time t define the 
encoder state as 
 st = ut … ut – K + 1 (2) 

Given a sequence of observations y1,  y1, … yL, where y1 = (yi1 … yin), every path may be 
assigned a ‘length’ proportional to metric –log p(y|s), where p(y|s) is the likelihood function 
and s = (s0, …, sL) is the state sequence associated with that path.  

The Viterbi algorithm solves the problem of finding the state sequence for which p(y|s) is 
maximum, or equivalently of finding the path whose length –log p(y|s) is minimum. Note that 
to every possible state sequence s there corresponds a unique path through the trellis, and 
vice versa. If the channel is memoryless, then 

 –log p(y|s) = ∑

t=1
L = λ(st, st–1) 

where  

 λ(st , st–1)  = –log p(yt|st,st–1)  = –log p(yt|st) 

is the branch ‘length’ or metric. Tt(st,st–1) denotes the transition from state st–1 to st associated 
with branch symbols xt = (xt1 … xtn), which correspond to the information sequence 

 ut … ut–K 
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Therefore, we can define the state transition as Tt(st,st–1) = ut…ut–K. We denote by s(st) a 
segment (s0, s1, …, st) consisting of the states up to time t of the state sequence s. In the 
trellis, s(st) corresponds to a path segment starting at the state s0 and terminating at state st. 
For any particular time t and state st , there will in general be several such path segments, 
each with some length 

 λ(s(st)) = ∑

i=1
t = λ(si, si–1) 

The shortest such path segment is called the survivor, corresponding to the state st , and is 
denoted ŝ(st). For any time t>0, there are 2m survivors in all, one for each st . 

Thus at any time t we need remember only the 2m survivors ŝ(st) and their lengths 
Γ(st)=λ(s(st)). To get to time t+1 , we need only extend all time t survivors by one time unit, 
compute the lengths of the extended path segments, and for each state st+1 select the shortest 
extended path segment terminating in st+1 as the corresponding time t+1 survivor. Recursion 
proceeds indefinitely without the number of survivors ever exceeding 2m. 

The great advantage of the Viterbi maximum-likelihood decoder is that the number of 
decoder operations performed in decoding L bits is only L2m, which is linear in L. Of course, 
Viterbi decoding as a practical technique is limited to relatively short constraint-length codes 
due to the exponential dependence of decoder operations, per decoder operations, per 
decided bit, on K. Recent convolutional codes for deep space communications have used 
constraint lengths up to 15. Constraint lengths of 24, 32 and even 40 have been used in the 
past for sequential decoders which have suboptimal performance with respect to maximum-
likelihood decoders. 
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4.5 PERFORMANCE OF THE RECOMMENDED (7,1/2) CONVOLUTIONAL 
CODE 

Figure 4-5 shows the simulated bit error rate performance of the CCSDS rate-1/2 
convolutional code. Different quantization strategies have been considered, from 
unquantized soft decision to hard decision (corresponding to 1-bit quantization). It is shown 
that 8-bit quantization provides nearly ideal performance (less than 0.2 dB penalty with 
respect to unquantized curves), while hard decision suffers a loss greater than 2 dB.  

 

Figure 4-5: Bit Error Rate Performance of the CCSDS Rate 1/2 Convolutional Code 
with Different Quantizers 

In principle, the Viterbi decoder should operate on the entire received sequence. This, 
however, would result in unacceptably long decoding delays (latency) and excessive memory 
storage for the survivor sequences. In fact, since all survivor paths tend to merge into one 
single path when exploring the trellis at sufficient depth, practical implementations use a 
truncated Viterbi algorithm that forces the decision on the oldest symbol of the minimum 
metric path after a fixed and sufficiently long delay or truncation length D. Computer 
simulations show that using a delay on the order of 5 times the constraint length (i.e., D=5K) 
is enough to obtain negligible degradations. 

For the CCSDS rate-1/2 convolutional code, the dependence of the bit error rate on the 
decoding delay is shown in figure 4-6. Using a delay of only D=30 bits, i.e., 5 times the 
memory m, the performance exhibits a very small degradation. Using D=60 bits nearly 
optimum performance is obtained. (All the curves have been obtained with unquantized soft 
decision.)  
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Figure 4-6: Bit Error Rate Performance of the CCSDS Rate-1/2 Convolutional Code 
with Different Decoding Delays D 

Telemetry data are collected in packets and transmitted in frames (see reference [2]).  In 
principle, any frame length L up to 16384 bits could be acceptable. In figure 4-7 the Frame 
Error Rate (FER) at the output of the Viterbi decoder is reported for different frame lengths 
corresponding to those used for the concatenated (Reed-Solomon (255,223) + convolutional 
code) CCSDS code.  A frame is in error if any of its constituent bits is in error.  These curves 
have been obtained with unquantized soft decision and decoding delay D = 60 bits. Since the 
Viterbi decoder’s errors occur in bursts, the FER curves in figure 4-7 cannot be directly 
derived from the BER curve for D = 60 bits in figure 4-6 by assuming independent bit errors.  

 

Figure 4-7: Frame Error Rate Performance of the CCSDS Rate-1/2 Convolutional 
Code with Different Frame Lengths and Decoding Delay D=60 
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4.6 PERFORMANCE OF THE RECOMMENDED PUNCTURED 
CONVOLUTIONAL CODES 

The bit error rate performance of the CCSDS punctured convolutional codes is reported in 
figure 4-8. The curve relative to the non-punctured rate-1/2 CCSDS code is also reported for 
the sake of comparison. The expected performance degradation is confirmed (there is a gap 
of about 2.4 dB between the case of rate 1/2 and the case of rate 7/8), due to reduced 
bandwidth expansion. (All the curves have been obtained with unquantized soft decision and 
decoding delay equal to 60 bits.) 

The frame error rate performance of the CCSDS punctured convolutional codes is reported in 
figure 4-9 for frame size 8920 bits. 

 

NOTE – The performance of the original rate 1/2 code is reported for comparison. 

Figure 4-8:  Bit Error Rate Performance of the CCSDS Punctured Convolutional Codes 
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NOTE – The performance of the original rate 1/2 code is reported for comparison. 

Figure 4-9: Frame Error Rate Performance of the CCSDS Punctured Convolutional 
Codes with Frame Length L=8920 
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5 REED-SOLOMON CODE 

5.1 INTRODUCTION 

Reed-Solomon (RS) codes (see reference [22]) are a particularly interesting and useful class 
of linear block codes. The block length n of an RS code is q–1, with q = 2J being the alphabet 
size of the symbols. RS codes with k information symbols and block length n have a 
minimum distance d = n–k+1. These codes have been used effectively in a concatenated code 
scheme (see section 6), where the symbols in an ‘outer’ RS code are further encoded by an 
‘inner’ convolutional code. The error probability is an exponentially decreasing function of 
the block length, and the decoding complexity is proportional to a small power of n–k. Reed-
Solomon codes can be used directly on a channel with a small input alphabet by representing 
each letter in a codeword by a sequence of channel letters. Such a technique is useful on 
channels where the errors are clustered, since the decoder operation depends only on the 
number of sequences of channel outputs that contain errors. 

Using symbols with q = 2J for some J, the block length is n = 2J–1. For an arbitrarily chosen 
odd minimum distance d, the number of information symbols is k = n–d+1 and any 
combination of E = (d–1)/2 = (n–k)/2 errors can be corrected. If we represent each letter in a 
codeword by J binary digits, then we can obtain a binary code with kJ information bits and 
block length nJ bits. Any noise sequence that alters at most E of these n binary J-tuples can 
be corrected, and thus the code can correct all bursts of length J(E–1)+1 or less, and many 
combinations of multiple shorter bursts. Therefore RS codes are very appropriate on burst 
noisy channels such as a channel consisting of a convolutional encoder-AWGN channel-
Viterbi decoder. RS codes are less appropriate for direct application to the AWGN channel 
where their performance is poorer than that of convolutional codes (see figure 3-5). 

The Reed-Solomon code, like the convolutional code, is a transparent code. This means that 
if the channel symbols have been inverted somewhere along the line, the decoders will still 
operate. The result will be the complement of the original data (except, usually, for the 
codeblock in which the inversion occurs). However, the Reed-Solomon code loses its 
transparency if virtual zero fill is used. For this reason it is mandatory that the sense of the 
data (i.e., true or complemented) be resolved before Reed-Solomon decoding, as specified in 
the Recommended Standard (reference [3]). 

Two RS codes are recommended by CCSDS, both having codeblock size n = 255 symbols 
and symbol size J = 8 bits or alphabet size 2J = 256. The first code has information block size 
k = 223, minimum distance d = 33, and can correct E = 16 errors. The second code has 
k = 239, d = 17, and can correct E = 8 errors. The recommended RS codes are non-binary 
codes. Each member of the coding alphabet is one of 256 elements of a finite field rather 
than zero or one. A string of eight bits is used to represent each element in the field so that 
the output of the encoder still looks like binary data. 

A Reed-Solomon symbol size of eight bits was chosen because the decoders for larger 
symbol sizes would be less suitable to implementation with current technology, and because 
telemetry transfer frames are octet-based. This choice forces the longest codeword length to 
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be 255 symbols. The recommended RS code with E = 16 was chosen as this was shown to 
have the best performance when concatenated with the (7, 1/2) convolutional inner code (see 
references [9] and [11]). Since two check symbols are required for each symbol error to be 
corrected, this results in a total of 32 check symbols and 223 information symbols per 
codeword. The RS code with E = 8 was added later to the Recommended Standard (reference 
[3]) to allow another coding option with higher code rate. 

The same encoding and decoding hardware can implement a shortened (n',n'–2E) Reed-
Solomon code, where n' = 33, 34, ... , 254, as well as the non-shortened code with 
n' = n = 255. This is accomplished by assuming that the remaining symbols are fixed: in the 
Recommended Standard (reference [3]), they are assumed to be all zero. This virtual zero fill 
allows the frame length to be tailored, if necessary, to suit a particular mission or situation. 
The shortened codes can correct the same number of errors (E) as the non-shortened code, 
but the overall code performance (energy efficiency per bit) generally (but not always) gets 
worse as the code rate is decreased due to shortening.  

5.2 ENCODER 

Reed-Solomon codes are block codes. This means that a fixed block of input data is 
processed into a fixed block of output data. In the case of the (255,k) code, k = 255–2E Reed-
Solomon input symbols (each eight bits long) are encoded into 255 output symbols. The 
Reed-Solomon code in the Recommended Standard (reference [3]) is systematic. This means 
that a portion of the codeword contains the input data in unaltered form. In the 
Recommended Standard (reference [3]), the first k = 223 or 239 symbols are the input data 
for the two recommended codes, respectively. 

A very simple block diagram of an (n,k) Reed-Solomon block encoder is shown in figure 5-1, 
where n = 2J–1 and k = n–2E. An RS symbol consists of a sequence of J bits so that there are 
2J possible RS symbols. All coding and decoding operations involve RS symbols, not 
individual bits. The input of the encoder consists of a block of k = 2J–1–2E information 
symbols (or kJ information bits) from some data source. The result of the encoding 
operations is a codeword of length n = 2J–1 symbols, of which the first k are the same 
symbols as those entering to the left. This makes the code systematic. The remainder of the 
codeword is filled in with 2E parity symbols, where E is the number of correctable RS 
symbol errors in an RS codeword. An RS symbol is in error if one or more of the J bits 
making up the symbol are in error.  
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Figure 5-1:  Block Diagram of an (n,k) Reed-Solomon Encoder 

We put attention on the specific recommended RS code with J = 8, E = 16, i.e., the (255,223) 
code. The basic codeword structure of this specific code with J = 8, E = 16, is given in 
figure 5-2. If desired, a ‘quick look’ at the data (information bits) would still be possible 
since the code is systematic. Note that the overhead associated with the parity symbols is 
only around 15 percent. This percentage increases if the code is shortened.  

8 x 223 information bits 8 x 32 parity bits

8 bits
223 information symbols 32 parity symbols

codeword size = 2040 bits

 

Figure 5-2:  RS Codeword Structure, J=8, E=16 

There are two polynomials that define each of the recommended Reed-Solomon codes in 4.2 
(4) and (5) of reference [3] (also see reference [16]): a code generator polynomial over 
GF(28) and a field generator polynomial over GF(2). The field generator polynomial 
F(x) = x8+x7+x2+x+1 is the same for both codes. The code generator polynomial g(x) has 
degree 2E = 32 for the (255,223) code and degree 2E = 16 for the (255,239) code. The 
particular polynomials that define the recommended codes were chosen to minimize the 
encoder hardware. The code generator polynomials are palindromes (self-reciprocal 
polynomials) so that only half as many multipliers are required in the encoder circuits. The 
particular primitive element ‘α’ (and hence the field generator polynomial) was chosen to 
make these multipliers as simple as possible. An encoder using the ‘dual basis’ 
representation requires for implementation only a small number of integrated circuits or a 
single VLSI chip. 

Figure 5-3 illustrates the construction of shortened RS codewords using virtual fill. 
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Figure 5-3:  Illustration of RS Codeword Structure, with and without Virtual Fill 

5.3 INTERLEAVING OF THE REED-SOLOMON SYMBOLS 

When concatenated coding is used, or when the RS code is used without concatenation on a 
bursty channel, interleaving of the RS code symbols improves code performance. Without 
interleaving, burst error events would tend to occur within one RS codeword, and one 
codeword would have to correct all of these errors. Thus over a period of time there would be a 
tendency for some codewords to have ‘too many’ errors to correct (i.e., greater than E). The 
purpose of interleaving and de-interleaving is to make the RS symbol errors, at the input of the 
RS decoder, independent of each other and to distribute the RS symbol errors uniformly; in 
other words, to distribute the burst errors among several codewords. The performance of the RS 
decoder is severely degraded by highly correlated errors among several successive symbols. 

Rectangular block interleaving of the RS symbols maximally spreads a burst of symbols with 
errors over a number of codewords equal to the ‘interleaving depth’ I. The interleaving depth 
is the number of RS codewords involved in a single interleaving and de-interleaving 
operation. Interleaving and de-interleaving operations over a channel can be described 
simply by considering two I×n matrices, one at the input of the channel and one at the output 
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(see figure 5-4). For interleaving, put the I codewords, each with length n, into rows 1,2,...,I 
of the matrix, then transmit the symbols of columns 1,2,...,n through the channel. For de-
interleaving, do the reverse operation.  

n - 2E  INFORMATION SYMBOLS

2E CHECK
SYMBOLS

RS WORD1 I+1

2 I+2

I 2I

I  
  R

S 
W

O
R

D
S

 

Figure 5-4:  Matrix Used for Interleaving 

Figure 5-4 illustrates the matrix used for interleaving I RS codewords (interleaving depth I). 
Note that this matrix, by itself, does not specify in which order the input information symbols 
should fill up the matrix cells not reserved for parity. If successive information symbols are 
written into the matrix in the ‘natural’ ordering, row by row, so as to fill up codewords one at 
a time, this requires holding I–1 full codewords before any of the columns of the matrix can 
be read out. On the other hand, if successive information symbols are written into the matrix 
column by column, there is no need to store the entire array of code symbols because each 
column of I newly written symbols can be immediately read out as the next I symbols of the 
RS codeblock, as soon as the encoder computes the (linear) contribution of each of these I 
symbols to its corresponding set of RS parity symbols. This is equivalent to the method 
specified in the Recommended Standard (reference [3]). One potential disadvantage of the 
recommended method is that it spreads individual RS codeword errors across more source 
blocks than the ‘natural’ ordering. 

Interleaving of I RS codewords multiplies the length of the RS codeblock by I. The entire 
package of I RS codewords constitutes one codeblock. However, it is customary to compute 
WER for individual RS codewords rather than for the whole interleaved codeblock. The error 
rate on the interleaved codeblock is the FER for CCSDS frames. 

5.4 HARD ALGEBRAIC DECODING OF REED-SOLOMON CODES 

Unlike the ‘soft’ channel symbol values that are input to a Viterbi decoder for convolutional 
codes, the symbols input to the Reed-Solomon decoder are ‘hard’, which means that the RS 
decoder operates on symbols drawn from exactly the same alphabet as that used in producing 
the encoded symbols. This generation of hard symbol inputs to the RS decoder happens 
automatically when these symbols are generated by a Viterbi decoder for an inner 
convolutional code. In this case, the Viterbi decoder generates hard bit-by-bit decisions, and 
eight consecutive bits from the Viterbi decoder are grouped to form one symbol from the 
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256-ary RS alphabet. When the RS code is used without an inner convolutional code, hard 
decisions should be made on each group of channel symbols corresponding to one RS octet. 

It is possible to allow the decisions on channel symbols to possess a little bit of ‘softness’, in 
that a Reed-Solomon decoder may also accept ‘erasures’ in addition to hard symbols from its 
native alphabet. An erasure is appropriate whenever there is substantial decision uncertainty 
between two or more hard symbols, because the Reed-Solomon code is capable of correcting 
twice as many erasures as errors. In the case of Reed-Solomon/convolutional concatenated 
coding, erasures are never produced by the standard Viterbi algorithm, but they may be 
generated by some modified versions of it . 

The ‘errors-only’ Reed-Solomon decoder is somewhat simpler than the ‘errors-and-erasures’ 
version, but it is convenient to describe the more general case. The basic idea behind all RS 
decoding algorithms was developed by Berlekamp as described in reference [12], but there 
are dozens of variants of his basic algorithm in current use. A very detailed discussion on 
Reed-Solomon decoding algorithms can be found in reference [24]. 

Unlike the Viterbi decoder for convolutional codes, which always obtains a maximum 
likelihood decision for each bit, the Reed-Solomon decoder is an ‘incomplete, bounded 
distance’ decoder. The ‘errors-only’ decoder produces unflagged decoded output if and only 
if the sequence of received, corrupted symbols differs from a valid codeword by no more 
than E symbols. For the ‘errors-and-erasures’ version, the corresponding condition is that 
2t+e≤2E, where e is the number of erased symbols and t is the number of discrepancies 
between non-erased received symbols and those of a valid codeword. For both types of 
decoders, there are error sequences that move the sequence of received symbols outside the 
‘bounded-distance’ decoding radius around the true codeword, yet also leave it outside the 
bounded-distance decoding radius of all other codewords. In this case, the RS decoder is 
incomplete, because it knows that the received sequence has been corrupted beyond its 
guaranteed correction capability, and it does not attempt to guess how to fix such 
corruptions. In fact, this type of ‘detectable’ corruption is much more likely to occur than an 
error sequence that moves the received symbol sequence inside the decoding radius of an 
incorrect codeword. For this reason the Reed-Solomon decoder almost always knows when 
there are too many errors to correct a word. Whenever this happens, the decoder can flag the 
‘detected’ error and inform the user of this fact. 

5.5 PERFORMANCE OF THE RECOMMENDED REED-SOLOMON CODES 

In decoding the RS codewords, essentially three events may happen.  

a) The first event (correct decoding) happens if there are E or fewer RS symbol errors in 
a codeword. In this case the decoder successfully corrects the errors and outputs the 
correct information block.  

b) The second event (detected error) happens if the number of RS symbol errors in a 
codeword is more than E, but the corrupted codeword is not close to any other 
codeword within the distance of E symbols. In this case the RS decoder fails to 
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decode and may (if desired) output the first k undecoded information symbols that in 
all likelihood contain some symbol errors.  

c) The third event (undetected error) happens if the number of RS symbol errors in a 
codeword is more than E, and the corrupted codeword is closer to some other 
codeword within the distance of E symbols. In this case the decoder is fooled, 
decodes incorrectly, and outputs a wrong information block. In other words, it claims 
the decoded block as a correct one and by doing this it may create up to E additional 
symbol errors (compared to the number of errors in the uncoded information block).  

Fortunately for most of the RS codes of interest with large alphabet size, in particular for the 
(255, 223) RS code, the probability that the third event happens is very small (see reference 
[23]). This probability has very little effect on the error probability performance of an RS 
code in the range of interest. In reference [23] it has been shown that the probability of the 

third event, i.e., an incorrect decoding event, is less than 
1
E!. Therefore, for the practical range 

of interest in error probability performance, it almost surely can be assumed that only the 
first and second events happen. This conclusion is much less sure for the recommended 
(255,239) RS code with E = 8. 

If it can be assumed that symbol errors occur independently with probability Vs at the RS 
decoder input, then the probability Pw of undecodable word error at the output of the RS 
decoder is given by  

 Pw (n, E) = ∑

j = E+1
n    ⎝

⎛
⎠
⎞n

j  Vs
j (1 – Vs)

n–j, (3) 

where E= 
n–k
2  is the number of correctable errors. This expression for Pw counts codeword 

errors for every occurrence of either the second or third event above. 

The RS decoder output symbol error probability can be approximated by  

 Ps ≈ Vs Pw (n – 1, E – 1) = Vs ∑

i=E
n–1 ⎝⎜
⎛

⎠⎟
⎞n – 1

i  Vs
i(1 – Vs)

n – i – 1. (4) 

This approximate expression for Ps assumes that nearly all of the symbol errors come from 
the second event above, and in this case it counts all of the erroneous symbols in the raw 
(undecoded) information portion of the RS codeblock. 
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Finally, the bit error probability at the RS decoder output is given approximately by  

 Pb ≈
Vb

Vs
 Ps 

where Vb is the bit error probability on the channel. On the AWGN channel, Vs = 1–(1– Vb)
J, 

and Vb = Q( )2Es/N0 , where Q(x) = 12erfc(x/ 2) is the unit Gaussian complementary 
cumulative distribution function and Eb/N0 is the channel symbol signal-to-noise ratio. This 
expression for Pb relies on the same assumptions as for Ps , and also on the assumption that 
the density of bit errors inside an erroneous undecodable J-bit RS symbol is the same as the 
density of bit errors inside any J-bit RS symbol regardless of whether the RS codeword is 
decodable or not and whether the particular RS symbol is erroneous or not. 

The performance of the recommended RS codes with E = 16 and E = 8 is shown in figures 5-5 
and 5-6, respectively, as a function of the channel symbol error probability Vs at the input of 
the decoder. This figure shows the bit, symbol, and word error probabilities, Pb , Ps , and Pw , 
respectively, at the output of the decoder, as computed from the formulas above.  

 

Figure 5-5: Pw, Ps and Pb for the (255,223) RS Code with E=16 
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Figure 5-6: Pw, Ps and Pb for the (255,239) RS Code with E=8 

Figures 5-7 and 5-8 show BER and WER performance curves for the recommended RS 
codes as a function of the normalized bit signal-to-noise ratio Eb/N0 on the AWGN channel. 
Note that the WER curve for RS codes on the AWGN channel does not depend on the 
interleaving depth I, but for concatenated systems WER does depend on I. The WER curves 
in Figures 5-7 and 5-8 are the same as FER curves for interleaving depth I = 1. 

 

Figure 5-7: BER and WER Performance of the CCSDS E=16 Reed-Solomon Code 
(255,223): Simulated and Analytical Results for the AWGN Channel 
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Figure 5-8: BER and WER Performance of the CCSDS E=8 Reed-Solomon Code 
(255,239): Simulated and Analytical Results for the AWGN Channel 

Finally figure 5-9 illustrates the effects of shortening the recommended E=16 and E=8 Reed-
Solomon codes. On the AWGN channel shortening may actually improve the performance 
(This is not the case for the recommended concatenated system). The best performance on 
the AWGN channel is achieved by a non-standard (255,173) RS code with E=41. 
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Figure 5-9: BER Performance Comparison of Shortened and Non-Shortened Reed-
Solomon Codes on the AWGN Channel 
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6 CONCATENATED CODES: REED-SOLOMON AND 
CONVOLUTIONAL 

6.1 INTRODUCTION 

One method to build a strong code while maintaining manageable decoding complexity is to 
concatenate two codes, an ‘outer code’ and an ‘inner code’. This section discusses a 
particular concatenated coding scheme of importance to space communications (low SNR). 
The recommended concatenated coding system consists of a Reed-Solomon outer code and a 
convolutional inner code (which is Viterbi decoded). Typically, the inner convolutional code 
corrects enough errors so that a high-code-rate outer code can reduce the error probability to 
the desired level. The reader may wish to consult reference [26] for the theory of 
concatenated coding and references [9] and [27] for more information on the Reed-
Solomon/Viterbi concatenated code. 

The concatenated code in the Recommended Standard (reference [3]) uses either of the 
recommended RS codes (or shortened versions) together with any of the recommended 
convolutional codes (either of which may also be used separately under the Recommended 
Standard (reference [3])). A block diagram of this concatenated coding system is given in 
figure 6-1. The binary input data sequence is divided into 8-bit sequences to form symbols 
over a 28 = 256-ary alphabet. The Reed-Solomon (RS) code then encodes the symbols such 
that any combination of E or fewer symbol errors per RS word (255 symbols per word) can 
be corrected.  

The reason that the recommended concatenated code operates as an effective teaming of its 
outer and inner codes stems from the nature of Viterbi decoding. The decoded bit errors 
made by the constraint-length-7 convolutional decoder tend to clump together in reasonably 
short bursts. In a concatenated coding system that uses a convolutional inner code, the outer 
code should be tailored to the burst error environment created by the convolutional decoder. 
A (255,255–2E) Reed-Solomon outer code is a good match for the convolutional inner code 
with constraint length 7 because the bursts of errors from the convolutional decoder typically 
have burst lengths ranging from a few bits to several constraint lengths. This corresponds to 
only a small number of 8-bit symbols in the outer code, and hence only a moderate amount of 
interleaving is required to prevent a few long bursts from exceeding the error correction 
capability of the Reed-Solomon decoder. On the other hand, it is advantageous for Viterbi 
decoder errors to be clustered within individual RS symbols, because an RS symbol is 
equally wrong to the RS decoder whether it contains one bit error or eight bit errors. Because 
the Viterbi decoder errors occur in bursts comparable in length to the RS symbol size, 3 or 4 
Viterbi decoder bit errors will typically be packed into a single RS symbol, and these cause 
much less damage than isolated bit errors to the error correction abilities of the outer code, at 
a given bit error rate of the inner code. In summary, the typical error bursts from a constraint-
length-7 convolutional decoder are long enough to take advantage of packing Viterbi-
decoded bit errors into single 8-bit RS symbols, but not so long as to require an inordinate 
amount of interleaving to keep the Reed-Solomon code from being overwhelmed by overly 
lengthy error bursts.  
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Figure 6-1:  Concatenated Coding System Block Diagram 

6.2 ENCODING AND DECODING A CONCATENATED CODE 

Encoding or decoding of a concatenated code is a simple matter of encoding or decoding the 
two codes in sequence. 

Interleaving between the Outer and Inner Codes — When concatenated coding is used, 
interleaving is recommended because the inner Viterbi decoder errors tend to occur in bursts, 
which occasionally are as long as several constraint lengths (see figure 6-2). Without 
interleaving, Viterbi decoder burst error events would tend to occur within one RS codeword, 
so that one codeword would have to correct all of these errors. Thus there would be a 
tendency for some codewords to have ‘too many’ errors to correct (i.e., greater than E).  
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Figure 6-2: Average Burst Length vs. SNR, at the Viterbi Decoder Output, K=7 
CCSDS Convolutional Code 

Table 6-1 shows the frame lengths for all the recommended interleaving depths for the two 
(non-shortened) RS codes. 

Table 6-1:  Frame Lengths for All Interleaving Depths 

Interleaver Frame length L, bits 

depth I E=16 E=8 

1 1784 1912 

2 3568 3824 

3 5352 5736 

4 7136 7648 

5 8920 9560 

8 14272 15296 
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6.3 PERFORMANCE OF THE RECOMMENDED CONCATENATED CODING 
SYSTEMS 

Consider a concatenated coding system consisting of a (K,r) convolutional inner code of rate r 
and constraint length K, and an (n,k) Reed-Solomon outer code. It is assumed that the 
symbols are interleaved at a sufficient depth to insure that symbol errors are independent at 
the RS decoder input. Then the bit, symbol, and word error probabilities, Pb , Ps , and Pw , 
respectively, are given by the formulas in the previous section, in terms of Vs , the symbol 
error probability at the input of the RS decoder or equivalently at the output of the Viterbi 
decoder, and Vb, the bit error probability at the output of the Viterbi decoder. The ratio Vb / Vs 
is estimated empirically and depends on the burst statistics of the inner decoder’s error events 
at its typical operating SNR. 

Figures 6-3 and 6-4 show the BER performance of the non-shortened (255,223) and 
(255,239) RS codes with E = 16 and E = 8, respectively, concatenated with punctured and 
non-punctured convolutional codes, with infinite interleaving assuming that interleaving 
produces independent RS symbol errors. Performance curves for the non-concatenated 
convolutional codes and for the RS code alone are also shown for comparison. Note that for 
bandwidth efficiency it is better to use concatenations of RS and punctured convolutional 
codes than the Reed-Solomon code alone.  
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Figure 6-3: Performance of Concatenated Coding Systems with Infinite Interleaving, 
E=16, Punctured Codes 
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Figure 6-4: Performance of Concatenated Coding Systems with Infinite Interleaving, 
E=8, Punctured Codes 

The convolutional decoder used to calculate the performance curves for all of the figures in 
this section operated with an unquantized maximum likelihood soft decision algorithm, 
corresponding to the ‘unquantized soft decision’ curve in figure 6-5. Note that, in order to 
compare the performance of concatenated and non-concatenated codes, the Eb/N0 values on 
the x-axis in all figures in this section refer to the information bit SNR. 

Effects of Finite Interleaving — When the interleaving depth I is not large enough, the 
errors at the output of the Viterbi decoder cannot be considered as independent since this 
decoder tends to produce errors in bursts. The performance under finite interleaving must 
therefore take into account the statistics of these bursts either by devising a plausible model 
or by simulation. A possible model for burst lengths and arrival times was developed 
in reference [27] and is called the geometric model. This model provides an approximate 
estimate of the performance under finite interleaving, but ignores the actual structure of the 
error patterns within the bursts. On the other hand, simulation is also problematic since very 
large amounts of Viterbi decoded data is necessary to provide reasonable confidence in the 
estimates of performance. A detailed description of methods to obtain performance estimates 
is given in reference [28]. 

BER and WER results for finite interleaving are shown in figures 6-5 and 6-6 respectively 
for the recommended concatenated system consisting of the non-shortened (255,223) RS 
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code with E=16 and the non-punctured (7, 1/2) convolutional code, with different 
interleaving depths ranging from I = 1 to I = 16. 

 

Figure 6-5: Bit Error Rate Simulated Performance of the CCSDS Concatenated 
Scheme with Outer E=16 Reed-Solomon Code (255,223) and Inner Rate-
1/2 Convolutional Code as a Function of Interleaving Depth 

 

Figure 6-6: Word Error Rate Simulated Performance of the CCSDS Concatenated 
Scheme with Outer E=16 Reed-Solomon Code (255,223) and Inner Rate-
1/2 Convolutional Code as a Function of Interleaving Depth 

Figures 6-5 and 6-6 illustrate how interleaving depth I = 5 obtains near-ideal performance. 
This amount of interleaving is also sufficient to obtain near-ideal performance for most other 
combinations of recommended RS and convolutional codes.  
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Figures 6-7 and 6-8 show BER and WER for the recommended concatenated system 
consisting of the non-shortened (255,239) RS code with E = 8 and the non-punctured (7, 1/2) 
convolutional code, with different interleaving depths ranging from I = 1 to I = 16. 

 

Figure 6-7: Bit Error Rate Simulated Performance of the CCSDS Concatenated 
Scheme with Outer E=8 Reed-Solomon Code (255,239) and Inner Rate-
1/2 Convolutional Code as a Function of Interleaving Depth 

 

Figure 6-8:  Word Error Rate Simulated Performance of the CCSDS Concatenated 
Scheme with Outer E=8 Reed-Solomon Code (255,239) and Inner Rate-
1/2 Convolutional Code as a Function of Interleaving Depth 

Figures 6-9 and 6-10 show BER and WER curves for the concatenated codes consisting of 
the non-shortened (255,223) RS code with E = 16 concatenated with any of the recommended 
punctured or non-punctured (7, 1/2) convolutional codes, with interleaving depth I = 5 (which 
gives a close approximation to ideal performance on the AWGN channel). 
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Figure 6-9: Bit Error Rate Simulated Performance of the CCSDS Concatenated 
Scheme with Outer E=16 Reed-Solomon Code (255,223) and Inner 
Punctured Convolutional Codes, Using Finite Interleaving with I=5 

 

Figure 6-10: Word Error Rate Simulated Performance of the CCSDS Concatenated 
Scheme with Outer E=16 Reed-Solomon Code (255,223) and Inner 
Punctured Convolutional Codes, Using Finite Interleaving with I=5 

Figures 6-11 and 6-12 show BER and WER curves for the concatenated codes consisting of 
the non-shortened (255,223) RS code with E = 16 concatenated with any of the recommended 
punctured or non-punctured (7, 1/2) convolutional codes, with interleaving depth I = 5 (which 
gives a close approximation to ideal performance on the AWGN channel). 
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Figure 6-11: Bit Error Rate Simulated Performance of the CCSDS Concatenated 
Scheme with Outer E=8 Reed-Solomon Code (255,239) and Inner 
Punctured Convolutional Codes, Using Finite Interleaving with I=5 

 

Figure 6-12: Word Error Rate Simulated Performance of the CCSDS Concatenated 
Scheme with Outer E=8 Reed-Solomon Code (255,239) and Inner 
Punctured Convolutional Codes, Using Finite Interleaving with I=5 
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7 TURBO CODES 

7.1 INTRODUCTION 

In 1993 a new class of concatenated codes called ‘turbo codes’ was introduced. These codes 
can achieve near-Shannon-limit error correction performance with reasonable decoding 
complexity. Turbo codes outperform even the most powerful codes known to date, but more 
importantly they are much simpler to decode. It was found that good turbo codes can come 
within approximately 0.8 dB of the theoretical limit at a bit error rate (BER) of 10-6. In 
applying this rule of thumb, it is important to keep in mind that the limiting performance 
depends on the code rate.  

A turbo code is a combination of two simple recursive convolutional codes, each using a 
small number of states. These simple convolutional codes are in fact ‘terminated’ 
convolutional codes and hence block codes. For a block of k information bits, each 
constituent code generates a set of parity bits. The turbo code consists of the information bits 
and both sets of parity, as shown in figure 7-1. 
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P
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ITERATIONS
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Figure 7-1:  Example of Turbo Encoder/Decoder 

The key innovation is an interleaver P, which permutes the original k information bits before 
encoding the second code. If the interleaver is well-chosen, information blocks that 
correspond to error-prone codewords in one code will correspond to error-resistant 
codewords in the other code. The resulting code achieves performance similar to that of 
Shannon’s well-known ‘random’ codes, but random codes approach optimum performance 
only at the price of a prohibitively complex decoder.  

Turbo decoding uses two simple decoders individually matched to the simple constituent 
codes. Each decoder sends likelihood estimates of the decoded bits to the other decoder, and 
uses the corresponding estimates from the other decoder as a priori likelihoods. The 
constituent decoders use the ‘APP’ (a posteriori probability) bitwise decoding algorithm, 
which requires the same number of states as the well-known Viterbi algorithm. The turbo 
decoder iterates between the outputs of the two decoders until reaching satisfactory 
convergence. The final output is a hard-quantized version of the likelihood estimates of 
either of the decoders. 

To achieve maximum performance, turbo codes use large block lengths and correspondingly 
large interleavers. The size of the interleaver affects buffer requirements and decoding delay, 
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but has little impact on decoding speed or decoder complexity. More recently, it was 
discovered that turbo codes with shorter blocks also perform amazingly well with respect to 
the theoretical performance bounds on codes constrained to have a given block length. Thus, 
turbo codes can also offer good performance for applications requiring small block sizes on 
the order of a few hundreds of bits (but these block sizes are not within the scope of the 
Recommended Standard (reference [3])).  

7.2 TURBO ENCODER 

A turbo encoder is a combination of two simple encoders. The input is a frame of k 
information bits. The two component encoders generate parity symbols from two simple 
recursive convolutional codes, each with a small number of states. The information bits are 
also sent uncoded. An interleaver permutes bit-wise the original k information bits before 
input to the second encoder. A generic implementation block diagram for a turbo encoder is 
shown in figure 7-2. The specific turbo encoder in the CCSDS Recommended 
Standard (reference [3]) is shown in more detail in figure 7-3. 
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Figure 7-2:  Block Diagram of Turbo Encoder 
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Figure 7-3:  Turbo Encoder Block Diagram 

The two convolutional encoders in the Recommended Standard (reference [3]) are recursive 
with constraint length K = 5, and are realized by feedback shift registers. However, unlike the 
encoder for the recommended plain convolutional code in section 4, the turbo codeblock is 
terminated by running each encoder for an additional K-1 bit times beyond the end of the 
information bit frame. After encoding the last bit in the frame, the leftmost adder in each 
component encoder receives two copies of the same feedback bit, causing it to zero its 
output. After K-1 more bit times, all 4 memory cells become filled with zeros, but in the 
interim the encoder continues to output nonzero encoded symbols. 

The Recommended Standard (reference [3]) allows options for non-punctured codes with 
rates between 1/3, 1/4, and 1/6. The puncturer is used only for code rate 1/2. 

The interleaver in the Recommended Standard (reference [3]) is based on a permutation rule 
which can be computed on-the-fly or pre-computed and stored in a look-up table, for all 
allowable frame lengths (1784 to 16384 bits).  

In figure 7-2, CLK indicates the frame clock. It is used: (1) by the input buffer to determine 
when to empty and refill the buffer; (2) by the output buffer/multiplexer to determine when 
to insert the frame sync marker; (3) by each of the convolutional encoders to determine when 
to terminate the codeblock. Note that an entire information block of k bits must be read in 
before the encoding can proceed, because some of the bits in the tail end of block will be 
permuted to the front and need to be encoded first. Thus, there is a fundamental encoding 
latency of at least k bits in the encoding process. 
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The turbo code introduces a couple of unique encoder complexity issues. The information 
block needs to be buffered and read out in a permuted order as part of the encoding process. 
This buffering has no analog in the plain convolutional encoder, but the size of this buffer is 
comparable to that required for an interleaved Reed-Solomon codeblock of the same size. 
The difference is that the traditional concatenated coding architecture completely separates 
the Reed-Solomon encoder (with its associated buffer) from the convolutional encoder. Thus, 
the turbo encoder cannot be regarded as a plug-in replacement for the convolutional encoder 
hardware. The turbo encoder actually replaces the Reed-Solomon/convolutional encoder 
combination.  

Another complexity consideration is how to implement the permutation. The best 
permutations for turbo codes look very random, but this requires specifying a random-
looking readout order via a ROM (Table look-up). An alternative is to use a permutation that 
can be generated by a simple rule rather than from a lookup table, with minor performance 
sacrifice. The Recommended Standard (reference [3]) specifies a permutation based on a 
simple rule, because it was preferred in terms of implementation on the spacecraft. 

7.3 TURBO DECODER 

A turbo decoder uses an iterative decoding algorithm based on simple decoders individually 
matched to the two simple constituent codes. Each constituent decoder makes likelihood 
estimates derived initially without using any received parity symbols not encoded by its 
corresponding constituent encoder. The (noisy) received uncoded information symbols are 
available to both decoders for making these estimates. Each decoder sends its likelihood 
estimates to the other decoder, and uses the corresponding estimates from the other decoder 
to determine new likelihoods by extracting the ‘extrinsic information’ contained in the other 
decoder’s estimates based on the parity symbols available only to it. Both decoders use the 
‘a posteriori probability’ (APP) bitwise decoding algorithm, which requires the same number 
of states as the well-known Viterbi algorithm. The turbo decoder iterates between the outputs 
of the two constituent decoders until reaching satisfactory convergence. The final output is a 
hard-quantized version of the likelihood estimates of either of the decoders. 

The Recommended Standard (reference [3]) does not include a detailed description of the 
specific turbo decoding algorithm. However, the performance curves in 7.4 for the turbo 
code family in the Recommended Standard (reference [3]) were obtained using a decoding 
algorithm with the following characteristics:  

a) decoder type: Iterative ‘turbo’ decoding using two 16-state component decoders (see 
reference [18]); 

b) type of component decoders: Soft-input, soft-output APP decoders (see reference [19]); 

c) quantization of channel symbols: At least 6 bits/symbol; 

d) quantization of decoder metrics: At least 8 bits; 

e) number of decoder iterations: variable depending on signal-to-noise ratio.  

CCSDS 130.1-G-1 Page 7-4 June 2006 



TM SYNCHRONIZATION AND CHANNEL CODING —SUMMARY OF CONCEPT AND RATIONALE 

Variations from this algorithm will result in performance tradeoffs. 

The overall turbo decoding procedure is depicted in figure 7-1 and described earlier. The 
‘simple decoders 1 and 2’ each compute likelihood estimates (APP estimates) based on a 
version of the APP or log-APP algorithm,5 as described in reference [14]. A diagram 
showing the structure of the turbo decoder in more detail is shown in figure 7-4. Figure 7-5 
shows the basic circuits needed to implement the log-APP algorithm. 
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Figure 7-4:  Structure of the Turbo Decoder 

                                                 
5In the early turbo coding literature the APP algorithm was designated as the MAP (maximum a posteriori) 
algorithm because it was derived from an homonymous algorithm for making optimum bit-wise hard decisions on 
plain convolutionally encoded symbols. 
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Figure 7-5:  Basic Circuits to Implement the Log-APP Algorithm 

Because the decoder processes whole blocks of k bits at a time, there is a minimum decoding 
delay of k bits. This latency is further increased by the time required for the decoder to 
process each block. If parallel decoders are used to increase decoding throughput, the latency 
increases in proportion to the number of parallel decoders. 

To first order, the decoding complexity of a turbo decoder relative to that of a convolutional 
decoder using the same number of trellis states and branches can be estimated by multiplying 
several factors: (a) a factor of 2 because the turbo code uses two component decoders; (b) 
another factor of 2 because the individual decoders use forward and backward recursions 
compared to the Viterbi decoder’s forward-only recursion; (c) another small factor because 
the turbo decoder’s recursions require somewhat more complex calculations than the Viterbi 
decoder’s; and (d) a factor to account for the turbo decoder’s multiple iterations compared to 
the Viterbi decoder’s single iteration. The relative decoding complexity for two different 
turbo codes or two different convolutional codes can be estimated by multiplying two 
additional factors: (e) the number of trellis states; and (f) the number of trellis branches per 
input bit into each state. Factor (c) can be reduced to one by implementing an approximate 
log-MAP algorithm at a small sacrifice in performance. Factors (b) and (d) might be reduced 
on the average by using a more advanced turbo decoding algorithm, using stooping rules or 
different iteration schedules. Such an algorithm might allow the decoder to stop its iterations 
early if a given codeword can already be decoded reliably, or to skip over portions of the 
forward and backward recursions for some iterations. Factors (a) through (d) are 1 for Viterbi 
decoders of convolutional codes. For the CCSDS standard constraint-length-7 convolutional 
decoder, factor (e) is 26 = 64, and factor (f) is 2/1 = 2. For the Cassini/Pathfinder constraint-
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length 15, rate 1/6 convolutional decoder, factor (e) is 214 = 16384 and factor (f) is 6/1=6. For 
the turbo codes specified in 7.2, factor (e) is 24=16 and factor (f) ranges from 2/1=2 to 6/1=6. 

A basic form of turbo decoder stops iterating after a predetermined number of iterations. For 
some codewords (or sections of codewords), the predetermined number of iterations may be 
too many or too few. A more efficient turbo decoder can employ a stopping rule to stop the 
decoder’s iterations when convergence is satisfactory, i.e., without wasting iterations when 
the decoder has already converged, and without halting iterations prematurely when the 
decoder needs a little more time. Such a rule reduces the average number of iterations and 
increase the average decoding throughput. This comes at the expense of a slightly more 
complicated decoding algorithm and increased decoder buffering requirements to 
accommodate variable decoding times. 

7.4 PERFORMANCE OF THE RECOMMENDED TURBO CODES 

7.4.1 SIMULATED TURBO CODE PERFORMANCE CURVES 

Figures 7-6,  7-7,  7-8, and  7-9, show the simulated performance of the recommended turbo 
codes of rates 1/2, 1/3, 1/4, and 1/6, constructed for information block lengths of 1784, 3568, 
7136, and 8920 bits. For all of the results in these figures, the decoder used a fixed-iteration 
stopping rule and stopped after 10 iterations. 

To achieve a bit error rate (BER) of 10-6, threshold bit-SNRs of approximately -0.1 dB, 
0.15 dB, 0.4 dB , and 1.1 dB, are required by the turbo codes of rates 1/6, 1/4, 1/3, and 1/2, 
respectively. Approximately the same threshold bit-SNRs achieve a word error rate (WER) 
or frame error rate (FER) of 10-4 for these codes. (Note that WER = FER for the CCSDS 
turbo codes because the turbo code’s information block corresponds to one CCSDS frame). 
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Figure 7-6: BER and FER Performance for Rate 1/2, 1/4, 1/3 and 1/6 Turbo Codes 
with Block Size 1784 Bits, Measured from JPL DSN Turbo Decoder, 
10 Iterations 
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Figure 7-7: BER & FER Performance for Rate 1/2, 1/4, 1/3 and 1/6 Turbo Codes with 
Block Size 3568 Bits, Software Simulation, 10 Iterations6 

                                                 
6 Performance of hardware decoder not available. 
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Block size = 7136 bits
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Figure 7-8: BER & FER Performance for Rate 1/2, 1/4, 1/3 and 1/6 Turbo Codes with 
Block Size 7136 bits, Software Simulation, 10 Iterations6 
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Figure 7-9: BER & FER Performance for Rate 1/2, 1/4, 1/3 and 1/6 Turbo Codes with 
Block Size 8920 Bits, Measured from JPL DSN Turbo Decoder, 
10 Iterations 
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Figure  7-10 shows the simulated performance of turbo codes of rates 1/2, 1/3, 1/4, and 1/6 
with an information block length of 16384 bits. These performance curves do not necessarily 
reflect the performance of the CCSDS codes for this block length since the recommended 
interleaver for this block length has not been specified yet. 
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Figure 7-10: BER & FER Performance for Rate 1/2, 1/4, 1/3 and 1/6 Turbo Codes, 
Block Size 16384 Bits, Software Simulation, 10 Iterations 

Figure 7-11 illustrates how the decoder’s average speed can be increased through the use of 
stopping rules.  
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Figure 7-11:  Illustration of Decoder Speedup Using Stopping Rules 
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The x-axis shows the threshold value of Eb/N0 required to reach a WER of 10-4. The y-axis 
shows the average decoding speed, or reciprocally the average number of iterations. In this 
figure a decoder using a fixed 10 iterations achieves a speed of 300 Kbps, and the decoder’s 
average speed increases inversely as the average number of iterations is reduced by 
application of the stopping rule. The results in this figure are for a selection of recommended 
turbo codes with block lengths 1784 and 8920. The figure shows that effective stopping rules 
can increase the decoder speed on the order of 50% to 100% with virtually no compromise in 
the required value of Eb/N0; further increases in speed can also be obtained by trading off 
additional SNR for increased speed.   

7.4.2 COMPARISON TO TRADITIONAL CONCATENATED CODES 

Turbo codes gain a significant performance improvement over the traditional Reed-Solomon 
and convolutional concatenated codes currently recommended by CCSDS. For example, to 
achieve an overall BER of 10-6 with a block length of 8920 bits (depth-5 interleaving), the 
required bit-SNRs are approximately 0.8 dB, 1.0 dB, and 2.6 dB for the DSN’s standard 
codes consisting of the (255,223) Reed-Solomon code concatenated with the (15,1/6) 
convolutional code, the (15,1/4) convolutional code, and the (7,1/2) convolutional code, 
respectively. The performance gains achieved by the corresponding-rate turbo codes in 
figures 7-6,  7-7,  7-8, 7-9, and 7-10 range from 0.9 dB to 1.6 dB.  

Figure 7-12 compares the performance of the recommended turbo codes of block length 1784 
bits and rates 1/3 and 1/6 with the performance of the CCSDS concatenated code used by 
Voyager and that of the non-CCSDS concatenated code used by Cassini and Mars 
Pathfinder. The Voyager code consists of the recommended concatenation of the (255, 223) 
Reed-Solomon code with the (7,1/2) convolutional code. The Cassini/Pathfinder code 
consists of the same Reed-Solomon code concatenated with a (15, 1/6) convolutional code 
for which the Viterbi decoder requires 28 = 256 times as many states as for the (7, 1/2) code. 
Performance for both concatenated codes is obtained using an interleaving depth of I = 1, not 
the actual interleaving depths used in the Voyager/Cassini/Pathfinder missions, in order to 
provide a fair comparison with the performance of the two turbo codes with block length 
1784. In other words, a frame length of 1784 bits is assumed for all four curves in this figure.  
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Figure 7-12: BER Performance of Turbo Codes Compared to Older CCSDS Codes 
(Except Cassini/Pathfinder Code: Reed-Solomon (255,223) + (15,1/6) 
Convolutional Code), Block Size 1784 Bits (Interleaving Depth = 1), 
Software Simulation, 10 Iterations 

Figure 7-13 compares the performance of the recommended turbo codes of block length 8920 
bits and rates 1/3 and 1/6 with the performance of the Voyager and Cassini/Pathfinder 
concatenated codes, now allowed to have interleaving depth I = 5 in order to produce equal-
length frames of 8920 bits for all codes shown.  
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Figure 7-13: BER Performance of Turbo Codes Compared to Older CCSDS Codes 
(Except Cassini/Pathfinder Code: Reed-Solomon (255,223) + (15,1/6) 
Convolutional Code), Block Size 8920 Bits (Interleaving Depth = 5), 
Software Simulation, 10 Iterations 

7.4.3 THE TURBO DECODER ERROR FLOOR 

Although turbo codes can be found to approach the Shannon-limiting performance at very 
small required bit error rates, the turbo code’s performance curve does not stay steep forever 
as does that of a convolutional/Reed-Solomon concatenated code. When it reaches the so-
called ‘error floor’, the curve flattens out considerably and looks from that point onward like 
the performance curve for a weak convolutional code. In the error floor region, the weakness 
of the constituent codes takes charge, and the performance curve flattens out from that point 
onward. The error floor is not an absolute lower limit on achievable error rate, but it is a 
region where the slope of the turbo code’s error rate curve becomes dramatically poorer. 

There exist transfer function bounds on turbo code performance (reference [15]) that 
accurately predict the actual turbo decoder’s performance in the error floor region above the 
so-called ‘computational cutoff rate’ threshold, below which the bounds diverge and are 
useless. More advanced bounds which are tight at lower values of bit SNR were developed 
in reference [29]. These bounds are computed from the code’s weight enumerator which is 
not readily available for the recommended turbo codes. Approximations valid in the error 
floor region can be obtained from considering only codewords of the lowest weight(s). 
Reference [30] gives a method for calculating the minimum distance of the recommended 
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codes and the corresponding estimates of BER on the error floor.  Other details on algorithms 
for computing CCSDS turbo code minimum distance and error floors can be found in 
reference [32]. 

Figure 7-14 provides an illustration of the transition of a turbo code performance curve from 
a steep ‘waterfall’ region into a much flatter ‘error floor’ region for two turbo codes analyzed 
as an example. This figure shows the actual simulated turbo code performance compared 
with bounds approximating the error floor. 

The original turbo codes of Berrou et al. (reference [17]) had error floors starting at a BER of 
about 10-5. By using theoretical predictors as guides, it was possible to design the turbo codes 
in the Recommended Standard (reference [3]) so as to lower the error floor to possibly 
insignificant levels (e.g., as low as 10-9 bit error rate). 
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Figure 7-14:  Illustration of Turbo Code Error Floor 
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8 IMPORTANT ANCILLARY ASPECTS OF THE CODING SYSTEM 

8.1 GENERAL 

The preceding four sections have described how one would encode and decode each of the 
recommended codes, and their corresponding performance, under ideal circumstances. 
CCSDS Recommended Standards (references [3] and [2]) also impose certain ancillary 
conditions on the coding system in order to approach this ideal performance in a practical 
system. Chief among these ancillary requirements addressed in Recommended 
Standards (references [3] or [2]) are the following:  

a) the coded output of all codes (or of uncoded data) must be sufficiently random to 
ensure proper receiver operation; 

b) there must be a method for synchronizing the received data with the codeblock 
boundaries; 

c) there must be a way to certify the validity of decoded data with high certainty.  

There are a couple of additional ancillary issues associated with the recommended codes:  

a) some of the recommended codes are ‘transparent’ to inversion of the received data, 
and some are not; 

b) 1:1 remappings of the information or coded bits may be permitted but may affect 
performance.  

8.2 RANDOMIZATION OF THE CODED OUTPUT 

8.2.1 GENERAL 

Randomization of the data stream provides three useful functions.  It aids in achieving: 

– signal acquisition; 

– bit synchronization; 

– ambiguity resolution for convolutional decoder operation. 

Receiver acquisition performance is often impaired by short periodic data patterns.  
Randomizing the data avoids this. 

In order to acquire and maintain symbol synchronization with the coded symbol boundaries, 
a bit synchronizer requires a sufficient symbol transition density. The recommended non-
punctured (7,1/2) convolutional code contains an inverter on one of its outputs, which 
assures a sufficient symbol transition density when this code is used with BPSK modulation. 
Although this inverter may be sufficient for proper operation of the bit synchronizer, it does 
not guarantee that the receiver and decoder will work correctly. In contrast, when the 
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recommended Reed-Solomon code is used alone, or the data is uncoded, there may be no 
symbol transitions, e.g., if all-zero data is sent.  

While alternate symbol inversions solve the symbol synchronization problem for the case of 
convolutional codes with BPSK modulation, it is desirable to offer a universal solution for all 
three issues and any of the recommended codes. The pseudo-randomizer defined in section 7 
of reference [3] gives such a solution. This randomizer adds (modulo-2) a pseudo-random 
sequence to the coded symbols. The result is a maximally random sequence of 0s and 1s 
regardless of the transition density characteristic of the particular code’s output. The pseudo-
randomizer is likely to solve the issues that can arise from non-random data for all 
combinations of CCSDS-recommended modulation and coding. 

8.2.2 DESCRIPTION OF THE RECOMMENDED PSEUDO-RANDOMIZER 

The method for ensuring sufficient transitions is to exclusive-OR each bit of the Codeblock or 
Transfer Frame with a standard pseudo-random sequence. If the Pseudo-Randomizer is used, 
on the sending end it is applied to the Codeblock or Transfer Frame after turbo encoding or RS 
encoding (if either is used), but before convolutional encoding (if used). On the receiving end, 
it is applied to derandomize the data after convolutional decoding (if used) and codeblock 
synchronization but before Reed-Solomon decoding or turbo decoding (if either is used). 

The configuration at the sending end is shown in figure 8-1.  

TRANSFER FRAME,
R-S CODEBLOCK, OR
TURBO CODEBLOCK

PSEUDO-RANDOM
SEQUENCE

GENERATOR

ATTACHED
SYNC

MARKER

Randomized output
to modulator or

convolutional encoder
(if used)  

Figure 8-1:  Block Diagram of the Recommended Pseudo-Randomizer 

The Attached Sync Marker (ASM) is already optimally configured for synchronization 
purposes and it is therefore used for synchronizing the Pseudo-Randomizer. The pseudo-
random sequence is applied starting with the first bit of the Codeblock or Transfer Frame. On 
the sending end, the Codeblock or Transfer Frame is randomized by exclusive-ORing the first 
bit of the Codeblock or Transfer Frame with the first bit of the pseudo-random sequence, 
followed by the second bit of the Codeblock or Transfer Frame with the second bit of the 
pseudo-random sequence, and so on. On the receiving end, the original Codeblock or Transfer 
Frame is reconstructed using the same pseudo-random sequence. After locating the ASM in the 
received data stream, the pseudo-random sequence is exclusive-ORed with the data bits 
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immediately following the ASM. The pseudo-random sequence is applied by exclusive-ORing 
the first bit following the ASM with the first bit of the pseudo-random sequence, followed by 
the second bit of the data stream with the second bit of the pseudo-random sequence, and so on. 

The pseudo-random sequence used in the CCSDS standard is generated by using the 
following polynomial: 

 h(x) = x8+x7+x5+x3+1 

This sequence begins at the first bit of the Codeblock or Transfer Frame and repeats after 255 
bits, continuing repeatedly until the end of the Codeblock or Transfer Frame. The sequence 
generator is initialized to the all-ones state at the start of each Codeblock or Transfer Frame. 

The first 40 bits of the pseudo-random sequence from the generator are shown below; the 
leftmost bit is the first bit of the sequence to be exclusive-ORed with the first bit of the 
Codeblock or Transfer Frame; the second bit of the sequence is exclusive-ORed with the 
second bit of the Codeblock or Transfer Frame, and so on. 

 1111 1111 0100 1000 0000 1110 1100 0000 1001 1010 ... 

8.2.3 USAGE CIRCUMSTANCES FOR THE RECOMMENDED PSEUDO-
RANDOMIZER 

The Recommended Standard (reference [3]) does not always require the use of the universal 
solution provided by the pseudo-randomizer. As we have seen, its use would be superfluous 
in the case of convolutional coding with alternate symbol inversions and BPSK modulation. 
Less conclusively, turbo codes might inherently provide a sufficient coded symbol transition 
density due to their recursive convolutional encoding of non-zero data headers at the 
beginning of each data block. Other codes might obtain sufficient transitions if their input 
information bits are guaranteed to be sufficiently random. I&T project personnel may prefer 
un-randomized data so that during testing, they can read the binary data that they are familiar 
with. One answer is to implement the recommended pseudo-randomizer but make it 
switchable so that during early testing it can be turned off.  

While the recommended pseudo-randomizer is not strictly required, the system engineer 
must take all necessary steps to ensure that the coded symbols have sufficient transition 
density. Several projects have encountered unexpected problems with their telemetry links 
because this pseudo-randomizer was not used and sufficient randomness was not ensured by 
other means and properly verified.  These problems are traced to a lack of randomization at 
the data or modulation symbol level. In many communication system designs, the receiver, 
bit/symbol synchronizer and convolutional decoder all have specific requirements that are 
met by using randomized data. Details may change depending on modulation type, data 
format (NRZ-L vs. Bi Phase L) and signal to noise ratio.  If the implementer can adequately 
prove that a symbol stream with the proper randomness and balance of 1s and 0s can be 
achieved without the use of the recommended pseudo-randomizer to 1) ensure a high 
probability of receiver acquisition and lock in the presence of data, 2) eliminate DC offset 
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problems in PM systems, 3) ensure sufficient bit transition density to maintain bit (or 
symbol) synchronization, and 4) to handle special coding implementations (i.e., data that is 
multiplexed into multiple convolutional encoders), then the recommended Pseudo-
Randomizer may be omitted.  

The presence or absence of Pseudo-Randomization is fixed for a physical channel and is 
managed (i.e., its presence or absence is not signaled in the telemetry but must be known a 
priori) by the ground system. 

8.3 CODEBLOCK SYNCHRONIZATION 

8.3.1 GENERAL 

Each of the recommended codes requires a method for aligning the sequence of received 
code symbols with the boundaries of its codeblocks (or code symbol periods in the case of 
convolutional codes). Otherwise, the decoder would fail because it would be applying the 
correct decoding algorithm to an incorrect subset of received code symbols. The 
synchronization requirements are different for each of the recommended codes, as described 
in the next four subsections.   

8.3.2 SYNCHRONIZATION FOR CONVOLUTIONAL CODES 

For a rate 1/n convolutional code, the encoding rule, and hence the decoding rule, are ‘time-
invariant’ in that the same rule is applied at each bit time. Thus, even though the 
convolutional codeword is indefinitely long, the only requirement for proper synchronization 
is to correctly establish the identity of the starting symbol of any group of n symbols 
produced in one bit time. This procedure is commonly called ‘node synchronization’. For the 
recommended rate-1/2 non-punctured convolutional code, as well as the entire series of 
recommended punctured convolutional codes derived from the rate-1/2 code, node 
synchronization is a relatively simple matter of distinguishing between two possible ‘phases’ 
of the received symbol stream. This can be accomplished with or without the aid of frame 
synchronization markers in the data. For example, the Viterbi decoder may determine the 
correct phase by monitoring the rate of growth of its own internal metrics. Some useful 
techniques for node synchronization are described in reference [13].  Alternatively, for the 
recommended rate-1/2 convolutional code, node synchronization and frame synchronization 
can be established simultaneously by locating the (52-symbol invariant part of the) 
convolutionally encoded synchronization marker within the received symbol stream. 

8.3.3 SYNCHRONIZATION FOR REED-SOLOMON CODES 

A Reed-Solomon decoder will only decode properly if the starting symbol of each codeword 
is identified; i.e., the decoder requires accurate codeword synchronization. If interleaving is 
used, further resolution is necessary to determine the starting symbol of each codeblock 
(interleaved set of I codewords), or else the de-interleaver will fail to work properly. 
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The recommended method for synchronizing the codeblock is to look for an attached 
synchronization marker of 32 bits. This procedure is commonly called ‘frame 
synchronization’, because, in the absence of Reed-Solomon coding, the same 32-bit 
synchronization marker is attached directly to the Transfer Frame and is used to locate the 
start of the frame. When Reed-Solomon coding is used, the 32-bit marker is attached to the 
beginning of the Reed-Solomon codeblock and is used in the same way to identify the 
starting symbol of a codeblock. In this case, the synchronization procedure is properly called 
‘codeblock synchronization’, but the term ‘frame synchronization’ is often used 
indiscriminately to cover both cases. 

It is important to note that the codeblock synchronization marker is not encoded by the Reed-
Solomon encoder. Thus, even though the same 32-bit marker is attached to the same block of 
information bits, whether they occur in an uncoded Transfer Frame or as the data bits in a 
systematic Reed-Solomon codeblock, the Reed-Solomon coding cannot be considered a 
totally separate layer that follows the attachment of the marker to the Transfer Frame. If the 
coding layer should receive a Transfer Frame with frame synchronization marker already 
attached, it must detach the marker, encode the Transfer Frame only, and reattach the marker 
to the encoded codeblock. 

8.3.4 SYNCHRONIZATION FOR CONCATENATED CODES 

Synchronization for concatenated codes requires finding proper alignment with the 
boundaries of both constituent codes. The Recommended Standard (reference [3]) requires 
that the same 32-bit synchronization marker be attached to the recommended Reed-Solomon 
code, regardless of whether it is concatenated with an inner convolutional code. At the 
receiving end, the two levels of synchronization can be established by first node-
synchronizing the inner convolutional code, and then locating the 32-bit synchronization 
marker after convolutionally decoding. Alternatively, when the inner code is the 
recommended rate-1/2 convolutional code, node synchronization and frame synchronization 
can be established simultaneously by locating the (52-symbol invariant part of the)  
convolutionally encoded synchronization marker within the received symbol stream. 

8.3.5 SYNCHRONIZATION FOR TURBO CODES 

Codeblock synchronization is necessary for proper decoding of turbo codeblocks. 
Synchronization of the turbo codeblocks is achieved by using an attached sync marker. The 
code symbols comprising the sync marker for the turbo code are attached directly to the 
encoder output without being encoded. Thus, the transmitted sync marker pattern remains 
static for each codeblock. 

Synchronization is acquired on the receiving end by recognizing the specific bit pattern of 
the sync marker in the raw (undecoded) telemetry channel data stream. Synchronization is 
then confirmed by making further checks. Frame synchronizers should be set to expect a 
marker at a recurrence interval equal to the length of the sync marker plus that of the turbo 
codeblock. 
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A generic block diagram for generating a turbo codeblock with attached sync marker was 
already shown in figure 7-2. A diagram of the resulting codeblock with attached marker is 
shown in figure 8-2. Note that the lengths of the turbo codeblock and the sync marker are 
both inversely proportional to the nominal code rate r. This yields roughly equivalent 
synchronization performance independent of code rate. 

K/r  bits

Turbo Codeblock

32/r
bits

Rate-Dependent
Attached Sync

Marker

r = 1/2, 1/3, 1/4, or 1/6 (nominal code rate)

K = Telemetry Transfer Frame Length or Information Block Length

4/r
bits

 

Figure 8-2:  Turbo Codeblock with Attached Sync Marker 

Note that frame sync for the recommended Reed-Solomon/convolutional concatenated code 
can be acquired using a sync marker defined in the information bit domain rather than the 
encoded symbol domain, and detected after Viterbi decoding. This method relies on the fact 
that frame sync is not required for successful operation of the Viterbi decoder but is 
necessary for decoding the Reed-Solomon code. The Viterbi decoder is capable of finding its 
own ‘node sync’ with or without the aid of known sync markers in the data stream. The 
Reed-Solomon decoder has no effective method (other than trial and error) for determining 
frame sync on its own, and so it must be presented with externally synchronized codeblocks. 
It is irrelevant to the performance of the RS decoder whether this synchronization is 
determined from the channel symbols or from Viterbi decoded bits. 

In a similar way, the turbo decoder relies on being handed externally synchronized 
codeblocks, but a bit-domain approach does not work effectively for turbo decoders, because 
each constituent convolutional decoder is too weak by itself to detect a reasonable size 
marker reliably, and because the powerful combined turbo decoding operation needs to know 
the codeblock boundaries before it can iterate between permuted and unpermuted data 
domains. Therefore, turbo code applications need to use channel-symbol-domain frame sync 
methods as specified in the Recommended Standard (reference [3]).  

Note that, for equivalent performance, channel-symbol-domain frame synchronization 
requires longer sync markers and faster processing (at the channel symbol rate rather than the 
Viterbi decoded bit rate).  
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8.4 CERTIFICATION OF THE DECODED DATA (FRAME INTEGRITY 
CHECKS) 

8.4.1 GENERAL 

The CCSDS applications are packet-oriented, which means that data are collected and 
transmitted in frames. With all coding options, and also for uncoded data, it is important to 
have a reliable indication whether the decoded data is correct. A frame integrity check can be 
used at the receiver side to validate the received frame or, when suitable, for requiring 
retransmission in case of check failure.  

As with the problem of randomizing the coded output, a universal solution to this data 
validation problem exists in the form of a cyclic redundancy check (CRC) code, as specified 
in the TM Space Data Link Protocol Blue Book (reference [2]). 

8.4.2 DESCRIPTION OF THE RECOMMENDED CRC CODE 

Generally speaking, a binary CRC code is an (N,k) code obtained by shortening a cyclic 
code, capable of detecting the following error patterns:  

a) all error bursts of length N–k or less; 

b) a fraction of error bursts of length equal to N–k+1; this fraction equals 1–2–(N–k–1); 

c) a fraction of error bursts of length greater than N–k+1; this fraction equals 1–2–(N–k);  

d) all error patterns containing dmin – 1 (or fewer) errors, dmin being the minimum 
distance of the CRC code; 

e) all error patterns with an odd number of errors if the generator polynomial G(D) for 
the code has an even number of nonzero coefficients.  

The circuits for coding and syndrome computation are simple feedback shift registers with 
r = N–k cells. 

In the CRC code used for the CCSDS TM Space Data Link Protocol Recommended 
Standard, 16 parity check bits are added to every information frame consisting of (N–16) 
information bits, according to the following generator polynomial: 

 G(D) = D16+D12+D5+1 

Thus the rate of this CRC code is (N–16)/N.  

The CRC circuit in the Recommended Standard (reference [2]) is preset to an all ‘1’ state 
prior to encoding; this is a peculiarity of the CCSDS CRC, which implies that the 16 parity 
check bits are inverted with respect to the usual CRC encoding (N–16) all ‘0’ information 
bits generate 16 all ‘1’ parity check bits).  
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Serial concatenation of the CRC and a turbo code with nominal rate 1/3 is shown in figure 8-3.  
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Figure 8-3:  Turbo-CRC Encoder 

The information frame is encoded by the CRC before entering the turbo encoder, and the 
CRC syndrome is used to check the integrity of the decoded frame produced by the turbo 
decoder at the receiver side. 

8.4.3 USAGE CIRCUMSTANCES FOR THE RECOMMENDED CRC CODE 

The recommended CRC code is included in the Telemetry Frame and consists of 16 check 
bits computed from the remainder of the frame contents. This code can reliably detect 
incorrect frames with an undetected error rate of around 2–15≈10–5. This CRC code achieves 
approximately the same undetected error rate for any of the recommended telemetry channel 
codes. 

A much lower undetected error rate is achieved when the RS code with E = 16 is used, either 
by itself or concatenated with an inner convolutional code. In this case, the undetected error 
rate of the RS decoder is on the order of 1/E!≈10–13, which is many orders of magnitude 
better than the validation offered by the CRC code. Thus, the error detection capability of the 
CRC code is superfluous when the RS code with E = 16 is used.  

The RS code with E = 8 offers much lower error detection capability, on the same order as 
that provided by the 16-bit CRC code. Similarly, a turbo decoder equipped with a smart 
stopping rule that notes whether the decoder’s iterations converge to a valid codeword can 
achieve some degree of error detectability and somewhat alleviate the need for the 16-bit 
CRC code. However, in these borderline cases the CRC code is still required. It is also 
required for uncoded data or convolutionally coded data, which offer absolutely no capability 
for error detection on their own. 

If a lower detected error rate is desired than that offered by the recommended 16-bit CRC 
code, and RS coding is not used, then one option is to use a 32-bit or 48-bit CRC code (not in 
the CCSDS Recommended Standards).  
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8.5 CODE TRANSPARENCY 

Rotationally invariant (transparent) coding schemes are used to overcome the phase 
ambiguity inherent in usual coherent demodulation techniques. Let us consider the 
transmission over a band-limited channel using phase-coherent demodulation. To estimate 
the carrier phase, the receiver uses its knowledge of the signal set S, which is the set of points 
produced by the modulator. By examining the pattern of received signal points, the receiver 
can infer the carrier phase up to an ambiguity corresponding to a rotational symmetry of S.  

Let us denote a counterclockwise rotation of x degrees about the origin by ρ. A rotational 
symmetry of the signal set S is a rotation ρ mapping S into itself. The set of all the rotational 
symmetry of S is called the rotational symmetry group φ. If φ has n elements then it is a 
cyclic group generated by the rotation ρ of x = 360/n degrees (the smallest non-zero rotation 
belonging to it).  

As an example, an M-PSK constellation has M rotational symmetries. In particular, a 2-PSK 
constellation has 2 rotational symmetries: φ = {ρ0,ρ180}, while a 4-PSK constellation has 4 
rotational symmetries φ = {ρ0,ρ9,ρ180,ρ270}, as a square QAM constellation (16-QAM, 64-
QAM, 256-QAM). For non-square QAM constellations, φ depends on the signal choice. 

When used in a modulation scheme with coherent demodulation, the carrier phase is 
estimated from the ensemble of the received signal points. However, an ambiguity 
corresponding to a rotation of φ cannot be solved without external reference. For example, if 
a 2-PSK is used, the demodulator observes the two received points and estimates a carrier 
phase which can be correct, or wrong by 180 degrees.  

The receiver can handle the n-way phase ambiguity in several ways. One way to resolve the 
phase ambiguity is through training. At the start of the transmission, and within it, the 
transmitter sends a predetermined sequence of signal points which the receiver uses to 
correct its phase estimation.  

Another method uses transparent coding schemes to solve the problem. In this case, the 
receiver does not try to resolve the possible phase error but uses transparent schemes able to 
cope with it. Let us consider an uncoded signal set S=2-PSK transmitted over a channel without 
noise. If a 180-degree error occurs at the receiver side, all the transmitted bits are received 
inverted. We observe that this is equivalent to sum an all-one sequence to the transmitted 
sequences. A simple differential precoder at the transmitter side, followed by a differential 
postcoder at the receiver can cope with this situation (see figure 3-1 and figure 8-4 below). In 
fact, the constant all-one sequence is eliminated by the differential devices. 

Now, let us consider a binary code C mapped over S=2-PSK. The precoder/postcoder operation 
could still be applied to cope with possible phase errors. However, it is essential that a rotation 
of 180 degrees maps the code into itself (otherwise, in case of phase error, the decoder would 
work over a different set of codewords). In this case we say that C is rotationally invariant 
(transparent): for any code sequences c∈C, its inverted version still belongs to C: a differential 
precoder/postcoder pair is able to solve the phase ambiguity of the coded sequences.  
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8.6 REMAPPINGS OF THE BITS 

In figure 3-1 there is an optional ‘NRZ-L to NRZ-M conversion’ block at the transmitter and, 
inversely, an ‘NRZ-M to NRZ-L conversion’ block at the receiver. NRZ-L is a modulation 
format that represents a data ‘1’ by one of two levels, and a data ‘0’ by the other level. On 
the other hand, NRZ-M represents a data ‘1’ by a change in level and a data ‘0’ by no change 
in level. The conversion from NRZ-L to NRZ-M is a form of differential precoding that can 
be used to resolve the ambiguity between true and complemented data. figure 8-4 shows a 
block diagram for implementing the ‘NRZ-L to NRZ-M conversion’ and its inverse.  
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Figure 8-4: Block Diagrams for Implementing the (Optional) (a) ‘NRZ-L to NRZ-M 
Conversion’ and (b) Its Inverse 

When all three elements of the coding system depicted in figure 3-1 are used, the ‘NRZ-L to 
NRZ-M conversion’ is actually just a form of 1:1 mapping applied to the binary data, not a 
conversion of modulation formats, since the modulation of the data occurs after the 
convolutional encoding stage. Any invertible mapping may be applied to the binary data 
without apparent consequence as long as all the data bits are correct; however, performance 
is affected by 1:1 mappings when errors enter the system. For example, there is a large 
performance penalty if one puts an NRZ-L to NRZ-M mapping at the output of a 
convolutional code (see reference [31]). For this reason figure 3-1 does not include an option 
that allows an ‘NRZ-L to NRZ-M conversion’ block to serve as a true modulation conversion 
at the output of the convolutional encoder. 

The CCSDS Recommended Standards (references [3] and [2]) do not regulate whether a 
user’s source data might be subjected to a 1:1 mapping (or any other form of data processing) 
before being packaged as information bits in a Telemetry Transfer Frame prior to coding. 
Thus any form of 1:1 mapping of the source data that precedes any of the recommended 
CCSDS codes is implicitly allowed by Recommended Standards (references [3] and [2]). In 
this case, the code performance curves shown in this Green Book pertain only to the error 
rates for the remapped data presented to the encoder. The user has the responsibility to 
determine whether these errors might propagate or multiply throughout the original source 
data as a result of the 1:1 premapping. For example, the discussion following figure 5-4 
mentioned two methods (row-by-row and column-by-column) for reading the source data 
into the matrix used for interleaving Reed-Solomon codewords; this choice affects the 
characteristics of errors in the decoded source data. 
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The ‘NRZ-L to NRZ-M conversion’ block in figure 3-1 can be viewed simply as an 
implicitly permitted 1:1 remapping of the source data in the case when the Reed-Solomon 
code is not used. Curiously, however, the figure also indicates that this mapping may be 
placed between the two components of a concatenated code. This placement makes sense 
from a performance standpoint: unlike an NRZ-L to NRZ-M mapping at the output of a 
convolutional code, the same mapping applied to Reed-Solomon coded bits has only minor 
effects on the code’s performance . However, in this position this remapping in fact makes 
the overall code a concatenation of three codes, not two, when all three elements of the 
coding system depicted in figure 3-1 are used. The Blue Book (reference [3]) does not clearly 
state that such an arrangement is permitted. Also, figure 3-1 fails to show where the optional 
‘NRZ-L to NRZ-M conversion’ block between the Reed-Solomon and convolutional codes 
fits with respect to the interleaving of Reed-Solomon codewords.     
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ANNEX A 
 

GLOSSARY 

Block Encoding: A one-to-one transformation of sequences of length k of elements of a 
source alphabet to sequences of length n of elements of a code alphabet, n>k. 

Channel Symbol: The unit of output of the innermost encoder which is a serial representation 
of bits, or binary digits, which have been encoded to protect against transmission induced 
errors. 

Clean Data (Bits): Data (bits) which are error free within the error detection and optional 
error correction capabilities of the TM System. 

Codeblock: A codeblock of an (n,k) block code is a sequence of n channel symbols which 
were produced as a unit by encoding a sequence of k information symbols, and will be 
decoded as a unit. Code Rate: The average ratio of the number of binary digits at the input of 
an encoder to the number binary digits at its output. 

Codeword: In a block code, one of the sequences in the range of the one-to-one 
transformation (see Block Encoding). 

Command Link Control Word: The Telecommand System Transfer Layer protocol data unit 
for Telecommand reporting via the TM Transfer Frame Operational Control Field. 

Concatenation: The use of two or more codes to process data sequentially with the output of 
one encoder used as the input of the next. 

Constraint Length: In convolutional coding, the number of consecutive input bits that are 
needed to determine the value of the output symbols at any time. 

Convolutional Code: As used in this document, a code in which a number of output symbols 
are produced for each input information bit. Each output symbol is a linear combination of 
the current input bit as well as some or all of the previous k-1 bits, where k is the constraint 
length of the code. 

Fill Bit(s): Additional bit(s) appended to enable a ‘data entity’ to exactly fit an integer 
number of octets or symbols. 

Inner Code: In a concatenated coding system, the last encoding algorithm that is applied to 
the data stream. The data stream here consists of the codewords generated by the outer 
decoder. Modulating Waveform: A way of representing data bits (‘1’ and ‘0’) by a particular 
waveform. 

NRZ-L: A modulating waveform in which a data ‘one’ is represented by one of two levels, 
and a data ‘zero’ is represented by the other level. 
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NRZ-M: A modulating waveform in which a data ‘one’ is represented by a change in level 
and a data ‘zero’ is represented by no change in level. 

Octet: An 8-bit word consisting of eight contiguous bits. 

Outer Code: In a concatenated coding system, the first encoding algorithm that is applied to 
the data stream. 

Packet: An efficient application-oriented protocol data unit that facilitates the transfer of 
source data to users located in space or on Earth. 

Protocol: A set of procedures and their enabling format conventions that define the orderly 
exchange of information between entities within a given layer of the TM System. 

Reed-Solomon (‘R-S’) Symbol: A set of J bits that represents an element in the Galois field 
GF(2J), the code alphabet of a J-bit Reed-Solomon code. 

Reliable: Meets the quality, quantity, continuity and completeness criteria which are 
specified by the TM System. 

Segment: A protocol data unit which facilitates telemetry flow control through the breaking 
of long source packets into communications-oriented data structures. 

Systematic Code: A code in which the input information sequence appears in unaltered form 
as part of the output codeword. 

Telemetry System: The end-to-end system of layered data handling services which exist to 
enable a spacecraft to send measurement information, in an error-controlled environment, to 
receiving elements (application processes) in space or on Earth. 

Transfer Frame: A communication oriented protocol data unit that facilitates the transfer of 
application oriented protocol data units through the space-to-ground link. 

Transparent: The invisible and seemingly direct (virtual) transfer of measurement 
information from the spacecraft source application process to the user (receiving application 
process). 

Transparent Code: A code that has the property that complementing the input of the encoder 
or decoder results in complementing the output. 

User: A human or machine-intelligent process which directs and analyzes the progress of a 
space mission. 

Virtual Channel: A given sequence of Transfer Frames, which are assigned a common 
identification code (in the Transfer Frame header), enabling all Transfer Frames who are 
members of that sequence to be uniquely identified. It allows a technique for multiple source 
application processes to share the finite capacity of the physical link (i.e., through 
multiplexing). 

CCSDS 130.1-G-1 Page A-2 June 2006 



TM SYNCHRONIZATION AND CHANNEL CODING —SUMMARY OF CONCEPT AND RATIONALE 

CCSDS 130.1-G-1 Page A-3 June 2006 

Virtual Fill: In a systematic block code, a codeword can be divided into an information part 
and a parity (check) part. Suppose that the information part is N symbols long (symbol is 
defined here to be an element of the code’s alphabet) and that the parity part is M symbols 
long. A ‘shortened’ code is created by taking only S (S<N) information symbols as input, 
appending a fixed string of length N-S and then encoding in the normal way. This fixed string 
is called ‘fill’. Since the fill is a predetermined sequence of symbols, it need not be 
transmitted over the channel. Instead, the decoder appends the same fill sequence before 
decoding. In this case, the fill is called ‘Virtual Fill’. 

Connection Vector (Forward): In convolutional and turbo coding, a vector used to specify 
one of the parity checks to be computed by the shift register(s) in the encoder. For a shift 
register with s stages, a connection vector is an s-bit binary number. A bit equal to one in 
position i (counted from the left) indicates that the output of the ith stage of the shift register 
is to be used in computing that parity check. 

Connection Vector (Backward): In turbo coding, a vector used to specify the feedback to the 
shift registers in the encoder. For a shift register with s stages, a backward connection vector 
is an s-bit binary number. A bit equal to one in position i (counted from the left) indicates 
that the output of the ith stage of the shift register is to be used in computing the feedback 
value, except for the leftmost bit which is ignored. 

Trellis Termination: The operation of filling with zeros the s stages of each shift register used 
in the turbo encoder, after the end of the information block. During trellis termination the 
encoders continue to output encoded symbols for s-1 additional clock cycles. 

Turbo Code: As used in this document, a block code formed by combining two component 
recursive convolutional codes. A turbo code takes as input a block of k information bits. The 
input block is sent unchanged to the first component code and bit-wise interleaved (see 
TURBO CODE PERMUTATION) to the second component code. The output is formed by 
the parity symbols contributed by each component code plus a replica of the information bits. 

Turbo Code Permutation: A fixed bit-by-bit permutation of the entire input block of 
information bits performed by a permuter or interleaver, used in turbo codes. 
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ANNEX B 
 

ACRONYMS AND ABBREVIATIONS 

AOS — Advanced Orbiting System  
APP — A posteriori probability  
ASM — Attached Synchronization Marker  
AWGN — Additive White Gaussian Noise  
BCH — Bose-Chaudury-Hoquenheim  
BER — Bit Error Rate  
BPSK — Binary Phase Shift Keying  
BSNR — bit SNR  
CCSDS — Consultative Committee on Space Data Systems  
CRC — Cyclic Redundancy Code  
DSN — Deep Space Network  
ESA — European Space Agency  
FEC — Forward Error Correction  
FER — Frame Error Rate  
GF — Galois Field  
GSFC — Goddard Space Flight Center  
JPL — Jet Propulsion Laboratory  
MAP — Maximum a posteriori probability  
NASA — National Aeronautic and Space Administration  
NRZ — Non-Return to Zero  
PM — Phase Modulated  
PSK — Phase Shift Keying  
QAM — Quadrature Amplitude Modulation  
RF — Radio Frequency  
ROM — Read Only Memory  
RS — Reed-Solomon  
SNR — Signal to Noise Ratio  
SSNR — Symbol SNR  
TM — Telemetry  
VC — Virtual Channel  
WER — Word Error Rate 
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ANNEX C 
 

RATIONALE FOR TURBO CODE PARAMETER SELECTIONS 

C1 GENERAL 

Because turbo codes can achieve great performance over a wide range of parameter values, 
the selection of reasonable code parameters is a major systems issue. The system design must 
assess all the parameter-space tradeoffs as they affect both the performance of the code and 
systems-related considerations. Turbo codes give the system designer vast flexibility to 
choose any desirable combination of parameters without sacrificing performance more than 
intrinsically necessary. 

C2 CODE RATE 

The code rate of the recommended turbo encoder is selectable from 1/2, 1/3, 1/4, or 1/6. 
Lower code rates are also possible to achieve even better performance if the receivers can 
work at the correspondingly lower channel-symbol SNR (Eb/N0). The rule of thumb is that 
the potential coding gain for using lower code rates pretty much follows the corresponding 
gain for the ultimate code-rate-dependent theoretical limits. 

For deep-space applications, turbo codes are intended for use with BPSK modulation, with 
code rate < 1 bit/channel symbol (spectral efficiency < 1 bit/sec/Hz). The same codes can be 
used with QPSK modulation with Gray coding signal assignment to achieve higher spectral 
efficiency, as typically required in near-Earth applications.7  

C3 BLOCK SIZE 

Figure 3-4 shows how some fundamental theoretical lower bounds on the performance of 
arbitrary codes on the additive white Gaussian noise channel vary with codeblock length. 
Amazingly, this variation is mirrored by the empirically determined dependence on block 
length of the performance of a large family of good turbo codes (see also reference [16]). 

Figure C-1 shows simulation results compared to the lower bound for a family of rate-1/3 
turbo codes with different block lengths (using the generator polynomials specified in 7.2). 
Note that the range of block lengths in this figure, from 256 bits up to 49152 bits, spans both 
larger and smaller block lengths than the five specific CCSDS recommended block lengths. 
Although there is a 2 dB performance differential between the simulation results for 256-bit 
blocks and 49152-bit blocks, the difference between the simulations and the lower bounds 
remains approximately the same. The simulation results are about 0.5 dB to 1.0 dB from the 

                                                 
7 Additional turbo codes with matched modulation signal set have been designed for even higher spectral 
efficiencies. These codes would require 8PSK or higher level modulations and are not covered in this document. 
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theoretical limits for all code rates ranging from 1/6 to 1/2 and at all codeblock sizes ranging 
from 256 to 49152 information bits. Similar results were obtained for turbo codes in the same 
family with rates 1/2, 1/4, and 1/6. The significance of these results is that turbo codes appear 
to be uniformly good over the entire span of block sizes shown, including all of the CCSDS 
recommended block lengths.  
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NOTE – Bound is calculated for word error rate of 10–4, while turbo code simulations 
were for bit error rate of 10–6. 

Figure C-1: Comparison of Turbo Code Performance with Blocklength-Constrained 
Lower Bound 

C4 CONSTITUENT CODES 

Effective turbo codes can be constructed from a wide variety of constituents. Here are some 
of the factors underlying the choice of constituent codes that led to the recommended 
CCSDS turbo codes.  

Number and Type of Constituent Codes — Turbo codes with more than two constituent 
codes are feasible in principle, but to this point they have not been well studied — mainly 
because two-component turbo codes already perform so well. The best performing and best 
understood constituent codes discovered thus far are the class of recursive convolutional 
codes, as recommended in 7.2 and in the original turbo code paper by Berrou et al.  

Constraint Length — The recommended turbo code is formed from two recursive 
convolutional codes with constraint length K = 5. Higher constraint lengths are more complex 
to decode, and they seem to offer negligible performance improvement. In the other 
direction, constituent codes with constraint lengths less than 5 sacrifice some performance to 
achieve higher decoding speeds.  
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Code Generator Polynomials — Considerable theory has been developed to guide the 
choice of constituent code generator polynomials. This theory is based on the transfer 
function bounds that are used to predict the turbo decoder error floor. The error floor can be 
lowered the most if the divisor polynomial (G0 in figure 7-3) is a primitive polynomial. 
Additional theoretical considerations guide the choice of the remaining polynomials.  

Code Transparency — Turbo codes are inherently non-transparent, meaning that a totally 
inverted codeblock cannot be an exact codeword. However, a turbo code can be made 
‘approximately transparent’ except near the edges of the codeblock. It is a system design issue to 
decide whether an approximately transparent turbo code would be preferred, at some sacrifice of 
performance, to one designed without any transparency constraints. The turbo codes in the 
Recommended Standard (reference [3]) are not constructed to be approximately transparent. 

C5 PERMUTATION 

The (analytically) best-understood permutations for turbo codes are completely random. The 
best-performing permutations are manually optimized for each block size, and they also look 
very random. Manually optimized permutations generally outperform purely random 
permutations by only a small amount, except that they may significantly lower the error 
floor. However, such a permutation needs to be stored in ROM as a lookup table, because it 
is infeasible to recompute it on the fly for every codeword. The permutation in the 
Recommended Standard (reference [3]) can be generated on-the-fly by applying a simple 
rule. It also looks very random and performs nearly as well (within 0.1 dB, see figure C-2) as 
the manually optimized permutation. The recommended permutation gives the implementer 
an option to calculate the permutation on-the-fly in preference to using a look-up table. Note 
that a simple rectangular interleaver, such as the interleaver recommended for Reed-Solomon 
codes (see 5.3), is not suitable for turbo codes. 

The interpretation of the permutation numbers in the Recommended Standard (reference [3]) 
is such that the sth bit read out on line ‘in b’ (in figure 7-3) is the π(s)th bit of the input 
information block, as shown in figure C-3.  

C6 SOME SYSTEM ISSUES PERTINENT TO THE USE OF TURBO CODES 

Lower symbol SNR — To take advantage of the improved performance of turbo codes, the 
receiving system must operate at a significantly lower symbol signal-to-noise ratio (SSNR) 
than that of a less powerful code with the same code rate. This imposes more stringent demands 
on the receiver’s ability to perform symbol synchronization. The performance advantages of 
turbo coding may be negated if the receiver cannot lock onto the lower-SSNR symbols. 

Since the threshold SSNR drops in direct proportion with the code rate, whereas the threshold 
bit signal-to-noise ratio (BSNR) converges to a fixed limit as code rate →0 (see 3.4.2), 
lowering the code rate too far toward 0 produces diminishing returns in overall code 
performance while continuing to tax the receiver heavily. It is a systems issue to decide on the 
code rate that provides the best tradeoffs. For turbo codes, the variation of code performance 
with code rate more or less mirrors that of the ultimate limits on performance, as given in 3.4.2.  
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Figure C-2: Performance Comparison for Pseudo-Random and Algorithmic 
Permutations 
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Figure C-3:  Interpretation of Permutation 

Performance with Non-Ideal Tracking Loops —Any decoder’s performance degrades 
when there are small errors in tracking and detecting the received symbols. However, with 
turbo codes, there is also a possibility to improve the receiver’s tracking performance by 
feeding back soft information from the decoding process to assist the receiver’s tracking 
loops. Preliminary assessments (see reference [20]) of potential improvements are 
encouraging.  

Residual Error Correction — In applications requiring extremely low error rates, the error 
rate of a turbo code in the error floor region may be unacceptable despite best efforts to 
lower it. The solution may be to add an outer code to work in conjunction with the turbo 
code as the inner code. The outer code would ideally be a binary code such as a BCH code 
rather than a nonbinary Reed-Solomon code. Because of the sparseness of errors on the error 
floor (typically a handful of bit errors per block), the outer code could have a very high code-
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rate and would shift the required Eb/N0 by just a tiny amount. However, an outer code will 
provide very little benefit at signal-to-noise ratios below the error floor region, because in 
this region there are frequently codewords for which the turbo decoding algorithm fails to 
converge and the resulting number of bit errors is beyond the error correction capability of 
any reasonable outer code. Unfortunately, these errors due to non-convergence of the 
decoding algorithm do not completely disappear in the error floor region, where they are 
similarly immune to being corrected by a reasonable outer code. Thus, even in the error floor 
region, an outer code is only effective at fixing the dominant error events, but the rarer events 
in this region (due to non-convergence) may still exceed the desired error rate if they are not 
rare enough.  

Detecting Turbo Decoding Errors with an Outer CRC Code — Turbo decoders (like 
Viterbi decoders) are complete decoders, in that they always produce a decoded sequence. 
Currently these decoders do not detect and mark unreliable sequences, though in principle 
they could be modified to do so. Alternatively, a separate error detection code, such as a 
cyclic redundancy check (CRC) code, can be concatenated as an outer code with an inner 
turbo code, in order to flag unreliable decoded sequences. Let us define by l the redundancy 
of the error detection code (CRC). The l = 16 CRC code used for the CCSDS standard 
detects every possible error sequence e with the lowest weights |e| = 1, 2, or 3. An undetected 
codeword error occurs whenever the error pattern e of the sequence decoded by the turbo 
code equals one of the nonzero codewords of the CRC code. The CRC/turbo code 
combination will produce a typical conditional undetected error probability of about 
2-l = 2-16≈1.5×10-5. This value must be multiplied by the probability of a codeword error to 
obtain the (unconditional) undetected error probability.  

Lowering the Turbo Code’s Error Floor — Even without using an outer BCH code, we 
have been able to design good turbo codes that lower the error floor to possibly insignificant 
levels (e.g., 10–9 bit error rate). Such performance may be sufficiently good for space 
applications to obviate the need for an outer error-correcting code. In that case, a simpler 
outer code (such as a CRC code) may still be desirable for error detection only.  
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