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Abstract: The transition from integrability to non-
integrability for a two dimensional Hamiltonian mapping ex-
hibiting mixed phase space is considered. The phase space
of such mapping show a large chaotic sea surrounding KAM
islands and limited by a set of invariant tori. The description
of the phase transition is made by the use of scaling func-
tions for average quantities of the mapping averaged along
the chaotic sea. The critical exponents are obtained via ex-
tensive numerical simulations. Given the mapping the criti-
cal exponents that characterize the scaling functions are ob-
tained. Therefore classes of universality are defined.

We present and discuss some dynamical properties for
a set of two dimensional Hamiltonian mappings. We as-
sume that there is a two-dimensional integrable system that
is slightly perturbed. The Hamiltonian function that, in prin-
ciple, describes the system is written as

H(I1, I2, θ1, θ2) = H0(I1, I2) + εH1(I1, I2, θ1, θ2) , (1)

where the variablesIi andθi with i = 1, 2 correspond re-
spectively to the action and angle. One can see clearly that
the control parameterε controls a transition from integrabil-
ity to non integrability. To use the characterization of the
dynamics in terms of a mapping, we can now consider a
Poincaré section defined by the planeI1 × θ1 and assumeθ2

as constant (mod2π). A generic two dimensional mapping
which qualitatively describes the behavior of (1) is

T :

{

In+1 = In + εh(θn, In+1)
θn+1 = [θn + K(In+1) + εp(θn, In+1)] mod(2π)

(2)
whereh, K andp are assumed to be nonlinear functions of
their variables while the indexn corresponds to thenth it-
eration of the mapping. The variablesI andθ correspond
indeed toI1 andθ1.

Since the mapping (2) should be area preserving, the ex-
pressions forh(θn, In+1) andp(θn, In+1) have to obey some
properties, in particular some intrinsic relations. The rela-
tions are obtained considering that the determinant of the Ja-
cobian matrix is the unity. After some straightforward al-
gebra, it is easy to conclude that area preservation will be
observed only if the condition

∂p(θn, In+1)

∂θn

+
∂h(θn, In+1)

∂In+1
= 0 , (3)

is matched. For many mappings considered in the litera-
ture, the functionp(θn, In+1) = 0. Hence, if we keeph
ash(θn) = sin(θn), and varyK, to illustrate applicability
of the formalism, we nominate the following mappings that
have already been studied:

• ConsideringK(In+1) = In+1 + ζI2
n+1, the logistic

twist mapping is obtained;

• K(In+1) = In+1, then the Taylor-Chirikov’s map is
recovered;

• K(In+1) = 2/In+1, then the Fermi-Ulam accelerator
model is obtained [1, 2];

• K(In+1) = ζIn+1, with ζ constant, then the bouncer
model is found;

• For the case of

K(In+1) =

{

4ζ2(In+1 −
√

I2
n+1 −

1
ζ2 ) if In+1 > 1

ζ
,

4ζ2In+1 if In+1 ≤ 1
ζ

.

(4)
whereζ is a constant, then we recovered the so called
Hybrid-Fermi-Ulam-bouncer model.

In this work, we consider the following expression for the
two dimensional mapping [3]:

T :

{

xn+1 =
[

xn + a
(yn+1)2/3

]

mod 1

yn+1 = |yn − b sin(2πxn)|
, (5)

wherea and b and γ are the control parameters. The de-
terminant of the Jacobian matrix isDet J = sign(yn −
b sin(2πxn)) wheresign(u) = 1 if u > 0 andsign(u) = −1
if u < 0.

It is important to emphasize that there are two control pa-
rameters in mapping (5) that control the transition from in-
tegrability to no integrability, namelya = 0 or b = 0. The
phase space generated from iteration of the mapping (5) for
a = 2 andb = 10−3 is shown in Fig. 1.

Now we concentrate to discuss some scaling properties
present in the chaotic sea. The average quantity to be ex-
plored is the deviation of the averagēy for chaotic orbits,



Figure 1 – Phase space generated by the mapping (5) for the
control parameters,a = 2 and b = 10

−3.

denoted asω. In fairness, the behavior ofω shows the same
properties of the averagēy. It is defined as

ω(n, a, b) =
1

M

M
∑

i=1

√

y2
i (n, a, b) − yi

2(n, a, b) , (6)

whereM corresponds to anensembleof different initial con-
ditionsxi ∈ (0, 1) randomly chosen for a fixedy0 = 10−3b
andȳi is given by

yi(n, a, b) =
1

n

n
∑

j=1

yj,i . (7)

The behavior ofω × n for different control parameters, as
labeled in the figure, is shown in Fig.2. However, similar
results would indeed be observed for other values ofγ too.

Figure 2 – (Color online) (a) Plot of different ω curves as func-
tion of n for different values of a and b for an ensemble of
M = 5000 different initial conditions. (b) Their collapse onto a
single and universal plot.

Let us now discuss the behavior observed in Fig 2. The
curves start growing for smalln and after reaching a critical
crossover iteration number,nx, they bend toward a regime of
convergence. Based on the behavior seen in Fig. 2(a) we can
suppose that:

• (i) For n ≪ nx, ω grows according to a power law of
the type

ω ∝
(

nb2
)β

, (8)

whereβ is a critical exponent;

• (ii) For largen, sayn ≫ nx, the behavior ofω is

ω ∝ aα1bα2 , (9)

whereα1 andα2 are critical exponents;

• (iii) The crossovernx, that characterizes the transition
of the growing regime for the saturation is

nxb2 ∝ az1bz2 , (10)

wherez1 andz2 are called as dynamical exponents.

The critical exponentsα1, α2 and the dynamical expo-
nentsz1 and z2 can be obtained from extensive numeri-
cal simulations. Firstly, fitting the initial regime of growth,
we obtain that the criticalβ ∼= 0.5. We have obtained
z2 = −0.757(4), α2 = 0.607(1), z1 = 1.162(5) and (d)
α1 = 0.587(1). Since we have now obtained the critical ex-
ponents, the scaling hypotheses can be verified. In this case,
it is shown in Fig 2(b) a merger of four different curves of
ω generated for different values of the control parametersa
and b into a single and universal plot. Finally, the critical
exponents could be used to define classes of universality and
compared to other kinds of transition observed in dynamical
systems.

To summarize our conclusions, we have studied in
this work a phase transition from integrability for non-
integrability for a two dimensional Hamiltonian map. The
critical exponents were obtained via extensive simulations
and scaling hypotheses were all supported by a perfect col-
lapse of all the curves of the deviation around the average
quantities for the chaotic sea.
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